TimeStampedFieldAngularCoordinates.java
- /* Copyright 2002-2025 CS GROUP
- * Licensed to CS GROUP (CS) under one or more
- * contributor license agreements. See the NOTICE file distributed with
- * this work for additional information regarding copyright ownership.
- * CS licenses this file to You under the Apache License, Version 2.0
- * (the "License"); you may not use this file except in compliance with
- * the License. You may obtain a copy of the License at
- *
- * http://www.apache.org/licenses/LICENSE-2.0
- *
- * Unless required by applicable law or agreed to in writing, software
- * distributed under the License is distributed on an "AS IS" BASIS,
- * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- * See the License for the specific language governing permissions and
- * limitations under the License.
- */
- package org.orekit.utils;
- import org.hipparchus.Field;
- import org.hipparchus.CalculusFieldElement;
- import org.hipparchus.analysis.differentiation.FieldDerivative;
- import org.hipparchus.analysis.differentiation.FieldDerivativeStructure;
- import org.hipparchus.geometry.euclidean.threed.FieldRotation;
- import org.hipparchus.geometry.euclidean.threed.FieldVector3D;
- import org.hipparchus.geometry.euclidean.threed.RotationConvention;
- import org.orekit.time.AbsoluteDate;
- import org.orekit.time.FieldAbsoluteDate;
- import org.orekit.time.FieldTimeStamped;
- import org.orekit.time.TimeStamped;
- /** {@link TimeStamped time-stamped} version of {@link FieldAngularCoordinates}.
- * <p>Instances of this class are guaranteed to be immutable.</p>
- * @param <T> the type of the field elements
- * @author Luc Maisonobe
- * @since 7.0
- */
- public class TimeStampedFieldAngularCoordinates<T extends CalculusFieldElement<T>>
- extends FieldAngularCoordinates<T> implements FieldTimeStamped<T> {
- /** The date. */
- private final FieldAbsoluteDate<T> date;
- /** Build the rotation that transforms a pair of pv coordinates into another pair.
- * <p><em>WARNING</em>! This method requires much more stringent assumptions on
- * its parameters than the similar {@link org.hipparchus.geometry.euclidean.threed.Rotation#Rotation(
- * org.hipparchus.geometry.euclidean.threed.Vector3D, org.hipparchus.geometry.euclidean.threed.Vector3D,
- * org.hipparchus.geometry.euclidean.threed.Vector3D, org.hipparchus.geometry.euclidean.threed.Vector3D)
- * constructor} from the {@link org.hipparchus.geometry.euclidean.threed.Rotation Rotation} class.
- * As far as the Rotation constructor is concerned, the {@code v₂} vector from
- * the second pair can be slightly misaligned. The Rotation constructor will
- * compensate for this misalignment and create a rotation that ensure {@code
- * v₁ = r(u₁)} and {@code v₂ ∈ plane (r(u₁), r(u₂))}. <em>THIS IS NOT
- * TRUE ANYMORE IN THIS CLASS</em>! As derivatives are involved and must be
- * preserved, this constructor works <em>only</em> if the two pairs are fully
- * consistent, i.e. if a rotation exists that fulfill all the requirements: {@code
- * v₁ = r(u₁)}, {@code v₂ = r(u₂)}, {@code dv₁/dt = dr(u₁)/dt}, {@code dv₂/dt
- * = dr(u₂)/dt}, {@code d²v₁/dt² = d²r(u₁)/dt²}, {@code d²v₂/dt² = d²r(u₂)/dt²}.</p>
- * @param date coordinates date
- * @param u1 first vector of the origin pair
- * @param u2 second vector of the origin pair
- * @param v1 desired image of u1 by the rotation
- * @param v2 desired image of u2 by the rotation
- * @param tolerance relative tolerance factor used to check singularities
- */
- public TimeStampedFieldAngularCoordinates (final AbsoluteDate date,
- final FieldPVCoordinates<T> u1, final FieldPVCoordinates<T> u2,
- final FieldPVCoordinates<T> v1, final FieldPVCoordinates<T> v2,
- final double tolerance) {
- this(new FieldAbsoluteDate<>(u1.getPosition().getX().getField(), date),
- u1, u2, v1, v2, tolerance);
- }
- /** Build the rotation that transforms a pair of pv coordinates into another pair.
- * <p><em>WARNING</em>! This method requires much more stringent assumptions on
- * its parameters than the similar {@link org.hipparchus.geometry.euclidean.threed.Rotation#Rotation(
- * org.hipparchus.geometry.euclidean.threed.Vector3D, org.hipparchus.geometry.euclidean.threed.Vector3D,
- * org.hipparchus.geometry.euclidean.threed.Vector3D, org.hipparchus.geometry.euclidean.threed.Vector3D)
- * constructor} from the {@link org.hipparchus.geometry.euclidean.threed.Rotation Rotation} class.
- * As far as the Rotation constructor is concerned, the {@code v₂} vector from
- * the second pair can be slightly misaligned. The Rotation constructor will
- * compensate for this misalignment and create a rotation that ensure {@code
- * v₁ = r(u₁)} and {@code v₂ ∈ plane (r(u₁), r(u₂))}. <em>THIS IS NOT
- * TRUE ANYMORE IN THIS CLASS</em>! As derivatives are involved and must be
- * preserved, this constructor works <em>only</em> if the two pairs are fully
- * consistent, i.e. if a rotation exists that fulfill all the requirements: {@code
- * v₁ = r(u₁)}, {@code v₂ = r(u₂)}, {@code dv₁/dt = dr(u₁)/dt}, {@code dv₂/dt
- * = dr(u₂)/dt}, {@code d²v₁/dt² = d²r(u₁)/dt²}, {@code d²v₂/dt² = d²r(u₂)/dt²}.</p>
- * @param date coordinates date
- * @param u1 first vector of the origin pair
- * @param u2 second vector of the origin pair
- * @param v1 desired image of u1 by the rotation
- * @param v2 desired image of u2 by the rotation
- * @param tolerance relative tolerance factor used to check singularities
- */
- public TimeStampedFieldAngularCoordinates (final FieldAbsoluteDate<T> date,
- final FieldPVCoordinates<T> u1, final FieldPVCoordinates<T> u2,
- final FieldPVCoordinates<T> v1, final FieldPVCoordinates<T> v2,
- final double tolerance) {
- super(u1, u2, v1, v2, tolerance);
- this.date = date;
- }
- /** Builds a rotation/rotation rate pair.
- * @param date coordinates date
- * @param rotation rotation
- * @param rotationRate rotation rate Ω (rad/s)
- * @param rotationAcceleration rotation acceleration dΩ/dt (rad²/s²)
- */
- public TimeStampedFieldAngularCoordinates(final AbsoluteDate date,
- final FieldRotation<T> rotation,
- final FieldVector3D<T> rotationRate,
- final FieldVector3D<T> rotationAcceleration) {
- this(new FieldAbsoluteDate<>(rotation.getQ0().getField(), date),
- rotation, rotationRate, rotationAcceleration);
- }
- /** Builds a rotation/rotation rate pair.
- * @param date coordinates date
- * @param rotation rotation
- * @param rotationRate rotation rate Ω (rad/s)
- * @param rotationAcceleration rotation acceleration dΩ/dt (rad²/s²)
- */
- public TimeStampedFieldAngularCoordinates(final FieldAbsoluteDate<T> date,
- final FieldRotation<T> rotation,
- final FieldVector3D<T> rotationRate,
- final FieldVector3D<T> rotationAcceleration) {
- super(rotation, rotationRate, rotationAcceleration);
- this.date = date;
- }
- /** Builds an instance for a regular {@link TimeStampedAngularCoordinates}.
- * @param field fields to which the elements belong
- * @param ac coordinates to convert
- * @since 9.0
- */
- public TimeStampedFieldAngularCoordinates(final Field<T> field,
- final TimeStampedAngularCoordinates ac) {
- this(new FieldAbsoluteDate<>(field, ac.getDate()),
- new FieldRotation<>(field, ac.getRotation()),
- new FieldVector3D<>(field, ac.getRotationRate()),
- new FieldVector3D<>(field, ac.getRotationAcceleration()));
- }
- /** Builds a TimeStampedFieldAngularCoordinates from a {@link FieldRotation}<{@link FieldDerivativeStructure}>.
- * <p>
- * The rotation components must have time as their only derivation parameter and
- * have consistent derivation orders.
- * </p>
- * @param date coordinates date
- * @param r rotation with time-derivatives embedded within the coordinates
- * @param <U> type of the derivative
- * @since 9.2
- */
- public <U extends FieldDerivative<T, U>> TimeStampedFieldAngularCoordinates(final FieldAbsoluteDate<T> date,
- final FieldRotation<U> r) {
- super(r);
- this.date = date;
- }
- /** Revert a rotation/rotation rate pair.
- * Build a pair which reverse the effect of another pair.
- * @return a new pair whose effect is the reverse of the effect
- * of the instance
- */
- public TimeStampedFieldAngularCoordinates<T> revert() {
- return new TimeStampedFieldAngularCoordinates<>(date,
- getRotation().revert(),
- getRotation().applyInverseTo(getRotationRate().negate()),
- getRotation().applyInverseTo(getRotationAcceleration().negate()));
- }
- /** {@inheritDoc} */
- @Override
- public FieldAbsoluteDate<T> getDate() {
- return date;
- }
- /** Get a time-shifted state.
- * <p>
- * The state can be slightly shifted to close dates. This shift is based on
- * a simple linear model. It is <em>not</em> intended as a replacement for
- * proper attitude propagation but should be sufficient for either small
- * time shifts or coarse accuracy.
- * </p>
- * @param dt time shift in seconds
- * @return a new state, shifted with respect to the instance (which is immutable)
- */
- public TimeStampedFieldAngularCoordinates<T> shiftedBy(final double dt) {
- return shiftedBy(getDate().getField().getZero().newInstance(dt));
- }
- /** Get a time-shifted state.
- * <p>
- * The state can be slightly shifted to close dates. This shift is based on
- * a simple linear model. It is <em>not</em> intended as a replacement for
- * proper attitude propagation but should be sufficient for either small
- * time shifts or coarse accuracy.
- * </p>
- * @param dt time shift in seconds
- * @return a new state, shifted with respect to the instance (which is immutable)
- */
- public TimeStampedFieldAngularCoordinates<T> shiftedBy(final T dt) {
- final FieldAngularCoordinates<T> sac = super.shiftedBy(dt);
- return new TimeStampedFieldAngularCoordinates<>(date.shiftedBy(dt),
- sac.getRotation(), sac.getRotationRate(), sac.getRotationAcceleration());
- }
- /** Add an offset from the instance.
- * <p>
- * We consider here that the offset rotation is applied first and the
- * instance is applied afterward. Note that angular coordinates do <em>not</em>
- * commute under this operation, i.e. {@code a.addOffset(b)} and {@code
- * b.addOffset(a)} lead to <em>different</em> results in most cases.
- * </p>
- * <p>
- * The two methods {@link #addOffset(FieldAngularCoordinates) addOffset} and
- * {@link #subtractOffset(FieldAngularCoordinates) subtractOffset} are designed
- * so that round trip applications are possible. This means that both {@code
- * ac1.subtractOffset(ac2).addOffset(ac2)} and {@code
- * ac1.addOffset(ac2).subtractOffset(ac2)} return angular coordinates equal to ac1.
- * </p>
- * @param offset offset to subtract
- * @return new instance, with offset subtracted
- * @see #subtractOffset(FieldAngularCoordinates)
- */
- public TimeStampedFieldAngularCoordinates<T> addOffset(final FieldAngularCoordinates<T> offset) {
- final FieldVector3D<T> rOmega = getRotation().applyTo(offset.getRotationRate());
- final FieldVector3D<T> rOmegaDot = getRotation().applyTo(offset.getRotationAcceleration());
- return new TimeStampedFieldAngularCoordinates<>(date,
- getRotation().compose(offset.getRotation(), RotationConvention.VECTOR_OPERATOR),
- getRotationRate().add(rOmega),
- new FieldVector3D<>( 1.0, getRotationAcceleration(),
- 1.0, rOmegaDot,
- -1.0, FieldVector3D.crossProduct(getRotationRate(), rOmega)));
- }
- /** Subtract an offset from the instance.
- * <p>
- * We consider here that the offset Rotation is applied first and the
- * instance is applied afterward. Note that angular coordinates do <em>not</em>
- * commute under this operation, i.e. {@code a.subtractOffset(b)} and {@code
- * b.subtractOffset(a)} lead to <em>different</em> results in most cases.
- * </p>
- * <p>
- * The two methods {@link #addOffset(FieldAngularCoordinates) addOffset} and
- * {@link #subtractOffset(FieldAngularCoordinates) subtractOffset} are designed
- * so that round trip applications are possible. This means that both {@code
- * ac1.subtractOffset(ac2).addOffset(ac2)} and {@code
- * ac1.addOffset(ac2).subtractOffset(ac2)} return angular coordinates equal to ac1.
- * </p>
- * @param offset offset to subtract
- * @return new instance, with offset subtracted
- * @see #addOffset(FieldAngularCoordinates)
- */
- public TimeStampedFieldAngularCoordinates<T> subtractOffset(final FieldAngularCoordinates<T> offset) {
- return addOffset(offset.revert());
- }
- }