ECOM2.java
- /* Copyright 2002-2025 CS GROUP
- * Licensed to CS GROUP (CS) under one or more
- * contributor license agreements. See the NOTICE file distributed with
- * this work for additional information regarding copyright ownership.
- * CS licenses this file to You under the Apache License, Version 2.0
- * (the "License"); you may not use this file except in compliance with
- * the License. You may obtain a copy of the License at
- *
- * http://www.apache.org/licenses/LICENSE-2.0
- *
- * Unless required by applicable law or agreed to in writing, software
- * distributed under the License is distributed on an "AS IS" BASIS,
- * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- * See the License for the specific language governing permissions and
- * limitations under the License.
- */
- package org.orekit.forces.radiation;
- import java.util.ArrayList;
- import java.util.Collections;
- import java.util.List;
- import org.hipparchus.CalculusFieldElement;
- import org.hipparchus.geometry.euclidean.threed.FieldVector3D;
- import org.hipparchus.geometry.euclidean.threed.Vector3D;
- import org.hipparchus.util.FastMath;
- import org.hipparchus.util.FieldSinCos;
- import org.hipparchus.util.SinCos;
- import org.orekit.annotation.DefaultDataContext;
- import org.orekit.bodies.OneAxisEllipsoid;
- import org.orekit.frames.FramesFactory;
- import org.orekit.propagation.FieldSpacecraftState;
- import org.orekit.propagation.SpacecraftState;
- import org.orekit.utils.ExtendedPositionProvider;
- import org.orekit.utils.ParameterDriver;
- /**
- * The Empirical CODE Orbit Model 2 (ECOM2) of the Center for Orbit Determination in Europe (CODE).
- * <p>
- * The drag acceleration is computed as follows :
- * γ = γ<sub>0</sub> + D(u)e<sub>D</sub> + Y(u)e<sub>Y</sub> + B(u)e<sub>B</sub>
- * </p> <p>
- * In the above equation, γ<sub>0</sub> is a selectable a priori model. Since 2013, no
- * a priori model is used for CODE IGS contribution (i.e. γ<sub>0</sub> = 0). Moreover,
- * u denotes the satellite's argument of latitude.
- * </p> <p>
- * D(u), Y(u) and B(u) are three functions of the ECOM2 model that can be represented
- * as Fourier series. The coefficients of the Fourier series are estimated during the
- * estimation process. he ECOM2 model has user-defines upper limits <i>nD</i> and
- * <i>nB</i> for the Fourier series (i.e. <i>nD</i> for D(u) and <i>nB</i> for
- * B(u). Y(u) is defined as a constant value).
- * </p> <p>
- * It exists several configurations to initialize <i>nD</i> and <i>nB</i> values. However,
- * Arnold et al recommend to use <b>D2B1</b> (i.e. <i>nD</i> = 1 and <i>nB</i> = 1) and
- * <b>D4B1</b> (i.e. <i>nD</i> = 2 an <i>nB</i> = 1) configurations. At the opposite, in Arnold paper, it
- * is recommend to not use <b>D2B0</b> (i.e. <i>nD</i> = 1 and <i>nB</i> = 0) configuration.
- * </p> <p>
- * Since Orekit 11.0, it is possible to take into account
- * the eclipses generated by Moon in the solar radiation
- * pressure force model using the
- * {@link #addOccultingBody(ExtendedPositionProvider, double)}
- * method.<br>
- * <code> ECOM2 srp =</code>
- * <code> new ECOM2(1, 1, 0.0, CelestialBodyFactory.getSun(), Constants.EIGEN5C_EARTH_EQUATORIAL_RADIUS);</code><br>
- * <code> srp.addOccultingBody(CelestialBodyFactory.getMoon(), Constants.MOON_EQUATORIAL_RADIUS);</code><br>
- *
- * @see "Arnold, Daniel, et al, CODE’s new solar radiation pressure model for GNSS orbit determination,
- * Journal of geodesy 89.8 (2015): 775-791."
- *
- * @see "Tzu-Pang tseng and Michael Moore, Impact of solar radiation pressure mis-modeling on
- * GNSS satellite orbit determination, IGS Worshop, Wuhan, China, 2018."
- *
- * @author David Soulard
- * @since 10.2
- */
- public class ECOM2 extends AbstractRadiationForceModel {
- /** Parameter name for ECOM model coefficients enabling Jacobian processing. */
- public static final String ECOM_COEFFICIENT = "ECOM coefficient";
- /** Minimum value for ECOM2 estimated parameters. */
- private static final double MIN_VALUE = Double.NEGATIVE_INFINITY;
- /** Maximum value for ECOM2 estimated parameters. */
- private static final double MAX_VALUE = Double.POSITIVE_INFINITY;
- /** Parameters scaling factor.
- * <p>
- * We use a power of 2 to avoid numeric noise introduction
- * in the multiplications/divisions sequences.
- * </p>
- */
- private final double SCALE = FastMath.scalb(1.0, -22);
- /** Highest order for parameter along eD axis (satellite --> sun direction). */
- private final int nD;
- /** Highest order for parameter along eB axis. */
- private final int nB;
- /** Estimated acceleration coefficients.
- * <p>
- * The 2 * nD first driver are Fourier driver along eD, axis,
- * then along eY, then 2*nB following are along eB axis.
- * </p>
- */
- private final List<ParameterDriver> coefficients;
- /** Sun model. */
- private final ExtendedPositionProvider sun;
- /**
- * Constructor.
- * @param nD truncation rank of Fourier series in D term.
- * @param nB truncation rank of Fourier series in B term.
- * @param value parameters initial value
- * @param sun provide for Sun parameter
- * @param equatorialRadius spherical shape model (for umbra/penumbra computation)
- */
- @DefaultDataContext
- public ECOM2(final int nD, final int nB, final double value,
- final ExtendedPositionProvider sun, final double equatorialRadius) {
- super(sun, new OneAxisEllipsoid(equatorialRadius, 0.0, FramesFactory.getGCRF()),
- getDefaultEclipseDetectionSettings());
- this.nB = nB;
- this.nD = nD;
- this.coefficients = new ArrayList<>(2 * (nD + nB) + 3);
- // Add parameter along eB axis in alphabetical order
- coefficients.add(new ParameterDriver(ECOM_COEFFICIENT + " B0", value, SCALE, MIN_VALUE, MAX_VALUE));
- for (int i = 1; i < nB + 1; i++) {
- coefficients.add(new ParameterDriver(ECOM_COEFFICIENT + " Bcos" + Integer.toString(i - 1), value, SCALE, MIN_VALUE, MAX_VALUE));
- }
- for (int i = nB + 1; i < 2 * nB + 1; i++) {
- coefficients.add(new ParameterDriver(ECOM_COEFFICIENT + " Bsin" + Integer.toString(i - (nB + 1)), value, SCALE, MIN_VALUE, MAX_VALUE));
- }
- // Add driver along eD axis in alphabetical order
- coefficients.add(2 * nB + 1, new ParameterDriver(ECOM_COEFFICIENT + " D0", value, SCALE, MIN_VALUE, MAX_VALUE));
- for (int i = 2 * nB + 2; i < 2 * nB + 2 + nD; i++) {
- coefficients.add(new ParameterDriver(ECOM_COEFFICIENT + " Dcos" + Integer.toString(i - (2 * nB + 2)), value, SCALE, MIN_VALUE, MAX_VALUE));
- }
- for (int i = 2 * nB + 2 + nD; i < 2 * (nB + nD) + 2; i++) {
- coefficients.add(new ParameterDriver(ECOM_COEFFICIENT + " Dsin" + Integer.toString(i - (2 * nB + nD + 2)), value, SCALE, MIN_VALUE, MAX_VALUE));
- }
- // Add Y0
- coefficients.add(new ParameterDriver(ECOM_COEFFICIENT + " Y0", value, SCALE, MIN_VALUE, MAX_VALUE));
- // For ECOM2 model, all parameters are estimated
- coefficients.forEach(parameter -> parameter.setSelected(true));
- this.sun = sun;
- }
- /** {@inheritDoc} */
- @Override
- public Vector3D acceleration(final SpacecraftState s, final double[] parameters) {
- // Spacecraft and Sun position vectors (expressed in the spacecraft's frame)
- final Vector3D satPos = s.getPosition();
- final Vector3D sunPos = sun.getPosition(s.getDate(), s.getFrame());
- // Build the coordinate system
- final Vector3D Z = s.getPVCoordinates().getMomentum();
- final Vector3D Y = Z.crossProduct(sunPos).normalize();
- final Vector3D X = Y.crossProduct(Z).normalize();
- // Build eD, eY, eB vectors
- final Vector3D eD = sunPos.subtract(satPos).normalize();
- final Vector3D eY = eD.crossProduct(satPos).normalize();
- final Vector3D eB = eD.crossProduct(eY);
- // Angular argument difference u_s - u
- final double delta_u = FastMath.atan2(satPos.dotProduct(Y), satPos.dotProduct(X));
- // Compute B(u)
- double b_u = parameters[0];
- for (int i = 1; i < nB + 1; i++) {
- final SinCos sc = FastMath.sinCos((2 * i - 1) * delta_u);
- b_u += parameters[i] * sc.cos() + parameters[i + nB] * sc.sin();
- }
- // Compute D(u)
- double d_u = parameters[2 * nB + 1];
- for (int i = 1; i < nD + 1; i++) {
- final SinCos sc = FastMath.sinCos(2 * i * delta_u);
- d_u += parameters[2 * nB + 1 + i] * sc.cos() + parameters[2 * nB + 1 + i + nD] * sc.sin();
- }
- // Return acceleration
- return new Vector3D(d_u, eD, parameters[2 * (nD + nB) + 2], eY, b_u, eB);
- }
- /** {@inheritDoc} */
- @Override
- public <T extends CalculusFieldElement<T>> FieldVector3D<T> acceleration(final FieldSpacecraftState<T> s, final T[] parameters) {
- // Spacecraft and Sun position vectors (expressed in the spacecraft's frame)
- final FieldVector3D<T> satPos = s.getPosition();
- final FieldVector3D<T> sunPos = sun.getPosition(s.getDate(), s.getFrame());
- // Build the coordinate system
- final FieldVector3D<T> Z = s.getPVCoordinates().getMomentum();
- final FieldVector3D<T> Y = Z.crossProduct(sunPos).normalize();
- final FieldVector3D<T> X = Y.crossProduct(Z).normalize();
- // Build eD, eY, eB vectors
- final FieldVector3D<T> eD = sunPos.subtract(satPos).normalize();
- final FieldVector3D<T> eY = eD.crossProduct(satPos).normalize();
- final FieldVector3D<T> eB = eD.crossProduct(eY);
- // Angular argument difference u_s - u
- final T delta_u = FastMath.atan2(satPos.dotProduct(Y), satPos.dotProduct(X));
- // Compute B(u)
- T b_u = parameters[0];
- for (int i = 1; i < nB + 1; i++) {
- final FieldSinCos<T> sc = FastMath.sinCos(delta_u.multiply(2 * i - 1));
- b_u = b_u.add(sc.cos().multiply(parameters[i])).add(sc.sin().multiply(parameters[i + nB]));
- }
- // Compute D(u)
- T d_u = parameters[2 * nB + 1];
- for (int i = 1; i < nD + 1; i++) {
- final FieldSinCos<T> sc = FastMath.sinCos(delta_u.multiply(2 * i));
- d_u = d_u.add(sc.cos().multiply(parameters[2 * nB + 1 + i])).add(sc.sin().multiply(parameters[2 * nB + 1 + i + nD]));
- }
- // Return the acceleration
- return new FieldVector3D<>(d_u, eD, parameters[2 * (nD + nB) + 2], eY, b_u, eB);
- }
- /** {@inheritDoc} */
- @Override
- public List<ParameterDriver> getParametersDrivers() {
- return Collections.unmodifiableList(coefficients);
- }
- }