TurnAroundRangeIonosphericDelayModifier.java
- /* Copyright 2002-2025 CS GROUP
- * Licensed to CS GROUP (CS) under one or more
- * contributor license agreements. See the NOTICE file distributed with
- * this work for additional information regarding copyright ownership.
- * CS licenses this file to You under the Apache License, Version 2.0
- * (the "License"); you may not use this file except in compliance with
- * the License. You may obtain a copy of the License at
- *
- * http://www.apache.org/licenses/LICENSE-2.0
- *
- * Unless required by applicable law or agreed to in writing, software
- * distributed under the License is distributed on an "AS IS" BASIS,
- * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- * See the License for the specific language governing permissions and
- * limitations under the License.
- */
- package org.orekit.estimation.measurements.modifiers;
- import java.util.Arrays;
- import java.util.List;
- import org.hipparchus.CalculusFieldElement;
- import org.hipparchus.analysis.differentiation.Gradient;
- import org.orekit.attitudes.FrameAlignedProvider;
- import org.orekit.estimation.measurements.EstimatedMeasurement;
- import org.orekit.estimation.measurements.EstimatedMeasurementBase;
- import org.orekit.estimation.measurements.EstimationModifier;
- import org.orekit.estimation.measurements.GroundStation;
- import org.orekit.estimation.measurements.TurnAroundRange;
- import org.orekit.frames.TopocentricFrame;
- import org.orekit.models.earth.ionosphere.IonosphericModel;
- import org.orekit.propagation.FieldSpacecraftState;
- import org.orekit.propagation.SpacecraftState;
- import org.orekit.time.AbsoluteDate;
- import org.orekit.utils.Differentiation;
- import org.orekit.utils.ParameterDriver;
- import org.orekit.utils.ParameterFunction;
- import org.orekit.utils.TimeSpanMap.Span;
- /** Class modifying theoretical TurnAroundRange measurement with ionospheric delay.
- * <p>
- * The effect of ionospheric correction on the TurnAroundRange is directly computed
- * through the computation of the ionospheric delay.
- * </p>
- * <p>
- * The ionospheric delay depends on the frequency of the signal (GNSS, VLBI, ...).
- * For optical measurements (e.g. SLR), the ray is not affected by ionosphere charged particles.
- * </p>
- * <p>
- * Since 10.0, state derivatives and ionospheric parameters derivates are computed
- * using automatic differentiation.
- * </p>
- * @author Maxime Journot
- * @since 9.0
- */
- public class TurnAroundRangeIonosphericDelayModifier implements EstimationModifier<TurnAroundRange> {
- /** Ionospheric delay model. */
- private final IonosphericModel ionoModel;
- /** Frequency [Hz]. */
- private final double frequency;
- /** Constructor.
- *
- * @param model Ionospheric delay model appropriate for the current TurnAroundRange measurement method.
- * @param freq frequency of the signal in Hz
- */
- public TurnAroundRangeIonosphericDelayModifier(final IonosphericModel model,
- final double freq) {
- ionoModel = model;
- frequency = freq;
- }
- /** {@inheritDoc} */
- @Override
- public String getEffectName() {
- return "ionosphere";
- }
- /** Compute the measurement error due to ionosphere.
- * @param station station
- * @param state spacecraft state
- * @return the measurement error due to ionosphere
- */
- private double rangeErrorIonosphericModel(final GroundStation station,
- final SpacecraftState state) {
- // Base frame associated with the station
- final TopocentricFrame baseFrame = station.getBaseFrame();
- // Delay in meters
- return ionoModel.pathDelay(state, baseFrame, frequency, ionoModel.getParameters(state.getDate()));
- }
- /** Compute the measurement error due to ionosphere.
- * @param <T> type of the elements
- * @param station station
- * @param state spacecraft state
- * @param parameters ionospheric model parameters
- * @return the measurement error due to ionosphere
- */
- private <T extends CalculusFieldElement<T>> T rangeErrorIonosphericModel(final GroundStation station,
- final FieldSpacecraftState<T> state,
- final T[] parameters) {
- // Base frame associated with the station
- final TopocentricFrame baseFrame = station.getBaseFrame();
- // Delay in meters
- return ionoModel.pathDelay(state, baseFrame, frequency, parameters);
- }
- /** Compute the Jacobian of the delay term wrt state using
- * automatic differentiation.
- *
- * @param derivatives ionospheric delay derivatives
- *
- * @return Jacobian of the delay wrt state
- */
- private double[][] rangeErrorJacobianState(final double[] derivatives) {
- final double[][] finiteDifferencesJacobian = new double[1][6];
- System.arraycopy(derivatives, 0, finiteDifferencesJacobian[0], 0, 6);
- return finiteDifferencesJacobian;
- }
- /** Compute the derivative of the delay term wrt parameters.
- *
- * @param station ground station
- * @param driver driver for the station offset parameter
- * @param state spacecraft state
- * @return derivative of the delay wrt station offset parameter
- */
- private double rangeErrorParameterDerivative(final GroundStation station,
- final ParameterDriver driver,
- final SpacecraftState state) {
- final ParameterFunction rangeError = new ParameterFunction() {
- /** {@inheritDoc} */
- @Override
- public double value(final ParameterDriver parameterDriver, final AbsoluteDate date) {
- return rangeErrorIonosphericModel(station, state);
- }
- };
- final ParameterFunction rangeErrorDerivative =
- Differentiation.differentiate(rangeError, 3, 10.0 * driver.getScale());
- return rangeErrorDerivative.value(driver, state.getDate());
- }
- /** Compute the derivative of the delay term wrt parameters using
- * automatic differentiation.
- *
- * @param derivatives ionospheric delay derivatives
- * @param freeStateParameters dimension of the state.
- * @return derivative of the delay wrt ionospheric model parameters
- */
- private double[] rangeErrorParameterDerivative(final double[] derivatives, final int freeStateParameters) {
- // 0 ... freeStateParameters - 1 -> derivatives of the delay wrt state
- // freeStateParameters ... n -> derivatives of the delay wrt ionospheric parameters
- return Arrays.copyOfRange(derivatives, freeStateParameters, derivatives.length);
- }
- /** {@inheritDoc} */
- @Override
- public List<ParameterDriver> getParametersDrivers() {
- return ionoModel.getParametersDrivers();
- }
- @Override
- public void modifyWithoutDerivatives(final EstimatedMeasurementBase<TurnAroundRange> estimated) {
- final TurnAroundRange measurement = estimated.getObservedMeasurement();
- final GroundStation primaryStation = measurement.getPrimaryStation();
- final GroundStation secondaryStation = measurement.getSecondaryStation();
- final SpacecraftState state = estimated.getStates()[0];
- // Update estimated value taking into account the ionospheric delay.
- // The ionospheric delay is directly added to the TurnAroundRange.
- final double[] newValue = estimated.getEstimatedValue();
- final double primaryDelay = rangeErrorIonosphericModel(primaryStation, state);
- final double secondaryDelay = rangeErrorIonosphericModel(secondaryStation, state);
- newValue[0] = newValue[0] + primaryDelay + secondaryDelay;
- estimated.modifyEstimatedValue(this, newValue);
- }
- @Override
- public void modify(final EstimatedMeasurement<TurnAroundRange> estimated) {
- final TurnAroundRange measurement = estimated.getObservedMeasurement();
- final GroundStation primaryStation = measurement.getPrimaryStation();
- final GroundStation secondaryStation = measurement.getSecondaryStation();
- final SpacecraftState state = estimated.getStates()[0];
- // Update estimated derivatives with Jacobian of the measure wrt state
- final ModifierGradientConverter converter =
- new ModifierGradientConverter(state, 6, new FrameAlignedProvider(state.getFrame()));
- final FieldSpacecraftState<Gradient> gState = converter.getState(ionoModel);
- final Gradient[] gParameters = converter.getParametersAtStateDate(gState, ionoModel);
- final Gradient primaryGDelay = rangeErrorIonosphericModel(primaryStation, gState, gParameters);
- final Gradient secondaryGDelay = rangeErrorIonosphericModel(secondaryStation, gState, gParameters);
- final double[] primaryDerivatives = primaryGDelay.getGradient();
- final double[] secondaryDerivatives = secondaryGDelay.getGradient();
- final double[][] primaryDjac = rangeErrorJacobianState(primaryDerivatives);
- final double[][] secondaryDjac = rangeErrorJacobianState(secondaryDerivatives);
- final double[][] stateDerivatives = estimated.getStateDerivatives(0);
- for (int irow = 0; irow < stateDerivatives.length; ++irow) {
- for (int jcol = 0; jcol < stateDerivatives[0].length; ++jcol) {
- stateDerivatives[irow][jcol] += primaryDjac[irow][jcol] + secondaryDjac[irow][jcol];
- }
- }
- estimated.setStateDerivatives(0, stateDerivatives);
- int indexPrimary = 0;
- for (final ParameterDriver driver : getParametersDrivers()) {
- if (driver.isSelected()) {
- for (Span<String> span = driver.getNamesSpanMap().getFirstSpan(); span != null; span = span.next()) {
- // update estimated derivatives with derivative of the modification wrt ionospheric parameters
- double parameterDerivative = estimated.getParameterDerivatives(driver, span.getStart())[0];
- final double[] derivatives = rangeErrorParameterDerivative(primaryDerivatives, converter.getFreeStateParameters());
- parameterDerivative += derivatives[indexPrimary];
- estimated.setParameterDerivatives(driver, span.getStart(), parameterDerivative);
- indexPrimary += 1;
- }
- }
- }
- int indexSecondary = 0;
- for (final ParameterDriver driver : getParametersDrivers()) {
- if (driver.isSelected()) {
- for (Span<String> span = driver.getNamesSpanMap().getFirstSpan(); span != null; span = span.next()) {
- // update estimated derivatives with derivative of the modification wrt ionospheric parameters
- double parameterDerivative = estimated.getParameterDerivatives(driver, span.getStart())[0];
- final double[] derivatives = rangeErrorParameterDerivative(secondaryDerivatives, converter.getFreeStateParameters());
- parameterDerivative += derivatives[indexSecondary];
- estimated.setParameterDerivatives(driver, span.getStart(), parameterDerivative);
- indexSecondary += 1;
- }
- }
- }
- // Update derivatives with respect to primary station position
- for (final ParameterDriver driver : Arrays.asList(primaryStation.getClockOffsetDriver(),
- primaryStation.getEastOffsetDriver(),
- primaryStation.getNorthOffsetDriver(),
- primaryStation.getZenithOffsetDriver())) {
- if (driver.isSelected()) {
- for (Span<String> span = driver.getNamesSpanMap().getFirstSpan(); span != null; span = span.next()) {
- double parameterDerivative = estimated.getParameterDerivatives(driver, span.getStart())[0];
- parameterDerivative += rangeErrorParameterDerivative(primaryStation, driver, state);
- estimated.setParameterDerivatives(driver, span.getStart(), parameterDerivative);
- }
- }
- }
- // Update derivatives with respect to secondary station position
- for (final ParameterDriver driver : Arrays.asList(secondaryStation.getEastOffsetDriver(),
- secondaryStation.getNorthOffsetDriver(),
- secondaryStation.getZenithOffsetDriver())) {
- if (driver.isSelected()) {
- for (Span<String> span = driver.getNamesSpanMap().getFirstSpan(); span != null; span = span.next()) {
- double parameterDerivative = estimated.getParameterDerivatives(driver, span.getStart())[0];
- parameterDerivative += rangeErrorParameterDerivative(secondaryStation, driver, state);
- estimated.setParameterDerivatives(driver, span.getStart(), parameterDerivative);
- }
- }
- }
- // Update estimated value taking into account the ionospheric delay.
- // The ionospheric delay is directly added to the TurnAroundRange.
- final double[] newValue = estimated.getEstimatedValue();
- newValue[0] = newValue[0] + primaryGDelay.getReal() + secondaryGDelay.getReal();
- estimated.modifyEstimatedValue(this, newValue);
- }
- }