ECOM2.java

  1. /* Copyright 2002-2025 CS GROUP
  2.  * Licensed to CS GROUP (CS) under one or more
  3.  * contributor license agreements.  See the NOTICE file distributed with
  4.  * this work for additional information regarding copyright ownership.
  5.  * CS licenses this file to You under the Apache License, Version 2.0
  6.  * (the "License"); you may not use this file except in compliance with
  7.  * the License.  You may obtain a copy of the License at
  8.  *
  9.  *   http://www.apache.org/licenses/LICENSE-2.0
  10.  *
  11.  * Unless required by applicable law or agreed to in writing, software
  12.  * distributed under the License is distributed on an "AS IS" BASIS,
  13.  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  14.  * See the License for the specific language governing permissions and
  15.  * limitations under the License.
  16.  */
  17. package org.orekit.forces.radiation;

  18. import java.util.ArrayList;
  19. import java.util.Collections;
  20. import java.util.List;

  21. import org.hipparchus.CalculusFieldElement;
  22. import org.hipparchus.geometry.euclidean.threed.FieldVector3D;
  23. import org.hipparchus.geometry.euclidean.threed.Vector3D;
  24. import org.hipparchus.util.FastMath;
  25. import org.hipparchus.util.FieldSinCos;
  26. import org.hipparchus.util.SinCos;
  27. import org.orekit.annotation.DefaultDataContext;
  28. import org.orekit.bodies.OneAxisEllipsoid;
  29. import org.orekit.frames.FramesFactory;
  30. import org.orekit.propagation.FieldSpacecraftState;
  31. import org.orekit.propagation.SpacecraftState;
  32. import org.orekit.utils.ExtendedPositionProvider;
  33. import org.orekit.utils.ParameterDriver;

  34. /**
  35.  * The Empirical CODE Orbit Model 2 (ECOM2) of the Center for Orbit Determination in Europe (CODE).
  36.  * <p>
  37.  * The drag acceleration is computed as follows :
  38.  * γ = γ<sub>0</sub> + D(u)e<sub>D</sub> + Y(u)e<sub>Y</sub> + B(u)e<sub>B</sub>
  39.  * </p> <p>
  40.  * In the above equation, γ<sub>0</sub> is a selectable a priori model. Since 2013, no
  41.  * a priori model is used for CODE IGS contribution (i.e. γ<sub>0</sub> = 0). Moreover,
  42.  * u denotes the satellite's argument of latitude.
  43.  * </p> <p>
  44.  * D(u), Y(u) and B(u) are three functions of the ECOM2 model that can be represented
  45.  * as Fourier series. The coefficients of the Fourier series are estimated during the
  46.  * estimation process. he ECOM2 model has user-defines upper limits <i>nD</i> and
  47.  * <i>nB</i> for the Fourier series (i.e. <i>nD</i> for D(u) and <i>nB</i> for
  48.  * B(u). Y(u) is defined as a constant value).
  49.  * </p> <p>
  50.  * It exists several configurations to initialize <i>nD</i> and <i>nB</i> values. However,
  51.  * Arnold et al recommend to use <b>D2B1</b> (i.e. <i>nD</i> = 1 and <i>nB</i> = 1) and
  52.  * <b>D4B1</b> (i.e. <i>nD</i> = 2 an <i>nB</i> = 1) configurations. At the opposite, in Arnold paper, it
  53.  * is recommend to not use <b>D2B0</b> (i.e. <i>nD</i> = 1 and <i>nB</i> = 0) configuration.
  54.  * </p> <p>
  55.  * Since Orekit 11.0, it is possible to take into account
  56.  * the eclipses generated by Moon in the solar radiation
  57.  * pressure force model using the
  58.  * {@link #addOccultingBody(ExtendedPositionProvider, double)}
  59.  * method.<br>
  60.  * <code> ECOM2 srp =</code>
  61.  * <code>       new ECOM2(1, 1, 0.0, CelestialBodyFactory.getSun(), Constants.EIGEN5C_EARTH_EQUATORIAL_RADIUS);</code><br>
  62.  * <code> srp.addOccultingBody(CelestialBodyFactory.getMoon(), Constants.MOON_EQUATORIAL_RADIUS);</code><br>
  63.  *
  64.  * @see "Arnold, Daniel, et al, CODE’s new solar radiation pressure model for GNSS orbit determination,
  65.  *       Journal of geodesy 89.8 (2015): 775-791."
  66.  *
  67.  * @see "Tzu-Pang tseng and Michael Moore, Impact of solar radiation pressure mis-modeling on
  68.  *       GNSS satellite orbit determination, IGS Worshop, Wuhan, China, 2018."
  69.  *
  70.  * @author David Soulard
  71.  * @since 10.2
  72.  */
  73. public class ECOM2 extends AbstractRadiationForceModel {

  74.     /** Parameter name for ECOM model coefficients enabling Jacobian processing. */
  75.     public static final String ECOM_COEFFICIENT = "ECOM coefficient";

  76.     /** Minimum value for ECOM2 estimated parameters. */
  77.     private static final double MIN_VALUE = Double.NEGATIVE_INFINITY;

  78.     /** Maximum value for ECOM2 estimated parameters. */
  79.     private static final double MAX_VALUE = Double.POSITIVE_INFINITY;

  80.     /** Parameters scaling factor.
  81.      * <p>
  82.      * We use a power of 2 to avoid numeric noise introduction
  83.      * in the multiplications/divisions sequences.
  84.      * </p>
  85.      */
  86.     private final double SCALE = FastMath.scalb(1.0, -22);

  87.     /** Highest order for parameter along eD axis (satellite --> sun direction). */
  88.     private final int nD;

  89.     /** Highest order for parameter along eB axis. */
  90.     private final int nB;

  91.     /** Estimated acceleration coefficients.
  92.      * <p>
  93.      * The 2 * nD first driver are Fourier driver along eD, axis,
  94.      * then along eY, then 2*nB following are along eB axis.
  95.      * </p>
  96.      */
  97.     private final List<ParameterDriver> coefficients;

  98.     /** Sun model. */
  99.     private final ExtendedPositionProvider sun;

  100.     /**
  101.      * Constructor.
  102.      * @param nD truncation rank of Fourier series in D term.
  103.      * @param nB truncation rank of Fourier series in B term.
  104.      * @param value parameters initial value
  105.      * @param sun provide for Sun parameter
  106.      * @param equatorialRadius spherical shape model (for umbra/penumbra computation)
  107.      */
  108.     @DefaultDataContext
  109.     public ECOM2(final int nD, final int nB, final double value,
  110.                  final ExtendedPositionProvider sun, final double equatorialRadius) {
  111.         super(sun, new OneAxisEllipsoid(equatorialRadius, 0.0, FramesFactory.getGCRF()),
  112.                 getDefaultEclipseDetectionSettings());
  113.         this.nB = nB;
  114.         this.nD = nD;
  115.         this.coefficients = new ArrayList<>(2 * (nD + nB) + 3);

  116.         // Add parameter along eB axis in alphabetical order
  117.         coefficients.add(new ParameterDriver(ECOM_COEFFICIENT + " B0", value, SCALE, MIN_VALUE, MAX_VALUE));
  118.         for (int i = 1; i < nB + 1; i++) {
  119.             coefficients.add(new ParameterDriver(ECOM_COEFFICIENT + " Bcos" + Integer.toString(i - 1), value, SCALE, MIN_VALUE, MAX_VALUE));
  120.         }
  121.         for (int i = nB + 1; i < 2 * nB + 1; i++) {
  122.             coefficients.add(new ParameterDriver(ECOM_COEFFICIENT + " Bsin" + Integer.toString(i - (nB + 1)), value, SCALE, MIN_VALUE, MAX_VALUE));
  123.         }
  124.         // Add driver along eD axis in alphabetical order
  125.         coefficients.add(2 * nB + 1, new ParameterDriver(ECOM_COEFFICIENT + " D0", value, SCALE, MIN_VALUE, MAX_VALUE));
  126.         for (int i = 2 * nB + 2; i < 2 * nB + 2 + nD; i++) {
  127.             coefficients.add(new ParameterDriver(ECOM_COEFFICIENT + " Dcos" + Integer.toString(i - (2 * nB + 2)), value, SCALE, MIN_VALUE, MAX_VALUE));
  128.         }
  129.         for (int i = 2 * nB + 2 + nD; i < 2 * (nB + nD) + 2; i++) {
  130.             coefficients.add(new ParameterDriver(ECOM_COEFFICIENT + " Dsin" + Integer.toString(i - (2 * nB + nD + 2)), value, SCALE, MIN_VALUE, MAX_VALUE));
  131.         }
  132.         // Add  Y0
  133.         coefficients.add(new ParameterDriver(ECOM_COEFFICIENT + " Y0", value, SCALE, MIN_VALUE, MAX_VALUE));

  134.         // For ECOM2 model, all parameters are estimated
  135.         coefficients.forEach(parameter -> parameter.setSelected(true));
  136.         this.sun = sun;
  137.     }

  138.     /** {@inheritDoc} */
  139.     @Override
  140.     public Vector3D acceleration(final SpacecraftState s, final double[] parameters) {

  141.         // Spacecraft and Sun position vectors (expressed in the spacecraft's frame)
  142.         final Vector3D satPos = s.getPosition();
  143.         final Vector3D sunPos = sun.getPosition(s.getDate(), s.getFrame());

  144.         // Build the coordinate system
  145.         final Vector3D Z = s.getPVCoordinates().getMomentum();
  146.         final Vector3D Y = Z.crossProduct(sunPos).normalize();
  147.         final Vector3D X = Y.crossProduct(Z).normalize();

  148.         // Build eD, eY, eB vectors
  149.         final Vector3D eD = sunPos.subtract(satPos).normalize();
  150.         final Vector3D eY = eD.crossProduct(satPos).normalize();
  151.         final Vector3D eB = eD.crossProduct(eY);

  152.         // Angular argument difference u_s - u
  153.         final double delta_u = FastMath.atan2(satPos.dotProduct(Y), satPos.dotProduct(X));

  154.         // Compute B(u)
  155.         double b_u = parameters[0];
  156.         for (int i = 1; i < nB + 1; i++) {
  157.             final SinCos sc = FastMath.sinCos((2 * i - 1) * delta_u);
  158.             b_u += parameters[i] * sc.cos() + parameters[i + nB] * sc.sin();
  159.         }
  160.         // Compute D(u)
  161.         double d_u = parameters[2 * nB + 1];
  162.         for (int i = 1; i < nD + 1; i++) {
  163.             final SinCos sc = FastMath.sinCos(2 * i * delta_u);
  164.             d_u += parameters[2 * nB + 1 + i] * sc.cos() + parameters[2 * nB + 1 + i + nD] * sc.sin();
  165.         }
  166.         // Return acceleration
  167.         return new Vector3D(d_u, eD, parameters[2 * (nD + nB) + 2], eY, b_u, eB);
  168.     }

  169.     /** {@inheritDoc} */
  170.     @Override
  171.     public <T extends CalculusFieldElement<T>> FieldVector3D<T> acceleration(final FieldSpacecraftState<T> s, final T[] parameters) {

  172.         // Spacecraft and Sun position vectors (expressed in the spacecraft's frame)
  173.         final FieldVector3D<T> satPos = s.getPosition();
  174.         final FieldVector3D<T> sunPos = sun.getPosition(s.getDate(), s.getFrame());

  175.         // Build the coordinate system
  176.         final FieldVector3D<T> Z = s.getPVCoordinates().getMomentum();
  177.         final FieldVector3D<T> Y = Z.crossProduct(sunPos).normalize();
  178.         final FieldVector3D<T> X = Y.crossProduct(Z).normalize();

  179.         // Build eD, eY, eB vectors
  180.         final FieldVector3D<T> eD = sunPos.subtract(satPos).normalize();
  181.         final FieldVector3D<T> eY = eD.crossProduct(satPos).normalize();
  182.         final FieldVector3D<T> eB = eD.crossProduct(eY);

  183.         // Angular argument difference u_s - u
  184.         final T  delta_u = FastMath.atan2(satPos.dotProduct(Y), satPos.dotProduct(X));

  185.         // Compute B(u)
  186.         T b_u =  parameters[0];
  187.         for (int i = 1; i < nB + 1; i++) {
  188.             final FieldSinCos<T> sc = FastMath.sinCos(delta_u.multiply(2 * i - 1));
  189.             b_u = b_u.add(sc.cos().multiply(parameters[i])).add(sc.sin().multiply(parameters[i + nB]));
  190.         }
  191.         // Compute D(u)
  192.         T d_u = parameters[2 * nB + 1];

  193.         for (int i = 1; i < nD + 1; i++) {
  194.             final FieldSinCos<T> sc = FastMath.sinCos(delta_u.multiply(2 * i));
  195.             d_u =  d_u.add(sc.cos().multiply(parameters[2 * nB + 1 + i])).add(sc.sin().multiply(parameters[2 * nB + 1 + i + nD]));
  196.         }
  197.         // Return the acceleration
  198.         return new FieldVector3D<>(d_u, eD, parameters[2 * (nD + nB) + 2], eY, b_u, eB);
  199.     }

  200.     /** {@inheritDoc} */
  201.     @Override
  202.     public List<ParameterDriver> getParametersDrivers() {
  203.         return Collections.unmodifiableList(coefficients);
  204.     }

  205. }