TimeStampedAngularCoordinatesHermiteInterpolator.java
- /* Copyright 2002-2025 CS GROUP
- * Licensed to CS GROUP (CS) under one or more
- * contributor license agreements. See the NOTICE file distributed with
- * this work for additional information regarding copyright ownership.
- * CS licenses this file to You under the Apache License, Version 2.0
- * (the "License"); you may not use this file except in compliance with
- * the License. You may obtain a copy of the License at
- *
- * http://www.apache.org/licenses/LICENSE-2.0
- *
- * Unless required by applicable law or agreed to in writing, software
- * distributed under the License is distributed on an "AS IS" BASIS,
- * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- * See the License for the specific language governing permissions and
- * limitations under the License.
- */
- package org.orekit.utils;
- import org.hipparchus.analysis.interpolation.HermiteInterpolator;
- import org.hipparchus.geometry.euclidean.threed.Rotation;
- import org.hipparchus.geometry.euclidean.threed.RotationConvention;
- import org.hipparchus.geometry.euclidean.threed.Vector3D;
- import org.hipparchus.util.FastMath;
- import org.hipparchus.util.MathArrays;
- import org.orekit.errors.OrekitInternalError;
- import org.orekit.time.AbsoluteDate;
- import org.orekit.time.AbstractTimeInterpolator;
- import java.util.List;
- /**
- * Class using Hermite interpolator to interpolate time stamped angular coordinates.
- * <p>
- * As this implementation of interpolation is polynomial, it should be used only with small number of interpolation points
- * (about 10-20 points) in order to avoid <a href="http://en.wikipedia.org/wiki/Runge%27s_phenomenon">Runge's phenomenon</a>
- * and numerical problems (including NaN appearing).
- *
- * @author Vincent Cucchietti
- * @author Luc Maisonobe
- * @see HermiteInterpolator
- * @see TimeStampedAngularCoordinates
- */
- public class TimeStampedAngularCoordinatesHermiteInterpolator
- extends AbstractTimeInterpolator<TimeStampedAngularCoordinates> {
- /** Filter for derivatives from the sample to use in interpolation. */
- private final AngularDerivativesFilter filter;
- /**
- * Constructor with :
- * <ul>
- * <li>Default number of interpolation points of {@code DEFAULT_INTERPOLATION_POINTS}</li>
- * <li>Default extrapolation threshold value ({@code DEFAULT_EXTRAPOLATION_THRESHOLD_SEC} s)</li>
- * <li>Use of angular and first time derivative for attitude interpolation</li>
- * </ul>
- * As this implementation of interpolation is polynomial, it should be used only with small number of interpolation
- * points (about 10-20 points) in order to avoid <a href="http://en.wikipedia.org/wiki/Runge%27s_phenomenon">Runge's
- * phenomenon</a> and numerical problems (including NaN appearing).
- */
- public TimeStampedAngularCoordinatesHermiteInterpolator() {
- this(DEFAULT_INTERPOLATION_POINTS);
- }
- /**
- * /** Constructor with :
- * <ul>
- * <li>Default extrapolation threshold value ({@code DEFAULT_EXTRAPOLATION_THRESHOLD_SEC} s)</li>
- * <li>Use of angular and first time derivative for attitude interpolation</li>
- * </ul>
- * As this implementation of interpolation is polynomial, it should be used only with small number of interpolation
- * points (about 10-20 points) in order to avoid <a href="http://en.wikipedia.org/wiki/Runge%27s_phenomenon">Runge's
- * phenomenon</a> and numerical problems (including NaN appearing).
- *
- * @param interpolationPoints number of interpolation points
- */
- public TimeStampedAngularCoordinatesHermiteInterpolator(final int interpolationPoints) {
- this(interpolationPoints, AngularDerivativesFilter.USE_RR);
- }
- /**
- * Constructor with :
- * <ul>
- * <li>Default extrapolation threshold value ({@code DEFAULT_EXTRAPOLATION_THRESHOLD_SEC} s)</li>
- * </ul>
- * As this implementation of interpolation is polynomial, it should be used only with small number of interpolation
- * points (about 10-20 points) in order to avoid <a href="http://en.wikipedia.org/wiki/Runge%27s_phenomenon">Runge's
- * phenomenon</a> and numerical problems (including NaN appearing).
- *
- * @param interpolationPoints number of interpolation points
- * @param filter filter for derivatives from the sample to use in interpolation
- */
- public TimeStampedAngularCoordinatesHermiteInterpolator(final int interpolationPoints,
- final AngularDerivativesFilter filter) {
- this(interpolationPoints, DEFAULT_EXTRAPOLATION_THRESHOLD_SEC, filter);
- }
- /**
- * Constructor.
- * <p>
- * As this implementation of interpolation is polynomial, it should be used only with small number of interpolation
- * points (about 10-20 points) in order to avoid <a href="http://en.wikipedia.org/wiki/Runge%27s_phenomenon">Runge's
- * phenomenon</a> and numerical problems (including NaN appearing).
- *
- * @param interpolationPoints number of interpolation points
- * @param extrapolationThreshold extrapolation threshold beyond which the propagation will fail
- * @param filter filter for derivatives from the sample to use in interpolation
- */
- public TimeStampedAngularCoordinatesHermiteInterpolator(final int interpolationPoints,
- final double extrapolationThreshold,
- final AngularDerivativesFilter filter) {
- super(interpolationPoints, extrapolationThreshold);
- this.filter = filter;
- }
- /** Get filter for derivatives from the sample to use in interpolation.
- * @return filter for derivatives from the sample to use in interpolation
- */
- public AngularDerivativesFilter getFilter() {
- return filter;
- }
- /**
- * {@inheritDoc}
- * <p>
- * The interpolated instance is created by polynomial Hermite interpolation on Rodrigues vector ensuring rotation rate
- * remains the exact derivative of rotation.
- * <p>
- * This method is based on Sergei Tanygin's paper <a
- * href="http://www.agi.com/resources/white-papers/attitude-interpolation">Attitude Interpolation</a>, changing the norm
- * of the vector to match the modified Rodrigues vector as described in Malcolm D. Shuster's paper <a
- * href="http://www.ladispe.polito.it/corsi/Meccatronica/02JHCOR/2011-12/Slides/Shuster_Pub_1993h_J_Repsurv_scan.pdf">A
- * Survey of Attitude Representations</a>. This change avoids the singularity at π. There is still a singularity at 2π,
- * which is handled by slightly offsetting all rotations when this singularity is detected. Another change is that the
- * mean linear motion is first removed before interpolation and added back after interpolation. This allows to use
- * interpolation even when the sample covers much more than one turn and even when sample points are separated by more
- * than one turn.
- * </p>
- * <p>
- * Note that even if first and second time derivatives (rotation rates and acceleration) from sample can be ignored, the
- * interpolated instance always includes interpolated derivatives. This feature can be used explicitly to compute these
- * derivatives when it would be too complex to compute them from an analytical formula: just compute a few sample points
- * from the explicit formula and set the derivatives to zero in these sample points, then use interpolation to add
- * derivatives consistent with the rotations.
- */
- @Override
- protected TimeStampedAngularCoordinates interpolate(final InterpolationData interpolationData) {
- // Get date
- final AbsoluteDate date = interpolationData.getInterpolationDate();
- // Get sample
- final List<TimeStampedAngularCoordinates> sample = interpolationData.getNeighborList();
- // set up safety elements for 2π singularity avoidance
- final double epsilon = 2 * FastMath.PI / sample.size();
- final double threshold = FastMath.min(-(1.0 - 1.0e-4), -FastMath.cos(epsilon / 4));
- // set up a linear model canceling mean rotation rate
- final Vector3D meanRate;
- Vector3D sum = Vector3D.ZERO;
- if (filter != AngularDerivativesFilter.USE_R) {
- for (final TimeStampedAngularCoordinates datedAC : sample) {
- sum = sum.add(datedAC.getRotationRate());
- }
- meanRate = new Vector3D(1.0 / sample.size(), sum);
- }
- else {
- TimeStampedAngularCoordinates previous = null;
- for (final TimeStampedAngularCoordinates datedAC : sample) {
- if (previous != null) {
- sum = sum.add(TimeStampedAngularCoordinates.estimateRate(previous.getRotation(), datedAC.getRotation(),
- datedAC.getDate()
- .durationFrom(previous.getDate())));
- }
- previous = datedAC;
- }
- meanRate = new Vector3D(1.0 / (sample.size() - 1), sum);
- }
- TimeStampedAngularCoordinates offset =
- new TimeStampedAngularCoordinates(date, Rotation.IDENTITY, meanRate, Vector3D.ZERO);
- boolean restart = true;
- for (int i = 0; restart && i < sample.size() + 2; ++i) {
- // offset adaptation parameters
- restart = false;
- // set up an interpolator taking derivatives into account
- final HermiteInterpolator interpolator = new HermiteInterpolator();
- // add sample points
- double sign = 1.0;
- Rotation previous = Rotation.IDENTITY;
- for (final TimeStampedAngularCoordinates ac : sample) {
- // remove linear offset from the current coordinates
- final double dt = ac.getDate().durationFrom(date);
- final TimeStampedAngularCoordinates fixed = ac.subtractOffset(offset.shiftedBy(dt));
- // make sure all interpolated points will be on the same branch
- final double dot = MathArrays.linearCombination(fixed.getRotation().getQ0(), previous.getQ0(),
- fixed.getRotation().getQ1(), previous.getQ1(),
- fixed.getRotation().getQ2(), previous.getQ2(),
- fixed.getRotation().getQ3(), previous.getQ3());
- sign = FastMath.copySign(1.0, dot * sign);
- previous = fixed.getRotation();
- // check modified Rodrigues vector singularity
- if (fixed.getRotation().getQ0() * sign < threshold) {
- // the sample point is close to a modified Rodrigues vector singularity
- // we need to change the linear offset model to avoid this
- restart = true;
- break;
- }
- final double[][] rodrigues = fixed.getModifiedRodrigues(sign);
- switch (filter) {
- case USE_RRA:
- // populate sample with rotation, rotation rate and acceleration data
- interpolator.addSamplePoint(dt, rodrigues[0], rodrigues[1], rodrigues[2]);
- break;
- case USE_RR:
- // populate sample with rotation and rotation rate data
- interpolator.addSamplePoint(dt, rodrigues[0], rodrigues[1]);
- break;
- case USE_R:
- // populate sample with rotation data only
- interpolator.addSamplePoint(dt, rodrigues[0]);
- break;
- default:
- // this should never happen
- throw new OrekitInternalError(null);
- }
- }
- if (restart) {
- // interpolation failed, some intermediate rotation was too close to 2π
- // we need to offset all rotations to avoid the singularity
- offset = offset.addOffset(new AngularCoordinates(new Rotation(Vector3D.PLUS_I,
- epsilon,
- RotationConvention.VECTOR_OPERATOR),
- Vector3D.ZERO, Vector3D.ZERO));
- }
- else {
- // interpolation succeeded with the current offset
- final double[][] p = interpolator.derivatives(0.0, 2);
- final AngularCoordinates ac = AngularCoordinates.createFromModifiedRodrigues(p);
- return new TimeStampedAngularCoordinates(offset.getDate(),
- ac.getRotation(),
- ac.getRotationRate(),
- ac.getRotationAcceleration()).addOffset(offset);
- }
- }
- // this should never happen
- throw new OrekitInternalError(null);
- }
- }