OrbitPhysicalPropertiesKey.java
/* Copyright 2002-2024 CS GROUP
* Licensed to CS GROUP (CS) under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* CS licenses this file to You under the Apache License, Version 2.0
* (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package org.orekit.files.ccsds.ndm.odm.ocm;
import org.orekit.files.ccsds.definitions.Units;
import org.orekit.files.ccsds.utils.ContextBinding;
import org.orekit.files.ccsds.utils.lexical.ParseToken;
import org.orekit.files.ccsds.utils.lexical.TokenType;
import org.orekit.utils.units.Unit;
/** Keys for {@link OrbitPhysicalProperties physical properties data} entries.
* @author Luc Maisonobe
* @since 11.0
*/
public enum OrbitPhysicalPropertiesKey {
/** Comment entry. */
COMMENT((token, context, container) ->
token.getType() == TokenType.ENTRY ? container.addComment(token.getContentAsNormalizedString()) : true),
/** Satellite manufacturer name. */
MANUFACTURER((token, context, container) -> token.processAsFreeTextString(container::setManufacturer)),
/** Bus model name. */
BUS_MODEL((token, context, container) -> token.processAsFreeTextString(container::setBusModel)),
/** Other space objects this object is docked to. */
DOCKED_WITH((token, context, container) -> token.processAsFreeTextList(container::setDockedWith)),
/** Attitude-independent drag cross-sectional area, not already into attitude-dependent area along OEB. */
DRAG_CONST_AREA((token, context, container) -> token.processAsDouble(Units.M2, context.getParsedUnitsBehavior(),
container::setDragConstantArea)),
/** Nominal drag coefficient. */
DRAG_COEFF_NOM((token, context, container) -> token.processAsDouble(Unit.ONE, context.getParsedUnitsBehavior(),
container::setDragCoefficient)),
/** Drag coefficient 1σ uncertainty. */
DRAG_UNCERTAINTY((token, context, container) -> token.processAsDouble(Unit.PERCENT, context.getParsedUnitsBehavior(),
container::setDragUncertainty)),
/** Total mass at beginning of life. */
INITIAL_WET_MASS((token, context, container) -> token.processAsDouble(Unit.KILOGRAM, context.getParsedUnitsBehavior(),
container::setInitialWetMass)),
/** Total mass at T₀. */
WET_MASS((token, context, container) -> token.processAsDouble(Unit.KILOGRAM, context.getParsedUnitsBehavior(),
container::setWetMass)),
/** Mass without propellant. */
DRY_MASS((token, context, container) -> token.processAsDouble(Unit.KILOGRAM, context.getParsedUnitsBehavior(),
container::setDryMass)),
/** Optimally Enclosing Box parent reference frame. */
OEB_PARENT_FRAME((token, context, container) -> token.processAsFrame(container::setOebParentFrame, context, true, true, false)),
/** Optimally Enclosing Box parent reference frame epoch. */
OEB_PARENT_FRAME_EPOCH((token, context, container) -> token.processAsDate(container::setOebParentFrameEpoch, context)),
/** Quaternion defining Optimally Enclosing Box (first vectorial component). */
OEB_Q1((token, context, container) -> token.processAsIndexedDouble(1, Unit.ONE, context.getParsedUnitsBehavior(),
container::setOebQ)),
/** Quaternion defining Optimally Enclosing Box (second vectorial component). */
OEB_Q2((token, context, container) -> token.processAsIndexedDouble(2, Unit.ONE, context.getParsedUnitsBehavior(),
container::setOebQ)),
/** Quaternion defining Optimally Enclosing Box (third vectorial component). */
OEB_Q3((token, context, container) -> token.processAsIndexedDouble(3, Unit.ONE, context.getParsedUnitsBehavior(),
container::setOebQ)),
/** Quaternion defining Optimally Enclosing Box (scalar component). */
OEB_QC((token, context, container) -> token.processAsIndexedDouble(0, Unit.ONE, context.getParsedUnitsBehavior(),
container::setOebQ)),
/** Dimensions of Optimally Enclosing Box along X-OEB (i.e max). */
OEB_MAX((token, context, container) -> token.processAsDouble(Unit.METRE, context.getParsedUnitsBehavior(),
container::setOebMax)),
/** Dimensions of Optimally Enclosing Box along Y-OEB (i.e intermediate). */
OEB_INT((token, context, container) -> token.processAsDouble(Unit.METRE, context.getParsedUnitsBehavior(),
container::setOebIntermediate)),
/** Dimensions of Optimally Enclosing Box along Z-OEB (i.e min). */
OEB_MIN((token, context, container) -> token.processAsDouble(Unit.METRE, context.getParsedUnitsBehavior(),
container::setOebMin)),
/** Cross-sectional area of Optimally Enclosing Box along X-OEB. */
AREA_ALONG_OEB_MAX((token, context, container) -> token.processAsDouble(Units.M2, context.getParsedUnitsBehavior(),
container::setOebAreaAlongMax)),
/** Cross-sectional area of Optimally Enclosing Box along Y-OEB. */
AREA_ALONG_OEB_INT((token, context, container) -> token.processAsDouble(Units.M2, context.getParsedUnitsBehavior(),
container::setOebAreaAlongIntermediate)),
/** Cross-sectional area of Optimally Enclosing Box along Z-OEB. */
AREA_ALONG_OEB_MIN((token, context, container) -> token.processAsDouble(Units.M2, context.getParsedUnitsBehavior(),
container::setOebAreaAlongMin)),
/** Minimum cross-sectional area for collision probability estimation purposes. */
AREA_MIN_FOR_PC((token, context, container) -> token.processAsDouble(Units.M2, context.getParsedUnitsBehavior(),
container::setMinAreaForCollisionProbability)),
/** Maximum cross-sectional area for collision probability estimation purposes. */
AREA_MAX_FOR_PC((token, context, container) -> token.processAsDouble(Units.M2, context.getParsedUnitsBehavior(),
container::setMaxAreaForCollisionProbability)),
/** Typical (50th percentile) cross-sectional area for collision probability estimation purposes. */
AREA_TYP_FOR_PC((token, context, container) -> token.processAsDouble(Units.M2, context.getParsedUnitsBehavior(),
container::setTypAreaForCollisionProbability)),
/** Typical (50th percentile) radar cross-section. */
RCS((token, context, container) -> token.processAsDouble(Units.M2, context.getParsedUnitsBehavior(),
container::setRcs)),
/** Minimum radar cross-section. */
RCS_MIN((token, context, container) -> token.processAsDouble(Units.M2, context.getParsedUnitsBehavior(),
container::setMinRcs)),
/** Maximum radar cross-section. */
RCS_MAX((token, context, container) -> token.processAsDouble(Units.M2, context.getParsedUnitsBehavior(),
container::setMaxRcs)),
/** Attitude-independent SRP area, not already into attitude-dependent area along OEB. */
SRP_CONST_AREA((token, context, container) -> token.processAsDouble(Units.M2, context.getParsedUnitsBehavior(),
container::setSrpConstantArea)),
/** Nominal SRP coefficient. */
SOLAR_RAD_COEFF((token, context, container) -> token.processAsDouble(Unit.ONE, context.getParsedUnitsBehavior(),
container::setSrpCoefficient)),
/** SRP coefficient 1σ uncertainty. */
SOLAR_RAD_UNCERTAINTY((token, context, container) -> token.processAsDouble(Unit.PERCENT, context.getParsedUnitsBehavior(),
container::setSrpUncertainty)),
/** Typical (50th percentile) visual magnitude. */
VM_ABSOLUTE((token, context, container) -> token.processAsDouble(Unit.ONE, context.getParsedUnitsBehavior(),
container::setVmAbsolute)),
/** Minimum apparent visual magnitude. */
VM_APPARENT_MIN((token, context, container) -> token.processAsDouble(Unit.ONE, context.getParsedUnitsBehavior(),
container::setVmApparentMin)),
/** Typical (50th percentile) apparent visual magnitude. */
VM_APPARENT((token, context, container) -> token.processAsDouble(Unit.ONE, context.getParsedUnitsBehavior(),
container::setVmApparent)),
/** Maximum apparent visual magnitude. */
VM_APPARENT_MAX((token, context, container) -> token.processAsDouble(Unit.ONE, context.getParsedUnitsBehavior(),
container::setVmApparentMax)),
/** Typical (50th percentile) coefficient of reflectance. */
REFLECTANCE((token, context, container) -> token.processAsDouble(Unit.ONE, context.getParsedUnitsBehavior(),
container::setReflectance)),
/** Attitude control mode. */
ATT_CONTROL_MODE((token, context, container) -> token.processAsFreeTextString(container::setAttitudeControlMode)),
/** Type of actuator for attitude control. */
ATT_ACTUATOR_TYPE((token, context, container) -> token.processAsFreeTextString(container::setAttitudeActuatorType)),
/** Accuracy of attitude knowledge. */
ATT_KNOWLEDGE((token, context, container) -> token.processAsDouble(Unit.DEGREE, context.getParsedUnitsBehavior(), container::setAttitudeKnowledgeAccuracy)),
/** Accuracy of attitude control. */
ATT_CONTROL((token, context, container) -> token.processAsDouble(Unit.DEGREE, context.getParsedUnitsBehavior(), container::setAttitudeControlAccuracy)),
/** Overall accuracy of spacecraft to maintain attitude. */
ATT_POINTING((token, context, container) -> token.processAsDouble(Unit.DEGREE, context.getParsedUnitsBehavior(), container::setAttitudePointingAccuracy)),
/** Average number of orbit or attitude maneuvers per year. */
AVG_MANEUVER_FREQ((token, context, container) -> token.processAsDouble(Units.NB_PER_Y, context.getParsedUnitsBehavior(),
container::setManeuversFrequency)),
/** Maximum composite thrust the spacecraft can accomplish. */
MAX_THRUST((token, context, container) -> token.processAsDouble(Unit.NEWTON, context.getParsedUnitsBehavior(),
container::setMaxThrust)),
/** Total ΔV capability at beginning of life. */
DV_BOL((token, context, container) -> token.processAsDouble(Units.KM_PER_S, context.getParsedUnitsBehavior(),
container::setBolDv)),
/** Total ΔV remaining for spacecraft. */
DV_REMAINING((token, context, container) -> token.processAsDouble(Units.KM_PER_S, context.getParsedUnitsBehavior(),
container::setRemainingDv)),
/** Moment of inertia about X-axis. */
IXX((token, context, container) -> token.processAsDoublyIndexedDouble(0, 0, Units.KG_M2, context.getParsedUnitsBehavior(),
container::setInertiaMatrixEntry)),
/** Moment of inertia about Y-axis. */
IYY((token, context, container) -> token.processAsDoublyIndexedDouble(1, 1, Units.KG_M2, context.getParsedUnitsBehavior(),
container::setInertiaMatrixEntry)),
/** Moment of inertia about Z-axis. */
IZZ((token, context, container) -> token.processAsDoublyIndexedDouble(2, 2, Units.KG_M2, context.getParsedUnitsBehavior(),
container::setInertiaMatrixEntry)),
/** Inertia cross product of the X and Y axes. */
IXY((token, context, container) -> token.processAsDoublyIndexedDouble(0, 1, Units.KG_M2, context.getParsedUnitsBehavior(),
container::setInertiaMatrixEntry)),
/** Inertia cross product of the X and Z axes. */
IXZ((token, context, container) -> token.processAsDoublyIndexedDouble(0, 2, Units.KG_M2, context.getParsedUnitsBehavior(),
container::setInertiaMatrixEntry)),
/** Inertia cross product of the Y and Z axes. */
IYZ((token, context, container) -> token.processAsDoublyIndexedDouble(1, 2, Units.KG_M2, context.getParsedUnitsBehavior(),
container::setInertiaMatrixEntry));
/** Processing method. */
private final transient TokenProcessor processor;
/** Simple constructor.
* @param processor processing method
*/
OrbitPhysicalPropertiesKey(final TokenProcessor processor) {
this.processor = processor;
}
/** Process an token.
* @param token token to process
* @param context context binding
* @param data data to fill
* @return true of token was accepted
*/
public boolean process(final ParseToken token, final ContextBinding context, final OrbitPhysicalProperties data) {
return processor.process(token, context, data);
}
/** Interface for processing one token. */
interface TokenProcessor {
/** Process one token.
* @param token token to process
* @param context context binding
* @param data data to fill
* @return true of token was accepted
*/
boolean process(ParseToken token, ContextBinding context, OrbitPhysicalProperties data);
}
}