NadirPointing.java

  1. /* Copyright 2002-2025 CS GROUP
  2.  * Licensed to CS GROUP (CS) under one or more
  3.  * contributor license agreements.  See the NOTICE file distributed with
  4.  * this work for additional information regarding copyright ownership.
  5.  * CS licenses this file to You under the Apache License, Version 2.0
  6.  * (the "License"); you may not use this file except in compliance with
  7.  * the License.  You may obtain a copy of the License at
  8.  *
  9.  *   http://www.apache.org/licenses/LICENSE-2.0
  10.  *
  11.  * Unless required by applicable law or agreed to in writing, software
  12.  * distributed under the License is distributed on an "AS IS" BASIS,
  13.  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  14.  * See the License for the specific language governing permissions and
  15.  * limitations under the License.
  16.  */
  17. package org.orekit.attitudes;

  18. import java.util.ArrayList;
  19. import java.util.List;

  20. import org.hipparchus.CalculusFieldElement;
  21. import org.hipparchus.Field;
  22. import org.hipparchus.analysis.differentiation.FieldUnivariateDerivative2;
  23. import org.hipparchus.analysis.differentiation.FieldUnivariateDerivative2Field;
  24. import org.hipparchus.analysis.differentiation.UnivariateDerivative2;
  25. import org.hipparchus.analysis.differentiation.UnivariateDerivative2Field;
  26. import org.hipparchus.geometry.euclidean.threed.FieldVector3D;
  27. import org.hipparchus.geometry.euclidean.threed.Vector3D;
  28. import org.orekit.bodies.BodyShape;
  29. import org.orekit.bodies.FieldGeodeticPoint;
  30. import org.orekit.bodies.GeodeticPoint;
  31. import org.orekit.frames.FieldStaticTransform;
  32. import org.orekit.frames.FieldTransform;
  33. import org.orekit.frames.Frame;
  34. import org.orekit.frames.StaticTransform;
  35. import org.orekit.frames.Transform;
  36. import org.orekit.time.AbsoluteDate;
  37. import org.orekit.time.FieldAbsoluteDate;
  38. import org.orekit.time.FieldTimeInterpolator;
  39. import org.orekit.time.TimeInterpolator;
  40. import org.orekit.utils.CartesianDerivativesFilter;
  41. import org.orekit.utils.FieldPVCoordinatesProvider;
  42. import org.orekit.utils.FieldPVCoordinates;
  43. import org.orekit.utils.PVCoordinatesProvider;
  44. import org.orekit.utils.PVCoordinates;
  45. import org.orekit.utils.TimeStampedFieldPVCoordinates;
  46. import org.orekit.utils.TimeStampedFieldPVCoordinatesHermiteInterpolator;
  47. import org.orekit.utils.TimeStampedPVCoordinates;
  48. import org.orekit.utils.TimeStampedPVCoordinatesHermiteInterpolator;

  49. /**
  50.  * This class handles nadir pointing attitude provider.

  51.  * <p>
  52.  * This class represents the attitude provider where the satellite z axis is
  53.  * pointing to the vertical of the ground point under satellite.</p>
  54.  * <p>
  55.  * The object <code>NadirPointing</code> is guaranteed to be immutable.
  56.  * </p>
  57.  * @see     GroundPointing
  58.  * @author V&eacute;ronique Pommier-Maurussane
  59.  */
  60. public class NadirPointing extends GroundPointing {

  61.     /** Body shape.  */
  62.     private final BodyShape shape;

  63.     /** Creates new instance.
  64.      * @param inertialFrame frame in which orbital velocities are computed
  65.      * @param shape Body shape
  66.      * @since 7.1
  67.      */
  68.     public NadirPointing(final Frame inertialFrame, final BodyShape shape) {
  69.         // Call constructor of superclass
  70.         super(inertialFrame, shape.getBodyFrame());
  71.         this.shape = shape;
  72.     }

  73.     /** {@inheritDoc} */
  74.     @Override
  75.     public TimeStampedPVCoordinates getTargetPV(final PVCoordinatesProvider pvProv,
  76.                                                 final AbsoluteDate date, final Frame frame) {

  77.         final TimeStampedPVCoordinates pvCoordinatesInRef = pvProv.getPVCoordinates(date, frame);
  78.         if (pvCoordinatesInRef.getAcceleration().equals(Vector3D.ZERO)) {
  79.             // let us assume that there is no proper acceleration available, so need to use interpolation for derivatives
  80.             return getTargetPVViaInterpolation(pvProv, date, frame);

  81.         } else {  // use automatic differentiation
  82.             // build time dependent transform
  83.             final UnivariateDerivative2Field ud2Field = UnivariateDerivative2Field.getInstance();
  84.             final UnivariateDerivative2 dt = new UnivariateDerivative2(0., 1., 0.);
  85.             final FieldAbsoluteDate<UnivariateDerivative2> ud2Date = new FieldAbsoluteDate<>(ud2Field, date).shiftedBy(dt);
  86.             final FieldStaticTransform<UnivariateDerivative2> refToBody = frame.getStaticTransformTo(shape.getBodyFrame(), ud2Date);

  87.             final FieldVector3D<UnivariateDerivative2> positionInRefFrame = pvCoordinatesInRef.toUnivariateDerivative2Vector();
  88.             final FieldVector3D<UnivariateDerivative2> positionInBodyFrame = refToBody.transformPosition(positionInRefFrame);

  89.             // satellite position in geodetic coordinates
  90.             final FieldGeodeticPoint<UnivariateDerivative2> gpSat = shape.transform(positionInBodyFrame, getBodyFrame(), ud2Date);

  91.             // nadir position in geodetic coordinates
  92.             final FieldGeodeticPoint<UnivariateDerivative2> gpNadir = new FieldGeodeticPoint<>(gpSat.getLatitude(),
  93.                 gpSat.getLongitude(), ud2Field.getZero());

  94.             // nadir point position in body frame
  95.             final FieldVector3D<UnivariateDerivative2> positionNadirInBodyFrame = shape.transform(gpNadir);

  96.             // nadir point position in reference frame
  97.             final FieldStaticTransform<UnivariateDerivative2> bodyToRef = refToBody.getInverse();
  98.             final FieldVector3D<UnivariateDerivative2> positionNadirInRefFrame = bodyToRef.transformPosition(positionNadirInBodyFrame);

  99.             // put derivatives into proper object
  100.             final Vector3D velocity = new Vector3D(positionNadirInRefFrame.getX().getFirstDerivative(),
  101.                     positionNadirInRefFrame.getY().getFirstDerivative(), positionNadirInRefFrame.getZ().getFirstDerivative());
  102.             final Vector3D acceleration = new Vector3D(positionNadirInRefFrame.getX().getSecondDerivative(),
  103.                 positionNadirInRefFrame.getY().getSecondDerivative(), positionNadirInRefFrame.getZ().getSecondDerivative());
  104.             return new TimeStampedPVCoordinates(date, positionNadirInRefFrame.toVector3D(), velocity, acceleration);
  105.         }
  106.     }

  107.     /**
  108.      * Compute target position-velocity-acceleration vector via interpolation.
  109.      * @param pvProv PV provider
  110.      * @param date date
  111.      * @param frame frame
  112.      * @return target position-velocity-acceleration
  113.      */
  114.     public TimeStampedPVCoordinates getTargetPVViaInterpolation(final PVCoordinatesProvider pvProv,
  115.                                                                 final AbsoluteDate date, final Frame frame) {

  116.         // transform from specified reference frame to body frame
  117.         final Transform refToBody = frame.getTransformTo(shape.getBodyFrame(), date);

  118.         // sample intersection points in current date neighborhood
  119.         final double h  = 0.01;
  120.         final List<TimeStampedPVCoordinates> sample = new ArrayList<>();
  121.         sample.add(nadirRef(pvProv.getPVCoordinates(date.shiftedBy(-2 * h), frame), refToBody.staticShiftedBy(-2 * h)));
  122.         sample.add(nadirRef(pvProv.getPVCoordinates(date.shiftedBy(-h),     frame), refToBody.staticShiftedBy(-h)));
  123.         sample.add(nadirRef(pvProv.getPVCoordinates(date,                   frame), refToBody));
  124.         sample.add(nadirRef(pvProv.getPVCoordinates(date.shiftedBy(+h),     frame), refToBody.staticShiftedBy(+h)));
  125.         sample.add(nadirRef(pvProv.getPVCoordinates(date.shiftedBy(+2 * h), frame), refToBody.staticShiftedBy(+2 * h)));

  126.         // create interpolator
  127.         final TimeInterpolator<TimeStampedPVCoordinates> interpolator =
  128.                 new TimeStampedPVCoordinatesHermiteInterpolator(sample.size(), CartesianDerivativesFilter.USE_P);

  129.         // use interpolation to compute properly the time-derivatives
  130.         return interpolator.interpolate(date, sample);

  131.     }

  132.     /** {@inheritDoc} */
  133.     @Override
  134.     protected Vector3D getTargetPosition(final PVCoordinatesProvider pvProv, final AbsoluteDate date, final Frame frame) {

  135.         // transform from specified reference frame to body frame
  136.         final Vector3D position = pvProv.getPosition(date, frame);
  137.         final PVCoordinates pVWithoutDerivatives = new PVCoordinates(position);
  138.         final StaticTransform refToBody = frame.getStaticTransformTo(shape.getBodyFrame(), date);

  139.         return nadirRef(new TimeStampedPVCoordinates(date, pVWithoutDerivatives), refToBody).getPosition();
  140.     }

  141.     /** {@inheritDoc} */
  142.     @Override
  143.     public <T extends CalculusFieldElement<T>> TimeStampedFieldPVCoordinates<T> getTargetPV(final FieldPVCoordinatesProvider<T> pvProv,
  144.                                                                                             final FieldAbsoluteDate<T> date,
  145.                                                                                             final Frame frame) {

  146.         final TimeStampedFieldPVCoordinates<T> pvCoordinatesInRef = pvProv.getPVCoordinates(date, frame);
  147.         final Field<T> field = date.getField();
  148.         if (pvCoordinatesInRef.getAcceleration().equals(FieldVector3D.getZero(field))) {
  149.             // let us assume that there is no proper acceleration available, so need to use interpolation for derivatives
  150.             return getTargetPVViaInterpolation(pvProv, date, frame);

  151.         } else {  // use automatic differentiation
  152.             // build time dependent transform
  153.             final FieldUnivariateDerivative2Field<T> ud2Field = FieldUnivariateDerivative2Field.getUnivariateDerivative2Field(field);
  154.             final FieldAbsoluteDate<FieldUnivariateDerivative2<T>> ud2Date = date.toFUD2Field();
  155.             final FieldStaticTransform<FieldUnivariateDerivative2<T>> refToBody = frame.getStaticTransformTo(shape.getBodyFrame(), ud2Date);

  156.             final FieldVector3D<FieldUnivariateDerivative2<T>> positionInRefFrame = pvCoordinatesInRef.toUnivariateDerivative2Vector();
  157.             final FieldVector3D<FieldUnivariateDerivative2<T>> positionInBodyFrame = refToBody.transformPosition(positionInRefFrame);

  158.             // satellite position in geodetic coordinates
  159.             final FieldGeodeticPoint<FieldUnivariateDerivative2<T>> gpSat = shape.transform(positionInBodyFrame, getBodyFrame(), ud2Date);

  160.             // nadir position in geodetic coordinates
  161.             final FieldGeodeticPoint<FieldUnivariateDerivative2<T>> gpNadir = new FieldGeodeticPoint<>(gpSat.getLatitude(),
  162.                     gpSat.getLongitude(), ud2Field.getZero());

  163.             // nadir point position in body frame
  164.             final FieldVector3D<FieldUnivariateDerivative2<T>> positionNadirInBodyFrame = shape.transform(gpNadir);

  165.             // nadir point position in reference frame
  166.             final FieldStaticTransform<FieldUnivariateDerivative2<T>> bodyToRef = refToBody.getInverse();
  167.             final FieldVector3D<FieldUnivariateDerivative2<T>> positionNadirInRefFrame = bodyToRef.transformPosition(positionNadirInBodyFrame);

  168.             // put derivatives into proper object
  169.             final FieldVector3D<T> position = new FieldVector3D<>(positionNadirInRefFrame.getX().getValue(),
  170.                     positionNadirInRefFrame.getY().getValue(), positionNadirInRefFrame.getZ().getValue());
  171.             final FieldVector3D<T> velocity = new FieldVector3D<>(positionNadirInRefFrame.getX().getFirstDerivative(),
  172.                     positionNadirInRefFrame.getY().getFirstDerivative(), positionNadirInRefFrame.getZ().getFirstDerivative());
  173.             final FieldVector3D<T> acceleration = new FieldVector3D<>(positionNadirInRefFrame.getX().getSecondDerivative(),
  174.                     positionNadirInRefFrame.getY().getSecondDerivative(), positionNadirInRefFrame.getZ().getSecondDerivative());
  175.             return new TimeStampedFieldPVCoordinates<>(date, position, velocity, acceleration);
  176.         }

  177.     }

  178.     /**
  179.      * Compute target position-velocity-acceleration vector via interpolation (Field version).
  180.      * @param pvProv PV provider
  181.      * @param date date
  182.      * @param frame frame
  183.      * @param <T> field type
  184.      * @return target position-velocity-acceleration
  185.      */
  186.     public <T extends CalculusFieldElement<T>> TimeStampedFieldPVCoordinates<T> getTargetPVViaInterpolation(final FieldPVCoordinatesProvider<T> pvProv,
  187.                                                                                                             final FieldAbsoluteDate<T> date, final Frame frame) {

  188.         // zero
  189.         final T zero = date.getField().getZero();

  190.         // transform from specified reference frame to body frame
  191.         final FieldTransform<T> refToBody = frame.getTransformTo(shape.getBodyFrame(), date);

  192.         // sample intersection points in current date neighborhood
  193.         final double h  = 0.01;
  194.         final List<TimeStampedFieldPVCoordinates<T>> sample = new ArrayList<>();
  195.         sample.add(nadirRef(pvProv.getPVCoordinates(date.shiftedBy(-2 * h), frame), refToBody.staticShiftedBy(zero.newInstance(-2 * h))));
  196.         sample.add(nadirRef(pvProv.getPVCoordinates(date.shiftedBy(-h),     frame), refToBody.staticShiftedBy(zero.newInstance(-h))));
  197.         sample.add(nadirRef(pvProv.getPVCoordinates(date,                   frame), refToBody));
  198.         sample.add(nadirRef(pvProv.getPVCoordinates(date.shiftedBy(+h),     frame), refToBody.staticShiftedBy(zero.newInstance(+h))));
  199.         sample.add(nadirRef(pvProv.getPVCoordinates(date.shiftedBy(+2 * h), frame), refToBody.staticShiftedBy(zero.newInstance(+2 * h))));

  200.         // create interpolator
  201.         final FieldTimeInterpolator<TimeStampedFieldPVCoordinates<T>, T> interpolator =
  202.                 new TimeStampedFieldPVCoordinatesHermiteInterpolator<>(sample.size(), CartesianDerivativesFilter.USE_P);

  203.         // use interpolation to compute properly the time-derivatives
  204.         return interpolator.interpolate(date, sample);

  205.     }

  206.     /** {@inheritDoc} */
  207.     @Override
  208.     protected <T extends CalculusFieldElement<T>> FieldVector3D<T> getTargetPosition(final FieldPVCoordinatesProvider<T> pvProv,
  209.                                                                                      final FieldAbsoluteDate<T> date,
  210.                                                                                      final Frame frame) {

  211.         // transform from specified reference frame to body frame
  212.         final FieldVector3D<T> position = pvProv.getPosition(date, frame);
  213.         final FieldPVCoordinates<T> pVWithoutDerivatives = new FieldPVCoordinates<>(position, FieldVector3D.getZero(date.getField()));
  214.         final FieldStaticTransform<T> refToBody = frame.getStaticTransformTo(shape.getBodyFrame(), date);

  215.         return nadirRef(new TimeStampedFieldPVCoordinates<>(date, pVWithoutDerivatives), refToBody).getPosition();

  216.     }

  217.     /** Compute ground point in nadir direction, in reference frame.
  218.      * @param scRef spacecraft coordinates in reference frame
  219.      * @param refToBody transform from reference frame to body frame
  220.      * @return intersection point in body frame (only the position is set!)
  221.      */
  222.     private TimeStampedPVCoordinates nadirRef(final TimeStampedPVCoordinates scRef,
  223.                                               final StaticTransform refToBody) {

  224.         final Vector3D satInBodyFrame = refToBody.transformPosition(scRef.getPosition());

  225.         // satellite position in geodetic coordinates
  226.         final GeodeticPoint gpSat = shape.transform(satInBodyFrame, getBodyFrame(), scRef.getDate());

  227.         // nadir position in geodetic coordinates
  228.         final GeodeticPoint gpNadir = new GeodeticPoint(gpSat.getLatitude(), gpSat.getLongitude(), 0.0);

  229.         // nadir point position in body frame
  230.         final Vector3D pNadirBody = shape.transform(gpNadir);

  231.         // nadir point position in reference frame
  232.         final Vector3D pNadirRef = refToBody.getInverse().transformPosition(pNadirBody);

  233.         return new TimeStampedPVCoordinates(scRef.getDate(), pNadirRef, Vector3D.ZERO, Vector3D.ZERO);

  234.     }

  235.     /** Compute ground point in nadir direction, in reference frame.
  236.      * @param scRef spacecraft coordinates in reference frame
  237.      * @param refToBody transform from reference frame to body frame
  238.      * @param <T> type of the field elements
  239.      * @return intersection point in body frame (only the position is set!)
  240.      * @since 9.0
  241.      */
  242.     private <T extends CalculusFieldElement<T>> TimeStampedFieldPVCoordinates<T> nadirRef(final TimeStampedFieldPVCoordinates<T> scRef,
  243.                                                                                           final FieldStaticTransform<T> refToBody) {

  244.         final FieldVector3D<T> satInBodyFrame = refToBody.transformPosition(scRef.getPosition());

  245.         // satellite position in geodetic coordinates
  246.         final FieldGeodeticPoint<T> gpSat = shape.transform(satInBodyFrame, getBodyFrame(), scRef.getDate());

  247.         // nadir position in geodetic coordinates
  248.         final FieldGeodeticPoint<T> gpNadir = new FieldGeodeticPoint<>(gpSat.getLatitude(), gpSat.getLongitude(),
  249.                                                                        gpSat.getAltitude().getField().getZero());

  250.         // nadir point position in body frame
  251.         final FieldVector3D<T> pNadirBody = shape.transform(gpNadir);

  252.         // nadir point position in reference frame
  253.         final FieldVector3D<T> pNadirRef = refToBody.getInverse().transformPosition(pNadirBody);

  254.         final FieldVector3D<T> zero = FieldVector3D.getZero(gpSat.getAltitude().getField());
  255.         return new TimeStampedFieldPVCoordinates<>(scRef.getDate(), pNadirRef, zero, zero);

  256.     }

  257. }