TDOA.java
- /* Copyright 2002-2025 CS GROUP
- * Licensed to CS GROUP (CS) under one or more
- * contributor license agreements. See the NOTICE file distributed with
- * this work for additional information regarding copyright ownership.
- * CS licenses this file to You under the Apache License, Version 2.0
- * (the "License"); you may not use this file except in compliance with
- * the License. You may obtain a copy of the License at
- *
- * http://www.apache.org/licenses/LICENSE-2.0
- *
- * Unless required by applicable law or agreed to in writing, software
- * distributed under the License is distributed on an "AS IS" BASIS,
- * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- * See the License for the specific language governing permissions and
- * limitations under the License.
- */
- package org.orekit.estimation.measurements;
- import java.util.Arrays;
- import org.hipparchus.CalculusFieldElement;
- import org.hipparchus.analysis.differentiation.Gradient;
- import org.hipparchus.geometry.euclidean.threed.FieldVector3D;
- import org.hipparchus.geometry.euclidean.threed.Vector3D;
- import org.hipparchus.util.FastMath;
- import org.orekit.frames.FieldTransform;
- import org.orekit.frames.Transform;
- import org.orekit.propagation.SpacecraftState;
- import org.orekit.time.AbsoluteDate;
- import org.orekit.time.FieldAbsoluteDate;
- import org.orekit.utils.Constants;
- import org.orekit.utils.ParameterDriver;
- import org.orekit.utils.TimeSpanMap.Span;
- import org.orekit.utils.TimeStampedFieldPVCoordinates;
- import org.orekit.utils.TimeStampedPVCoordinates;
- /** Class modeling a Time Difference of Arrival measurement with a satellite as emitter
- * and two ground stations as receivers.
- * <p>
- * TDOA measures the difference in signal arrival time between the emitter and receivers,
- * corresponding to a difference in ranges from the two receivers to the emitter.
- * </p><p>
- * The date of the measurement corresponds to the reception of the signal by the prime station.
- * The measurement corresponds to the date of the measurement minus
- * the date of reception of the signal by the second station:
- * <code>tdoa = tr<sub>1</sub> - tr<sub>2</sub></code>
- * </p><p>
- * The motion of the stations and the satellite during the signal flight time are taken into account.
- * </p>
- * @author Pascal Parraud
- * @since 11.2
- */
- public class TDOA extends GroundReceiverMeasurement<TDOA> {
- /** Type of the measurement. */
- public static final String MEASUREMENT_TYPE = "TDOA";
- /** Second ground station, the one that gives the measurement, i.e. the delay. */
- private final GroundStation secondStation;
- /** Simple constructor.
- * @param primeStation ground station that gives the date of the measurement
- * @param secondStation ground station that gives the measurement
- * @param date date of the measurement
- * @param tdoa observed value (s)
- * @param sigma theoretical standard deviation
- * @param baseWeight base weight
- * @param satellite satellite related to this measurement
- */
- public TDOA(final GroundStation primeStation, final GroundStation secondStation,
- final AbsoluteDate date, final double tdoa, final double sigma,
- final double baseWeight, final ObservableSatellite satellite) {
- super(primeStation, false, date, tdoa, sigma, baseWeight, satellite);
- // add parameter drivers for the secondary station
- addParameterDriver(secondStation.getClockOffsetDriver());
- addParameterDriver(secondStation.getEastOffsetDriver());
- addParameterDriver(secondStation.getNorthOffsetDriver());
- addParameterDriver(secondStation.getZenithOffsetDriver());
- addParameterDriver(secondStation.getPrimeMeridianOffsetDriver());
- addParameterDriver(secondStation.getPrimeMeridianDriftDriver());
- addParameterDriver(secondStation.getPolarOffsetXDriver());
- addParameterDriver(secondStation.getPolarDriftXDriver());
- addParameterDriver(secondStation.getPolarOffsetYDriver());
- addParameterDriver(secondStation.getPolarDriftYDriver());
- this.secondStation = secondStation;
- }
- /** Get the prime ground station, the one that gives the date of the measurement.
- * @return prime ground station
- */
- public GroundStation getPrimeStation() {
- return getStation();
- }
- /** Get the second ground station, the one that gives the measurement.
- * @return second ground station
- */
- public GroundStation getSecondStation() {
- return secondStation;
- }
- /** {@inheritDoc} */
- @SuppressWarnings("checkstyle:WhitespaceAround")
- @Override
- protected EstimatedMeasurementBase<TDOA> theoreticalEvaluationWithoutDerivatives(final int iteration, final int evaluation,
- final SpacecraftState[] states) {
- final GroundReceiverCommonParametersWithoutDerivatives common = computeCommonParametersWithout(states[0]);
- final TimeStampedPVCoordinates emitterPV = common.getTransitPV();
- final AbsoluteDate emitterDate = emitterPV.getDate();
- // Approximate second location at transit time
- final Transform secondToInertial =
- getSecondStation().getOffsetToInertial(common.getState().getFrame(), emitterDate, true);
- final TimeStampedPVCoordinates secondApprox =
- secondToInertial.transformPVCoordinates(new TimeStampedPVCoordinates(emitterDate,
- Vector3D.ZERO, Vector3D.ZERO, Vector3D.ZERO));
- // Time of flight from emitter to second station
- final double tau2 = forwardSignalTimeOfFlight(secondApprox, emitterPV.getPosition(), emitterDate);
- // Secondary station PV in inertial frame at receive at second station
- final TimeStampedPVCoordinates secondPV = secondApprox.shiftedBy(tau2);
- // The measured TDOA is (tau1 + clockOffset1) - (tau2 + clockOffset2)
- final double offset1 = getPrimeStation().getClockOffsetDriver().getValue(emitterDate);
- final double offset2 = getSecondStation().getClockOffsetDriver().getValue(emitterDate);
- final double tdoa = (common.getTauD() + offset1) - (tau2 + offset2);
- // Evaluate the TDOA value
- // -------------------------------------------
- final EstimatedMeasurement<TDOA> estimated =
- new EstimatedMeasurement<>(this, iteration, evaluation,
- new SpacecraftState[] {
- common.getTransitState()
- },
- new TimeStampedPVCoordinates[] {
- emitterPV,
- tdoa > 0.0 ? secondPV : common.getStationDownlink(),
- tdoa > 0.0 ? common.getStationDownlink() : secondPV
- });
- // set TDOA value
- estimated.setEstimatedValue(tdoa);
- return estimated;
- }
- /** {@inheritDoc} */
- @Override
- protected EstimatedMeasurement<TDOA> theoreticalEvaluation(final int iteration, final int evaluation,
- final SpacecraftState[] states) {
- final SpacecraftState state = states[0];
- // TDOA derivatives are computed with respect to spacecraft state in inertial frame
- // and station parameters
- // ----------------------
- //
- // Parameters:
- // - 0..2 - Position of the spacecraft in inertial frame
- // - 3..5 - Velocity of the spacecraft in inertial frame
- // - 6..n - measurements parameters (clock offset, station offsets, pole, prime meridian, sat clock offset...)
- final GroundReceiverCommonParametersWithDerivatives common = computeCommonParametersWithDerivatives(state);
- final int nbParams = common.getTauD().getFreeParameters();
- final TimeStampedFieldPVCoordinates<Gradient> emitterPV = common.getTransitPV();
- final FieldAbsoluteDate<Gradient> emitterDate = emitterPV.getDate();
- // Approximate secondary location (at emission time)
- final FieldVector3D<Gradient> zero = FieldVector3D.getZero(common.getTauD().getField());
- final FieldTransform<Gradient> secondToInertial =
- getSecondStation().getOffsetToInertial(state.getFrame(), emitterDate, nbParams, common.getIndices());
- final TimeStampedFieldPVCoordinates<Gradient> secondApprox =
- secondToInertial.transformPVCoordinates(new TimeStampedFieldPVCoordinates<>(emitterDate,
- zero, zero, zero));
- // Time of flight from emitter to second station
- final Gradient tau2 = forwardSignalTimeOfFlight(secondApprox, emitterPV.getPosition(), emitterDate);
- // Second station coordinates at receive time
- final TimeStampedFieldPVCoordinates<Gradient> secondPV = secondApprox.shiftedBy(tau2);
- // The measured TDOA is (tau1 + clockOffset1) - (tau2 + clockOffset2)
- final Gradient offset1 = getPrimeStation().getClockOffsetDriver()
- .getValue(nbParams, common.getIndices(), emitterDate.toAbsoluteDate());
- final Gradient offset2 = getSecondStation().getClockOffsetDriver()
- .getValue(nbParams, common.getIndices(), emitterDate.toAbsoluteDate());
- final Gradient tdoaG = common.getTauD().add(offset1).subtract(tau2.add(offset2));
- final double tdoa = tdoaG.getValue();
- // Evaluate the TDOA value and derivatives
- // -------------------------------------------
- final TimeStampedPVCoordinates pv1 = common.getStationDownlink().toTimeStampedPVCoordinates();
- final TimeStampedPVCoordinates pv2 = secondPV.toTimeStampedPVCoordinates();
- final EstimatedMeasurement<TDOA> estimated =
- new EstimatedMeasurement<>(this, iteration, evaluation,
- new SpacecraftState[] {
- common.getTransitState()
- },
- new TimeStampedPVCoordinates[] {
- emitterPV.toTimeStampedPVCoordinates(),
- tdoa > 0 ? pv2 : pv1,
- tdoa > 0 ? pv1 : pv2
- });
- // set TDOA value
- estimated.setEstimatedValue(tdoa);
- // set first order derivatives with respect to state
- final double[] derivatives = tdoaG.getGradient();
- estimated.setStateDerivatives(0, Arrays.copyOfRange(derivatives, 0, 6));
- // Set first order derivatives with respect to parameters
- for (final ParameterDriver driver : getParametersDrivers()) {
- for (Span<String> span = driver.getNamesSpanMap().getFirstSpan(); span != null; span = span.next()) {
- final Integer index = common.getIndices().get(span.getData());
- if (index != null) {
- estimated.setParameterDerivatives(driver, span.getStart(), derivatives[index]);
- }
- }
- }
- return estimated;
- }
- /** Compute propagation delay on a link leg (typically downlink or uplink). This differs from signalTimeOfFlight
- * through <em>advancing</em> rather than delaying the emitter.
- *
- * @param adjustableEmitterPV position/velocity of emitter that may be adjusted
- * @param receiverPosition fixed position of receiver at {@code signalArrivalDate},
- * in the same frame as {@code adjustableEmitterPV}
- * @param signalArrivalDate date at which the signal arrives to receiver
- * @return <em>positive</em> delay between signal emission and signal reception dates
- */
- public static double forwardSignalTimeOfFlight(final TimeStampedPVCoordinates adjustableEmitterPV,
- final Vector3D receiverPosition,
- final AbsoluteDate signalArrivalDate) {
- // initialize emission date search loop assuming the state is already correct
- // this will be true for all but the first orbit determination iteration,
- // and even for the first iteration the loop will converge very fast
- final double offset = signalArrivalDate.durationFrom(adjustableEmitterPV.getDate());
- double delay = offset;
- // search signal transit date, computing the signal travel in inertial frame
- final double cReciprocal = 1.0 / Constants.SPEED_OF_LIGHT;
- double delta;
- int count = 0;
- do {
- final double previous = delay;
- final Vector3D transitP = adjustableEmitterPV.shiftedBy(delay - offset).getPosition();
- delay = receiverPosition.distance(transitP) * cReciprocal;
- delta = FastMath.abs(delay - previous);
- } while (count++ < 10 && delta >= 2 * FastMath.ulp(delay));
- return delay;
- }
- /** Compute propagation delay on a link leg (typically downlink or uplink).This differs from signalTimeOfFlight
- * through <em>advancing</em> rather than delaying the emitter.
- *
- * @param adjustableEmitterPV position/velocity of emitter that may be adjusted
- * @param receiverPosition fixed position of receiver at {@code signalArrivalDate},
- * in the same frame as {@code adjustableEmitterPV}
- * @param signalArrivalDate date at which the signal arrives to receiver
- * @return <em>positive</em> delay between signal emission and signal reception dates
- * @param <T> the type of the components
- */
- public static <T extends CalculusFieldElement<T>> T forwardSignalTimeOfFlight(final TimeStampedFieldPVCoordinates<T> adjustableEmitterPV,
- final FieldVector3D<T> receiverPosition,
- final FieldAbsoluteDate<T> signalArrivalDate) {
- // Initialize emission date search loop assuming the emitter PV is almost correct
- // this will be true for all but the first orbit determination iteration,
- // and even for the first iteration the loop will converge extremely fast
- final T offset = signalArrivalDate.durationFrom(adjustableEmitterPV.getDate());
- T delay = offset;
- // search signal transit date, computing the signal travel in the frame shared by emitter and receiver
- final double cReciprocal = 1.0 / Constants.SPEED_OF_LIGHT;
- double delta;
- int count = 0;
- do {
- final double previous = delay.getReal();
- final FieldVector3D<T> transitP = adjustableEmitterPV.shiftedBy(delay.subtract(offset)).getPosition();
- delay = receiverPosition.distance(transitP).multiply(cReciprocal);
- delta = FastMath.abs(delay.getReal() - previous);
- } while (count++ < 10 && delta >= 2 * FastMath.ulp(delay.getReal()));
- return delay;
- }
- }