LOFType.java
/* Copyright 2002-2024 CS GROUP
* Licensed to CS GROUP (CS) under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* CS licenses this file to You under the Apache License, Version 2.0
* (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package org.orekit.frames;
import org.hipparchus.CalculusFieldElement;
import org.hipparchus.Field;
import org.hipparchus.geometry.euclidean.threed.FieldRotation;
import org.hipparchus.geometry.euclidean.threed.FieldVector3D;
import org.hipparchus.geometry.euclidean.threed.Rotation;
import org.hipparchus.geometry.euclidean.threed.RotationConvention;
import org.hipparchus.geometry.euclidean.threed.Vector3D;
import org.orekit.errors.OrekitException;
import org.orekit.errors.OrekitMessages;
import org.orekit.files.ccsds.definitions.OrbitRelativeFrame;
import org.orekit.time.AbsoluteDate;
import org.orekit.time.FieldAbsoluteDate;
import org.orekit.utils.FieldPVCoordinates;
import org.orekit.utils.PVCoordinates;
/**
* Enumerate for different types of Local Orbital Frames.
*
* @author Luc Maisonobe
* @author Maxime Journot
* @author Vincent Cucchietti
*/
public enum LOFType implements LOF {
/** Constant for TNW frame
* (X axis aligned with velocity, Z axis aligned with orbital momentum).
* <p>
* The axes of this frame are parallel to the axes of the {@link #VNC}
* and {@link #NTW} frames:
* <ul>
* <li>X<sub>TNW</sub> = X<sub>VNC</sub> = Y<sub>NTW</sub></li>
* <li>Y<sub>TNW</sub> = -Z<sub>VNC</sub> = -X<sub>NTW</sub></li>
* <li>Z<sub>TNW</sub> = Y<sub>VNC</sub> = Z<sub>NTW</sub></li>
* </ul>
*
* @see #VNC
* @see #NTW
*/
TNW {
/** {@inheritDoc} */
@Override
public Rotation rotationFromInertial(final PVCoordinates pv) {
return new Rotation(pv.getVelocity(), pv.getMomentum(),
Vector3D.PLUS_I, Vector3D.PLUS_K);
}
/** {@inheritDoc} */
@Override
public <T extends CalculusFieldElement<T>> FieldRotation<T> rotationFromInertial(final Field<T> field,
final FieldPVCoordinates<T> pv) {
return new FieldRotation<>(pv.getVelocity(), pv.getMomentum(),
new FieldVector3D<>(field, Vector3D.PLUS_I),
new FieldVector3D<>(field, Vector3D.PLUS_K));
}
/** {@inheritDoc} */
@Override
public OrbitRelativeFrame toOrbitRelativeFrame() {
return OrbitRelativeFrame.TNW;
}
},
/**
* Constant for TNW frame considered inertial (X axis aligned with velocity, Z axis aligned with orbital momentum).
* <p>
* The axes of this frame are parallel to the axes of the {@link #VNC} and {@link #NTW} frames:
* <ul>
* <li>X<sub>TNW</sub> = X<sub>VNC</sub> = Y<sub>NTW</sub></li>
* <li>Y<sub>TNW</sub> = -Z<sub>VNC</sub> = -X<sub>NTW</sub></li>
* <li>Z<sub>TNW</sub> = Y<sub>VNC</sub> = Z<sub>NTW</sub></li>
* </ul>
*
* @see #VNC
* @see #NTW
*/
TNW_INERTIAL {
/** {@inheritDoc} */
@Override
public Rotation rotationFromInertial(final PVCoordinates pv) {
return TNW.rotationFromInertial(pv);
}
/** {@inheritDoc} */
@Override
public <T extends CalculusFieldElement<T>> FieldRotation<T> rotationFromInertial(final Field<T> field,
final FieldPVCoordinates<T> pv) {
return TNW.rotationFromInertial(field, pv);
}
/** {@inheritDoc} */
@Override
public boolean isQuasiInertial() {
return true;
}
/** {@inheritDoc} */
@Override
public OrbitRelativeFrame toOrbitRelativeFrame() {
return OrbitRelativeFrame.TNW_INERTIAL;
}
},
/** Constant for QSW frame
* (X axis aligned with position, Z axis aligned with orbital momentum).
* <p>
* This frame is also known as the {@link #LVLH} frame, both constants are equivalent.
* </p>
* <p>
* The axes of these frames are parallel to the axes of the {@link #VVLH} frame:
* <ul>
* <li>X<sub>QSW/LVLH</sub> = -Z<sub>VVLH</sub></li>
* <li>Y<sub>QSW/LVLH</sub> = X<sub>VVLH</sub></li>
* <li>Z<sub>QSW/LVLH</sub> = -Y<sub>VVLH</sub></li>
* </ul>
*
* @see #LVLH
* @see #VVLH
*/
QSW {
/** {@inheritDoc} */
@Override
public Rotation rotationFromInertial(final PVCoordinates pv) {
return new Rotation(pv.getPosition(), pv.getMomentum(),
Vector3D.PLUS_I, Vector3D.PLUS_K);
}
/** {@inheritDoc} */
@Override
public <T extends CalculusFieldElement<T>> FieldRotation<T> rotationFromInertial(final Field<T> field,
final FieldPVCoordinates<T> pv) {
return new FieldRotation<>(pv.getPosition(), pv.getMomentum(),
new FieldVector3D<>(field, Vector3D.PLUS_I),
new FieldVector3D<>(field, Vector3D.PLUS_K));
}
/** {@inheritDoc} */
@Override
public OrbitRelativeFrame toOrbitRelativeFrame() {
return OrbitRelativeFrame.QSW;
}
},
/**
* Constant for QSW frame considered inertial (X axis aligned with position, Z axis aligned with orbital momentum).
* <p>
* This frame is also known as the {@link #LVLH} frame, both constants are equivalent.
* </p>
* <p>
* The axes of these frames are parallel to the axes of the {@link #VVLH} frame:
* <ul>
* <li>X<sub>QSW/LVLH</sub> = -Z<sub>VVLH</sub></li>
* <li>Y<sub>QSW/LVLH</sub> = X<sub>VVLH</sub></li>
* <li>Z<sub>QSW/LVLH</sub> = -Y<sub>VVLH</sub></li>
* </ul>
*
* @see #LVLH
* @see #VVLH
*/
QSW_INERTIAL {
/** {@inheritDoc} */
@Override
public Rotation rotationFromInertial(final PVCoordinates pv) {
return QSW.rotationFromInertial(pv);
}
/** {@inheritDoc} */
@Override
public <T extends CalculusFieldElement<T>> FieldRotation<T> rotationFromInertial(final Field<T> field,
final FieldPVCoordinates<T> pv) {
return QSW.rotationFromInertial(field, pv);
}
/** {@inheritDoc} */
@Override
public boolean isQuasiInertial() {
return true;
}
/** {@inheritDoc} */
@Override
public OrbitRelativeFrame toOrbitRelativeFrame() {
return OrbitRelativeFrame.RSW_INERTIAL;
}
},
/** Constant for Local Vertical, Local Horizontal frame
* (X axis aligned with position, Z axis aligned with orbital momentum).
* <p>
* BEWARE! Depending on the background (software used, textbook, community),
* different incompatible definitions for LVLH are used. This one is consistent
* with Vallado's book and with AGI's STK. However CCSDS standard, Wertz, and
* a.i. solutions' FreeFlyer use another definition (see {@link #LVLH_CCSDS}).
* </p>
* <p>
* This frame is also known as the {@link #QSW} frame, both constants are equivalent.
* </p>
* <p>
* The axes of these frames are parallel to the axes of the {@link #LVLH_CCSDS} frame:
* <ul>
* <li>X<sub>LVLH/QSW</sub> = -Z<sub>LVLH_CCSDS</sub></li>
* <li>Y<sub>LVLH/QSW</sub> = X<sub>LVLH_CCSDS</sub></li>
* <li>Z<sub>LVLH/QSW</sub> = -Y<sub>LVLH_CCSDS</sub></li>
* </ul>
*
* @see #QSW
* @see #VVLH
*/
LVLH {
/** {@inheritDoc} */
@Override
public Rotation rotationFromInertial(final PVCoordinates pv) {
return new Rotation(pv.getPosition(), pv.getMomentum(),
Vector3D.PLUS_I, Vector3D.PLUS_K);
}
/** {@inheritDoc} */
@Override
public <T extends CalculusFieldElement<T>> FieldRotation<T> rotationFromInertial(final Field<T> field,
final FieldPVCoordinates<T> pv) {
return new FieldRotation<>(pv.getPosition(), pv.getMomentum(),
new FieldVector3D<>(field, Vector3D.PLUS_I),
new FieldVector3D<>(field, Vector3D.PLUS_K));
}
/** {@inheritDoc} */
@Override
public OrbitRelativeFrame toOrbitRelativeFrame() {
throw new OrekitException(OrekitMessages.CCSDS_DIFFERENT_LVLH_DEFINITION);
}
},
/**
* Constant for Local Vertical, Local Horizontal frame considered inertial (X axis aligned with position, Z axis
* aligned with orbital momentum).
* <p>
* BEWARE! Depending on the background (software used, textbook, community), different incompatible definitions for
* LVLH are used. This one is consistent with Vallado's book and with AGI's STK. However CCSDS standard, Wertz, and
* a.i. solutions' FreeFlyer use another definition (see {@link #LVLH_CCSDS}).
* </p>
* <p>
* This frame is also known as the {@link #QSW} frame, both constants are equivalent.
* </p>
* <p>
* The axes of these frames are parallel to the axes of the {@link #LVLH_CCSDS} frame:
* <ul>
* <li>X<sub>LVLH/QSW</sub> = -Z<sub>LVLH_CCSDS</sub></li>
* <li>Y<sub>LVLH/QSW</sub> = X<sub>LVLH_CCSDS</sub></li>
* <li>Z<sub>LVLH/QSW</sub> = -Y<sub>LVLH_CCSDS</sub></li>
* </ul>
*
* @see #QSW
* @see #VVLH
*/
LVLH_INERTIAL {
/** {@inheritDoc} */
@Override
public Rotation rotationFromInertial(final PVCoordinates pv) {
return LVLH.rotationFromInertial(pv);
}
/** {@inheritDoc} */
@Override
public <T extends CalculusFieldElement<T>> FieldRotation<T> rotationFromInertial(final Field<T> field,
final FieldPVCoordinates<T> pv) {
return LVLH.rotationFromInertial(field, pv);
}
/** {@inheritDoc} */
@Override
public boolean isQuasiInertial() {
return true;
}
/** {@inheritDoc} */
@Override
public OrbitRelativeFrame toOrbitRelativeFrame() {
throw new OrekitException(OrekitMessages.CCSDS_DIFFERENT_LVLH_DEFINITION);
}
},
/** Constant for Local Vertical, Local Horizontal frame as defined by CCSDS
* (Z axis aligned with opposite of position, Y axis aligned with opposite of orbital momentum).
* <p>
* BEWARE! Depending on the background (software used, textbook, community),
* different incompatible definitions for LVLH are used. This one is consistent
* with CCSDS standard, Wertz, and a.i. solutions' FreeFlyer. However Vallado's
* book and with AGI's STK use another definition (see {@link #LVLH}).
* </p>
* <p>
* The axes of this frame are parallel to the axes of both the {@link #QSW} and {@link #LVLH} frames:
* <ul>
* <li>X<sub>LVLH_CCSDS/VVLH</sub> = Y<sub>QSW/LVLH</sub></li>
* <li>Y<sub>LVLH_CCSDS/VVLH</sub> = -Z<sub>QSW/LVLH</sub></li>
* <li>Z<sub>LVLH_CCSDS/VVLH</sub> = -X<sub>QSW/LVLH</sub></li>
* </ul>
*
* @see #QSW
* @see #LVLH
* @since 11.0
*/
LVLH_CCSDS {
/** {@inheritDoc} */
@Override
public Rotation rotationFromInertial(final PVCoordinates pv) {
return new Rotation(pv.getPosition(), pv.getMomentum(),
Vector3D.MINUS_K, Vector3D.MINUS_J);
}
/** {@inheritDoc} */
@Override
public <T extends CalculusFieldElement<T>> FieldRotation<T> rotationFromInertial(final Field<T> field,
final FieldPVCoordinates<T> pv) {
return new FieldRotation<>(pv.getPosition(), pv.getMomentum(),
new FieldVector3D<>(field, Vector3D.MINUS_K),
new FieldVector3D<>(field, Vector3D.MINUS_J));
}
/** {@inheritDoc} */
@Override
public OrbitRelativeFrame toOrbitRelativeFrame() {
return OrbitRelativeFrame.LVLH;
}
},
/**
* Constant for Local Vertical, Local Horizontal frame as defined by CCSDS considered inertial (Z axis aligned with
* opposite of position, Y axis aligned with opposite of orbital momentum).
* <p>
* BEWARE! Depending on the background (software used, textbook, community), different incompatible definitions for
* LVLH are used. This one is consistent with CCSDS standard, Wertz, and a.i. solutions' FreeFlyer. However
* Vallado's book and with AGI's STK use another definition (see {@link #LVLH}).
* </p>
* <p>
* The axes of this frame are parallel to the axes of both the {@link #QSW} and {@link #LVLH} frames:
* <ul>
* <li>X<sub>LVLH_CCSDS/VVLH</sub> = Y<sub>QSW/LVLH</sub></li>
* <li>Y<sub>LVLH_CCSDS/VVLH</sub> = -Z<sub>QSW/LVLH</sub></li>
* <li>Z<sub>LVLH_CCSDS/VVLH</sub> = -X<sub>QSW/LVLH</sub></li>
* </ul>
*
* @see #QSW
* @see #LVLH
* @since 11.0
*/
LVLH_CCSDS_INERTIAL {
/** {@inheritDoc} */
@Override
public Rotation rotationFromInertial(final PVCoordinates pv) {
return LVLH_CCSDS.rotationFromInertial(pv);
}
/** {@inheritDoc} */
@Override
public <T extends CalculusFieldElement<T>> FieldRotation<T> rotationFromInertial(final Field<T> field,
final FieldPVCoordinates<T> pv) {
return LVLH_CCSDS.rotationFromInertial(field, pv);
}
/** {@inheritDoc} */
@Override
public boolean isQuasiInertial() {
return true;
}
/** {@inheritDoc} */
@Override
public OrbitRelativeFrame toOrbitRelativeFrame() {
return OrbitRelativeFrame.LVLH_INERTIAL;
}
},
/** Constant for Vehicle Velocity, Local Horizontal frame
* (Z axis aligned with opposite of position, Y axis aligned with opposite of orbital momentum).
* <p>
* This is another name for {@link #LVLH_CCSDS}, kept here for compatibility with STK.
* </p>
* <p>
* Beware that the name is misleading: in the general case (i.e. not perfectly circular),
* none of the axes is perfectly aligned with velocity! The preferred name for this
* should be {@link #LVLH_CCSDS}.
* </p>
* <p>
* The axes of this frame are parallel to the axes of both the {@link #QSW} and {@link #LVLH} frames:
* <ul>
* <li>X<sub>LVLH_CCSDS/VVLH</sub> = Y<sub>QSW/LVLH</sub></li>
* <li>Y<sub>LVLH_CCSDS/VVLH</sub> = -Z<sub>QSW/LVLH</sub></li>
* <li>Z<sub>LVLH_CCSDS/VVLH</sub> = -X<sub>QSW/LVLH</sub></li>
* </ul>
* @see #LVLH_CCSDS
*/
VVLH {
/** {@inheritDoc} */
@Override
public Rotation rotationFromInertial(final PVCoordinates pv) {
return LVLH_CCSDS.rotationFromInertial(pv);
}
/** {@inheritDoc} */
@Override
public <T extends CalculusFieldElement<T>> FieldRotation<T> rotationFromInertial(final Field<T> field,
final FieldPVCoordinates<T> pv) {
return LVLH_CCSDS.rotationFromInertial(field, pv);
}
/** {@inheritDoc} */
@Override
public OrbitRelativeFrame toOrbitRelativeFrame() {
return OrbitRelativeFrame.LVLH;
}
},
/**
* Constant for Vehicle Velocity, Local Horizontal frame considered inertial (Z axis aligned with opposite of
* position, Y axis aligned with opposite of orbital momentum).
* <p>
* This is another name for {@link #LVLH_CCSDS}, kept here for compatibility with STK.
* </p>
* <p>
* Beware that the name is misleading: in the general case (i.e. not perfectly circular), none of the axes is
* perfectly aligned with velocity! The preferred name for this should be {@link #LVLH_CCSDS}.
* </p>
* <p>
* The axes of this frame are parallel to the axes of both the {@link #QSW} and {@link #LVLH} frames:
* <ul>
* <li>X<sub>LVLH_CCSDS/VVLH</sub> = Y<sub>QSW/LVLH</sub></li>
* <li>Y<sub>LVLH_CCSDS/VVLH</sub> = -Z<sub>QSW/LVLH</sub></li>
* <li>Z<sub>LVLH_CCSDS/VVLH</sub> = -X<sub>QSW/LVLH</sub></li>
* </ul>
*
* @see #LVLH_CCSDS
*/
VVLH_INERTIAL {
/** {@inheritDoc} */
@Override
public Rotation rotationFromInertial(final PVCoordinates pv) {
return VVLH.rotationFromInertial(pv);
}
/** {@inheritDoc} */
@Override
public <T extends CalculusFieldElement<T>> FieldRotation<T> rotationFromInertial(final Field<T> field,
final FieldPVCoordinates<T> pv) {
return VVLH.rotationFromInertial(field, pv);
}
/** {@inheritDoc} */
@Override
public boolean isQuasiInertial() {
return true;
}
/** {@inheritDoc} */
@Override
public OrbitRelativeFrame toOrbitRelativeFrame() {
return OrbitRelativeFrame.LVLH_INERTIAL;
}
},
/** Constant for Velocity - Normal - Co-normal frame
* (X axis aligned with velocity, Y axis aligned with orbital momentum).
* <p>
* The axes of this frame are parallel to the axes of the {@link #TNW}
* and {@link #NTW} frames:
* <ul>
* <li>X<sub>VNC</sub> = X<sub>TNW</sub> = Y<sub>NTW</sub></li>
* <li>Y<sub>VNC</sub> = Z<sub>TNW</sub> = Z<sub>NTW</sub></li>
* <li>Z<sub>VNC</sub> = -Y<sub>TNW</sub> = X<sub>NTW</sub></li>
* </ul>
*
* @see #TNW
* @see #NTW
*/
VNC {
/** {@inheritDoc} */
@Override
public Rotation rotationFromInertial(final PVCoordinates pv) {
return new Rotation(pv.getVelocity(), pv.getMomentum(),
Vector3D.PLUS_I, Vector3D.PLUS_J);
}
/** {@inheritDoc} */
@Override
public <T extends CalculusFieldElement<T>> FieldRotation<T> rotationFromInertial(final Field<T> field,
final FieldPVCoordinates<T> pv) {
return new FieldRotation<>(pv.getVelocity(), pv.getMomentum(),
new FieldVector3D<>(field, Vector3D.PLUS_I),
new FieldVector3D<>(field, Vector3D.PLUS_J));
}
/** {@inheritDoc} */
@Override
public OrbitRelativeFrame toOrbitRelativeFrame() {
return OrbitRelativeFrame.VNC_ROTATING;
}
},
/**
* Constant for Velocity - Normal - Co-normal frame considered inertial (X axis aligned with velocity, Y axis
* aligned with orbital momentum).
* <p>
* The axes of this frame are parallel to the axes of the {@link #TNW} and {@link #NTW} frames:
* <ul>
* <li>X<sub>VNC</sub> = X<sub>TNW</sub> = Y<sub>NTW</sub></li>
* <li>Y<sub>VNC</sub> = Z<sub>TNW</sub> = Z<sub>NTW</sub></li>
* <li>Z<sub>VNC</sub> = -Y<sub>TNW</sub> = X<sub>NTW</sub></li>
* </ul>
*
* @see #TNW
* @see #NTW
*/
VNC_INERTIAL {
/** {@inheritDoc} */
@Override
public Rotation rotationFromInertial(final PVCoordinates pv) {
return VNC.rotationFromInertial(pv);
}
/** {@inheritDoc} */
@Override
public <T extends CalculusFieldElement<T>> FieldRotation<T> rotationFromInertial(final Field<T> field,
final FieldPVCoordinates<T> pv) {
return VNC.rotationFromInertial(field, pv);
}
/** {@inheritDoc} */
@Override
public boolean isQuasiInertial() {
return true;
}
/** {@inheritDoc} */
@Override
public OrbitRelativeFrame toOrbitRelativeFrame() {
return OrbitRelativeFrame.VNC_INERTIAL;
}
},
/**
* Constant for Equinoctial Coordinate System (X axis aligned with ascending node, Z axis aligned with orbital
* momentum).
*
* @since 11.0
*/
EQW {
/** {@inheritDoc} */
@Override
public Rotation rotationFromInertial(final PVCoordinates pv) {
final Vector3D m = pv.getMomentum();
return new Rotation(new Vector3D(-m.getY(), m.getX(), 0), m,
Vector3D.PLUS_I, Vector3D.PLUS_K);
}
/** {@inheritDoc} */
@Override
public <T extends CalculusFieldElement<T>> FieldRotation<T> rotationFromInertial(final Field<T> field,
final FieldPVCoordinates<T> pv) {
final FieldVector3D<T> m = pv.getMomentum();
return new FieldRotation<>(new FieldVector3D<>(m.getY().negate(), m.getX(), field.getZero()),
m,
new FieldVector3D<>(field, Vector3D.PLUS_I),
new FieldVector3D<>(field, Vector3D.PLUS_K));
}
/** {@inheritDoc} */
@Override
public boolean isQuasiInertial() {
return true;
}
/** {@inheritDoc} */
@Override
public OrbitRelativeFrame toOrbitRelativeFrame() {
return OrbitRelativeFrame.EQW_INERTIAL;
}
},
/** Constant for Transverse Velocity Normal coordinate system
* (Y axis aligned with velocity, Z axis aligned with orbital momentum).
* <p>
* The axes of this frame are parallel to the axes of the {@link #TNW}
* and {@link #VNC} frames:
* <ul>
* <li>X<sub>NTW</sub> = -Y<sub>TNW</sub> = Z<sub>VNC</sub></li>
* <li>Y<sub>NTW</sub> = X<sub>TNW</sub> = X<sub>VNC</sub></li>
* <li>Z<sub>NTW</sub> = Z<sub>TNW</sub> = Y<sub>VNC</sub></li>
* </ul>
* @see #TNW
* @see #VNC
* @since 11.0
*/
NTW {
/** {@inheritDoc} */
@Override
public Rotation rotationFromInertial(final PVCoordinates pv) {
return new Rotation(pv.getVelocity(), pv.getMomentum(),
Vector3D.PLUS_J, Vector3D.PLUS_K);
}
/** {@inheritDoc} */
@Override
public <T extends CalculusFieldElement<T>> FieldRotation<T> rotationFromInertial(final Field<T> field,
final FieldPVCoordinates<T> pv) {
return new FieldRotation<>(pv.getVelocity(), pv.getMomentum(),
new FieldVector3D<>(field, Vector3D.PLUS_J),
new FieldVector3D<>(field, Vector3D.PLUS_K));
}
/** {@inheritDoc} */
@Override
public OrbitRelativeFrame toOrbitRelativeFrame() {
return OrbitRelativeFrame.NTW_ROTATING;
}
},
/**
* Constant for Transverse Velocity Normal coordinate system considered inertial (Y axis aligned with velocity, Z
* axis aligned with orbital momentum).
* <p>
* The axes of this frame are parallel to the axes of the {@link #TNW} and {@link #VNC} frames:
* <ul>
* <li>X<sub>NTW</sub> = -Y<sub>TNW</sub> = Z<sub>VNC</sub></li>
* <li>Y<sub>NTW</sub> = X<sub>TNW</sub> = X<sub>VNC</sub></li>
* <li>Z<sub>NTW</sub> = Z<sub>TNW</sub> = Y<sub>VNC</sub></li>
* </ul>
*
* @see #TNW
* @see #VNC
* @since 11.0
*/
NTW_INERTIAL {
/** {@inheritDoc} */
@Override
public Rotation rotationFromInertial(final PVCoordinates pv) {
return NTW.rotationFromInertial(pv);
}
/** {@inheritDoc} */
@Override
public <T extends CalculusFieldElement<T>> FieldRotation<T> rotationFromInertial(final Field<T> field,
final FieldPVCoordinates<T> pv) {
return NTW.rotationFromInertial(field, pv);
}
/** {@inheritDoc} */
@Override
public boolean isQuasiInertial() {
return true;
}
/** {@inheritDoc} */
@Override
public OrbitRelativeFrame toOrbitRelativeFrame() {
return OrbitRelativeFrame.NTW_INERTIAL;
}
};
/** {@inheritDoc} */
public String getName() {
return this.name();
}
/**
* Get the rotation from input to output {@link LOFType local orbital frame}.
* <p>
* This rotation does not include any time derivatives. If first time derivatives (i.e. rotation rate) is needed as well,
* the full {@link #transformFromLOFInToLOFOut(LOF, LOF, AbsoluteDate, PVCoordinates)} method must be called and
* the complete rotation transform must be extracted from it.
*
* @param in input commonly used local orbital frame
* @param out output commonly used local orbital frame
* @param pv position-velocity of the spacecraft in some inertial frame
*
* @return rotation from input to output local orbital frame
*/
static Rotation rotationFromLOFInToLOFOut(final LOFType in, final LOFType out, final PVCoordinates pv) {
return out.rotationFromLOF(in, pv);
}
/**
* Get the rotation from input to output {@link LOFType local orbital frame}.
* <p>
* This rotation does not include any time derivatives. If first time derivatives (i.e. rotation rate) is needed as well,
* the full {@link #transformFromLOFInToLOFOut(LOF, LOF, FieldAbsoluteDate, FieldPVCoordinates)} method must be called and
* the complete rotation transform must be extracted from it.
*
* @param field field to which the elements belong
* @param in input commonly used local orbital frame
* @param out output commonly used local orbital frame
* @param pv position-velocity of the spacecraft in some inertial frame
* @param <T> type of the field elements
*
* @return rotation from input to output local orbital frame
*/
static <T extends CalculusFieldElement<T>> FieldRotation<T> rotationFromLOFInToLOFOut(final Field<T> field,
final LOFType in,
final LOFType out,
final FieldPVCoordinates<T> pv) {
return out.rotationFromLOF(field, in, pv);
}
/**
* Get the rotation from input {@link LOF local orbital frame} to the instance.
* <p>
* This rotation does not include any time derivatives. If first time derivatives (i.e. rotation rate) is needed as well,
* the full {@link #transformFromLOF(LOF, AbsoluteDate, PVCoordinates)} method must be called and the complete rotation
* transform must be extracted from it.
*
* @param fromLOF input local orbital frame
* @param pv position-velocity of the spacecraft in some inertial frame
*
* @return rotation from input local orbital frame to the instance
*/
public Rotation rotationFromLOF(final LOFType fromLOF, final PVCoordinates pv) {
// First compute the rotation from the input LOF to the pivot inertial
final Rotation fromLOFToInertial = fromLOF.rotationFromInertial(pv).revert();
// Then compute the rotation from the pivot inertial to the output LOF
final Rotation inertialToThis = this.rotationFromInertial(pv);
// Output composed rotation
return fromLOFToInertial.compose(inertialToThis, RotationConvention.FRAME_TRANSFORM);
}
/**
* Get the rotation from input {@link LOFType local orbital frame} to the instance.
* <p>
* This rotation does not include any time derivatives. If first time derivatives (i.e. rotation rate) is needed as well,
* the full {@link #transformFromLOF(LOF, FieldAbsoluteDate, FieldPVCoordinates)} method must be called and the complete
* rotation transform must be extracted from it.
*
* @param field field to which the elements belong
* @param fromLOF input local orbital frame
* @param pv position-velocity of the spacecraft in some inertial frame
* @param <T> type of the field elements
*
* @return rotation from input local orbital frame to the instance
*/
public <T extends CalculusFieldElement<T>> FieldRotation<T> rotationFromLOF(final Field<T> field,
final LOFType fromLOF,
final FieldPVCoordinates<T> pv) {
// First compute the rotation from the input LOF to the pivot inertial
final FieldRotation<T> fromLOFToInertial = fromLOF.rotationFromInertial(field, pv).revert();
// Then compute the rotation from the pivot inertial to the output LOF
final FieldRotation<T> inertialToThis = this.rotationFromInertial(field, pv);
// Output composed rotation
return fromLOFToInertial.compose(inertialToThis, RotationConvention.FRAME_TRANSFORM);
}
/**
* {@inheritDoc} It is unnecessary to use this method when dealing with {@link LOFType}, use
* {@link #rotationFromInertial(PVCoordinates)} instead.
*/
@Override
public Rotation rotationFromInertial(final AbsoluteDate date, final PVCoordinates pv) {
return rotationFromInertial(pv);
}
/**
* Get the rotation from inertial frame to local orbital frame.
* <p>
* This rotation does not include any time derivatives. If first time derivatives (i.e. rotation rate) is needed as well,
* the full {@link #transformFromInertial(AbsoluteDate, PVCoordinates)} method must be called and
* the complete rotation transform must be extracted from it.
* </p>
*
* @param pv position-velocity of the spacecraft in some inertial frame
*
* @return rotation from inertial frame to local orbital frame
*/
public abstract Rotation rotationFromInertial(PVCoordinates pv);
/**
* {@inheritDoc} It is unnecessary to use this method when dealing with {@link LOFType}, use
* {@link #rotationFromInertial(Field, FieldPVCoordinates)} instead.
*/
@Override
public <T extends CalculusFieldElement<T>> FieldRotation<T> rotationFromInertial(final Field<T> field,
final FieldAbsoluteDate<T> date,
final FieldPVCoordinates<T> pv) {
return rotationFromInertial(field, pv);
}
/**
* Get the rotation from inertial frame to local orbital frame.
* <p>
* This rotation does not include any time derivatives. If first time derivatives (i.e. rotation rate) is needed as well,
* the full {@link #transformFromInertial(FieldAbsoluteDate, FieldPVCoordinates)} method must be
* called and the complete rotation transform must be extracted from it.
* </p>
*
* @param field field to which the elements belong
* @param pv position-velocity of the spacecraft in some inertial frame
* @param <T> type of the field elements
*
* @return rotation from inertial frame to local orbital frame
*/
public abstract <T extends CalculusFieldElement<T>> FieldRotation<T> rotationFromInertial(Field<T> field,
FieldPVCoordinates<T> pv);
/**
* Convert current local orbital frame to CCSDS equivalent orbit relative frame when possible, null otherwise.
*
* @return CCSDS equivalent orbit relative frame when possible, null otherwise
*
* @see OrbitRelativeFrame
*/
public abstract OrbitRelativeFrame toOrbitRelativeFrame();
}