FieldPVCoordinates.java
- /* Copyright 2002-2025 CS GROUP
- * Licensed to CS GROUP (CS) under one or more
- * contributor license agreements. See the NOTICE file distributed with
- * this work for additional information regarding copyright ownership.
- * CS licenses this file to You under the Apache License, Version 2.0
- * (the "License"); you may not use this file except in compliance with
- * the License. You may obtain a copy of the License at
- *
- * http://www.apache.org/licenses/LICENSE-2.0
- *
- * Unless required by applicable law or agreed to in writing, software
- * distributed under the License is distributed on an "AS IS" BASIS,
- * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- * See the License for the specific language governing permissions and
- * limitations under the License.
- */
- package org.orekit.utils;
- import org.hipparchus.Field;
- import org.hipparchus.CalculusFieldElement;
- import org.hipparchus.analysis.differentiation.FDSFactory;
- import org.hipparchus.analysis.differentiation.FieldDerivative;
- import org.hipparchus.analysis.differentiation.FieldDerivativeStructure;
- import org.hipparchus.analysis.differentiation.FieldUnivariateDerivative1;
- import org.hipparchus.analysis.differentiation.FieldUnivariateDerivative2;
- import org.hipparchus.exception.MathIllegalArgumentException;
- import org.hipparchus.geometry.euclidean.threed.FieldVector3D;
- import org.hipparchus.util.FastMath;
- import org.hipparchus.util.FieldBlendable;
- import org.orekit.errors.OrekitException;
- import org.orekit.errors.OrekitMessages;
- import org.orekit.time.FieldTimeShiftable;
- /** Simple container for Position/Velocity pairs, using {@link CalculusFieldElement}.
- * <p>
- * The state can be slightly shifted to close dates. This shift is based on
- * a simple linear model. It is <em>not</em> intended as a replacement for
- * proper orbit propagation (it is not even Keplerian!) but should be sufficient
- * for either small time shifts or coarse accuracy.
- * </p>
- * <p>
- * This class is the angular counterpart to {@link FieldAngularCoordinates}.
- * </p>
- * <p>Instances of this class are guaranteed to be immutable.</p>
- * @param <T> the type of the field elements
- * @author Luc Maisonobe
- * @since 6.0
- * @see PVCoordinates
- */
- public class FieldPVCoordinates<T extends CalculusFieldElement<T>>
- implements FieldTimeShiftable<FieldPVCoordinates<T>, T>, FieldBlendable<FieldPVCoordinates<T>, T> {
- /** The position. */
- private final FieldVector3D<T> position;
- /** The velocity. */
- private final FieldVector3D<T> velocity;
- /** The acceleration. */
- private final FieldVector3D<T> acceleration;
- /** Builds a FieldPVCoordinates triplet with zero acceleration.
- * @param position the position vector (m)
- * @param velocity the velocity vector (m/s)
- */
- public FieldPVCoordinates(final FieldVector3D<T> position, final FieldVector3D<T> velocity) {
- this.position = position;
- this.velocity = velocity;
- final T zero = position.getX().getField().getZero();
- this.acceleration = new FieldVector3D<>(zero, zero, zero);
- }
- /** Builds a FieldPVCoordinates triplet.
- * @param position the position vector (m)
- * @param velocity the velocity vector (m/s)
- * @param acceleration the acceleration vector (m/s²)
- */
- public FieldPVCoordinates(final FieldVector3D<T> position, final FieldVector3D<T> velocity,
- final FieldVector3D<T> acceleration) {
- this.position = position;
- this.velocity = velocity;
- this.acceleration = acceleration;
- }
- /** Builds a FieldPVCoordinates from a field and a regular PVCoordinates.
- * @param field field for the components
- * @param pv PVCoordinates triplet to convert
- */
- public FieldPVCoordinates(final Field<T> field, final PVCoordinates pv) {
- this.position = new FieldVector3D<>(field, pv.getPosition());
- this.velocity = new FieldVector3D<>(field, pv.getVelocity());
- this.acceleration = new FieldVector3D<>(field, pv.getAcceleration());
- }
- /** Multiplicative constructor.
- * <p>Build a PVCoordinates from another one and a scale factor.</p>
- * <p>The PVCoordinates built will be a * pv</p>
- * @param a scale factor
- * @param pv base (unscaled) PVCoordinates
- */
- public FieldPVCoordinates(final double a, final FieldPVCoordinates<T> pv) {
- position = new FieldVector3D<>(a, pv.position);
- velocity = new FieldVector3D<>(a, pv.velocity);
- acceleration = new FieldVector3D<>(a, pv.acceleration);
- }
- /** Multiplicative constructor.
- * <p>Build a PVCoordinates from another one and a scale factor.</p>
- * <p>The PVCoordinates built will be a * pv</p>
- * @param a scale factor
- * @param pv base (unscaled) PVCoordinates
- */
- public FieldPVCoordinates(final T a, final FieldPVCoordinates<T> pv) {
- position = new FieldVector3D<>(a, pv.position);
- velocity = new FieldVector3D<>(a, pv.velocity);
- acceleration = new FieldVector3D<>(a, pv.acceleration);
- }
- /** Multiplicative constructor.
- * <p>Build a PVCoordinates from another one and a scale factor.</p>
- * <p>The PVCoordinates built will be a * pv</p>
- * @param a scale factor
- * @param pv base (unscaled) PVCoordinates
- */
- public FieldPVCoordinates(final T a, final PVCoordinates pv) {
- position = new FieldVector3D<>(a, pv.getPosition());
- velocity = new FieldVector3D<>(a, pv.getVelocity());
- acceleration = new FieldVector3D<>(a, pv.getAcceleration());
- }
- /** Subtractive constructor.
- * <p>Build a relative PVCoordinates from a start and an end position.</p>
- * <p>The PVCoordinates built will be end - start.</p>
- * @param start Starting PVCoordinates
- * @param end ending PVCoordinates
- */
- public FieldPVCoordinates(final FieldPVCoordinates<T> start, final FieldPVCoordinates<T> end) {
- this.position = end.position.subtract(start.position);
- this.velocity = end.velocity.subtract(start.velocity);
- this.acceleration = end.acceleration.subtract(start.acceleration);
- }
- /** Linear constructor.
- * <p>Build a PVCoordinates from two other ones and corresponding scale factors.</p>
- * <p>The PVCoordinates built will be a1 * u1 + a2 * u2</p>
- * @param a1 first scale factor
- * @param pv1 first base (unscaled) PVCoordinates
- * @param a2 second scale factor
- * @param pv2 second base (unscaled) PVCoordinates
- */
- public FieldPVCoordinates(final double a1, final FieldPVCoordinates<T> pv1,
- final double a2, final FieldPVCoordinates<T> pv2) {
- position = new FieldVector3D<>(a1, pv1.position, a2, pv2.position);
- velocity = new FieldVector3D<>(a1, pv1.velocity, a2, pv2.velocity);
- acceleration = new FieldVector3D<>(a1, pv1.acceleration, a2, pv2.acceleration);
- }
- /** Linear constructor.
- * <p>Build a PVCoordinates from two other ones and corresponding scale factors.</p>
- * <p>The PVCoordinates built will be a1 * u1 + a2 * u2</p>
- * @param a1 first scale factor
- * @param pv1 first base (unscaled) PVCoordinates
- * @param a2 second scale factor
- * @param pv2 second base (unscaled) PVCoordinates
- */
- public FieldPVCoordinates(final T a1, final FieldPVCoordinates<T> pv1,
- final T a2, final FieldPVCoordinates<T> pv2) {
- position = new FieldVector3D<>(a1, pv1.position, a2, pv2.position);
- velocity = new FieldVector3D<>(a1, pv1.velocity, a2, pv2.velocity);
- acceleration = new FieldVector3D<>(a1, pv1.acceleration, a2, pv2.acceleration);
- }
- /** Linear constructor.
- * <p>Build a PVCoordinates from two other ones and corresponding scale factors.</p>
- * <p>The PVCoordinates built will be a1 * u1 + a2 * u2</p>
- * @param a1 first scale factor
- * @param pv1 first base (unscaled) PVCoordinates
- * @param a2 second scale factor
- * @param pv2 second base (unscaled) PVCoordinates
- */
- public FieldPVCoordinates(final T a1, final PVCoordinates pv1,
- final T a2, final PVCoordinates pv2) {
- position = new FieldVector3D<>(a1, pv1.getPosition(), a2, pv2.getPosition());
- velocity = new FieldVector3D<>(a1, pv1.getVelocity(), a2, pv2.getVelocity());
- acceleration = new FieldVector3D<>(a1, pv1.getAcceleration(), a2, pv2.getAcceleration());
- }
- /** Linear constructor.
- * <p>Build a PVCoordinates from three other ones and corresponding scale factors.</p>
- * <p>The PVCoordinates built will be a1 * u1 + a2 * u2 + a3 * u3</p>
- * @param a1 first scale factor
- * @param pv1 first base (unscaled) PVCoordinates
- * @param a2 second scale factor
- * @param pv2 second base (unscaled) PVCoordinates
- * @param a3 third scale factor
- * @param pv3 third base (unscaled) PVCoordinates
- */
- public FieldPVCoordinates(final double a1, final FieldPVCoordinates<T> pv1,
- final double a2, final FieldPVCoordinates<T> pv2,
- final double a3, final FieldPVCoordinates<T> pv3) {
- position = new FieldVector3D<>(a1, pv1.position, a2, pv2.position, a3, pv3.position);
- velocity = new FieldVector3D<>(a1, pv1.velocity, a2, pv2.velocity, a3, pv3.velocity);
- acceleration = new FieldVector3D<>(a1, pv1.acceleration, a2, pv2.acceleration, a3, pv3.acceleration);
- }
- /** Linear constructor.
- * <p>Build a PVCoordinates from three other ones and corresponding scale factors.</p>
- * <p>The PVCoordinates built will be a1 * u1 + a2 * u2 + a3 * u3</p>
- * @param a1 first scale factor
- * @param pv1 first base (unscaled) PVCoordinates
- * @param a2 second scale factor
- * @param pv2 second base (unscaled) PVCoordinates
- * @param a3 third scale factor
- * @param pv3 third base (unscaled) PVCoordinates
- */
- public FieldPVCoordinates(final T a1, final FieldPVCoordinates<T> pv1,
- final T a2, final FieldPVCoordinates<T> pv2,
- final T a3, final FieldPVCoordinates<T> pv3) {
- position = new FieldVector3D<>(a1, pv1.position, a2, pv2.position, a3, pv3.position);
- velocity = new FieldVector3D<>(a1, pv1.velocity, a2, pv2.velocity, a3, pv3.velocity);
- acceleration = new FieldVector3D<>(a1, pv1.acceleration, a2, pv2.acceleration, a3, pv3.acceleration);
- }
- /** Linear constructor.
- * <p>Build a PVCoordinates from three other ones and corresponding scale factors.</p>
- * <p>The PVCoordinates built will be a1 * u1 + a2 * u2 + a3 * u3</p>
- * @param a1 first scale factor
- * @param pv1 first base (unscaled) PVCoordinates
- * @param a2 second scale factor
- * @param pv2 second base (unscaled) PVCoordinates
- * @param a3 third scale factor
- * @param pv3 third base (unscaled) PVCoordinates
- */
- public FieldPVCoordinates(final T a1, final PVCoordinates pv1,
- final T a2, final PVCoordinates pv2,
- final T a3, final PVCoordinates pv3) {
- position = new FieldVector3D<>(a1, pv1.getPosition(), a2, pv2.getPosition(), a3, pv3.getPosition());
- velocity = new FieldVector3D<>(a1, pv1.getVelocity(), a2, pv2.getVelocity(), a3, pv3.getVelocity());
- acceleration = new FieldVector3D<>(a1, pv1.getAcceleration(), a2, pv2.getAcceleration(), a3, pv3.getAcceleration());
- }
- /** Linear constructor.
- * <p>Build a PVCoordinates from four other ones and corresponding scale factors.</p>
- * <p>The PVCoordinates built will be a1 * u1 + a2 * u2 + a3 * u3 + a4 * u4</p>
- * @param a1 first scale factor
- * @param pv1 first base (unscaled) PVCoordinates
- * @param a2 second scale factor
- * @param pv2 second base (unscaled) PVCoordinates
- * @param a3 third scale factor
- * @param pv3 third base (unscaled) PVCoordinates
- * @param a4 fourth scale factor
- * @param pv4 fourth base (unscaled) PVCoordinates
- */
- public FieldPVCoordinates(final double a1, final FieldPVCoordinates<T> pv1,
- final double a2, final FieldPVCoordinates<T> pv2,
- final double a3, final FieldPVCoordinates<T> pv3,
- final double a4, final FieldPVCoordinates<T> pv4) {
- position = new FieldVector3D<>(a1, pv1.position, a2, pv2.position, a3, pv3.position, a4, pv4.position);
- velocity = new FieldVector3D<>(a1, pv1.velocity, a2, pv2.velocity, a3, pv3.velocity, a4, pv4.velocity);
- acceleration = new FieldVector3D<>(a1, pv1.acceleration, a2, pv2.acceleration, a3, pv3.acceleration, a4, pv4.acceleration);
- }
- /** Linear constructor.
- * <p>Build a PVCoordinates from four other ones and corresponding scale factors.</p>
- * <p>The PVCoordinates built will be a1 * u1 + a2 * u2 + a3 * u3 + a4 * u4</p>
- * @param a1 first scale factor
- * @param pv1 first base (unscaled) PVCoordinates
- * @param a2 second scale factor
- * @param pv2 second base (unscaled) PVCoordinates
- * @param a3 third scale factor
- * @param pv3 third base (unscaled) PVCoordinates
- * @param a4 fourth scale factor
- * @param pv4 fourth base (unscaled) PVCoordinates
- */
- public FieldPVCoordinates(final T a1, final FieldPVCoordinates<T> pv1,
- final T a2, final FieldPVCoordinates<T> pv2,
- final T a3, final FieldPVCoordinates<T> pv3,
- final T a4, final FieldPVCoordinates<T> pv4) {
- position = new FieldVector3D<>(a1, pv1.position, a2, pv2.position, a3, pv3.position, a4, pv4.position);
- velocity = new FieldVector3D<>(a1, pv1.velocity, a2, pv2.velocity, a3, pv3.velocity, a4, pv4.velocity);
- acceleration = new FieldVector3D<>(a1, pv1.acceleration, a2, pv2.acceleration, a3, pv3.acceleration, a4, pv4.acceleration);
- }
- /** Linear constructor.
- * <p>Build a PVCoordinates from four other ones and corresponding scale factors.</p>
- * <p>The PVCoordinates built will be a1 * u1 + a2 * u2 + a3 * u3 + a4 * u4</p>
- * @param a1 first scale factor
- * @param pv1 first base (unscaled) PVCoordinates
- * @param a2 second scale factor
- * @param pv2 second base (unscaled) PVCoordinates
- * @param a3 third scale factor
- * @param pv3 third base (unscaled) PVCoordinates
- * @param a4 fourth scale factor
- * @param pv4 fourth base (unscaled) PVCoordinates
- */
- public FieldPVCoordinates(final T a1, final PVCoordinates pv1,
- final T a2, final PVCoordinates pv2,
- final T a3, final PVCoordinates pv3,
- final T a4, final PVCoordinates pv4) {
- position = new FieldVector3D<>(a1, pv1.getPosition(), a2, pv2.getPosition(),
- a3, pv3.getPosition(), a4, pv4.getPosition());
- velocity = new FieldVector3D<>(a1, pv1.getVelocity(), a2, pv2.getVelocity(),
- a3, pv3.getVelocity(), a4, pv4.getVelocity());
- acceleration = new FieldVector3D<>(a1, pv1.getAcceleration(), a2, pv2.getAcceleration(),
- a3, pv3.getAcceleration(), a4, pv4.getAcceleration());
- }
- /** Builds a FieldPVCoordinates triplet from a {@link FieldVector3D}<{@link FieldDerivative}>.
- * <p>
- * The vector components must have time as their only derivation parameter and
- * have consistent derivation orders.
- * </p>
- * @param p vector with time-derivatives embedded within the coordinates
- * @param <U> type of the derivative
- * @since 9.2
- */
- public <U extends FieldDerivative<T, U>> FieldPVCoordinates(final FieldVector3D<U> p) {
- position = new FieldVector3D<>(p.getX().getValue(), p.getY().getValue(), p.getZ().getValue());
- if (p.getX().getOrder() >= 1) {
- velocity = new FieldVector3D<>(p.getX().getPartialDerivative(1),
- p.getY().getPartialDerivative(1),
- p.getZ().getPartialDerivative(1));
- if (p.getX().getOrder() >= 2) {
- acceleration = new FieldVector3D<>(p.getX().getPartialDerivative(2),
- p.getY().getPartialDerivative(2),
- p.getZ().getPartialDerivative(2));
- } else {
- acceleration = FieldVector3D.getZero(position.getX().getField());
- }
- } else {
- final FieldVector3D<T> zero = FieldVector3D.getZero(position.getX().getField());
- velocity = zero;
- acceleration = zero;
- }
- }
- /** Get fixed position/velocity at origin (both p, v and a are zero vectors).
- * @param field field for the components
- * @param <T> the type of the field elements
- * @return a new fixed position/velocity at origin
- */
- public static <T extends CalculusFieldElement<T>> FieldPVCoordinates<T> getZero(final Field<T> field) {
- return new FieldPVCoordinates<>(field, PVCoordinates.ZERO);
- }
- /** Transform the instance to a {@link FieldVector3D}<{@link FieldDerivativeStructure}>.
- * <p>
- * The {@link FieldDerivativeStructure} coordinates correspond to time-derivatives up
- * to the user-specified order.
- * </p>
- * @param order derivation order for the vector components (must be either 0, 1 or 2)
- * @return vector with time-derivatives embedded within the coordinates
- * @since 9.2
- */
- public FieldVector3D<FieldDerivativeStructure<T>> toDerivativeStructureVector(final int order) {
- final FDSFactory<T> factory;
- final FieldDerivativeStructure<T> x;
- final FieldDerivativeStructure<T> y;
- final FieldDerivativeStructure<T> z;
- switch (order) {
- case 0 :
- factory = new FDSFactory<>(getPosition().getX().getField(), 1, order);
- x = factory.build(position.getX());
- y = factory.build(position.getY());
- z = factory.build(position.getZ());
- break;
- case 1 :
- factory = new FDSFactory<>(getPosition().getX().getField(), 1, order);
- x = factory.build(position.getX(), velocity.getX());
- y = factory.build(position.getY(), velocity.getY());
- z = factory.build(position.getZ(), velocity.getZ());
- break;
- case 2 :
- factory = new FDSFactory<>(getPosition().getX().getField(), 1, order);
- x = factory.build(position.getX(), velocity.getX(), acceleration.getX());
- y = factory.build(position.getY(), velocity.getY(), acceleration.getY());
- z = factory.build(position.getZ(), velocity.getZ(), acceleration.getZ());
- break;
- default :
- throw new OrekitException(OrekitMessages.OUT_OF_RANGE_DERIVATION_ORDER, order);
- }
- return new FieldVector3D<>(x, y, z);
- }
- /** Transform the instance to a {@link FieldVector3D}<{@link FieldUnivariateDerivative1}>.
- * <p>
- * The {@link FieldUnivariateDerivative1} coordinates correspond to time-derivatives up
- * to the order 1.
- * </p>
- * @return vector with time-derivatives embedded within the coordinates
- * @see #toUnivariateDerivative2Vector()
- * @since 10.2
- */
- public FieldVector3D<FieldUnivariateDerivative1<T>> toUnivariateDerivative1Vector() {
- final FieldUnivariateDerivative1<T> x = new FieldUnivariateDerivative1<>(position.getX(), velocity.getX());
- final FieldUnivariateDerivative1<T> y = new FieldUnivariateDerivative1<>(position.getY(), velocity.getY());
- final FieldUnivariateDerivative1<T> z = new FieldUnivariateDerivative1<>(position.getZ(), velocity.getZ());
- return new FieldVector3D<>(x, y, z);
- }
- /** Transform the instance to a {@link FieldVector3D}<{@link FieldUnivariateDerivative2}>.
- * <p>
- * The {@link FieldUnivariateDerivative2} coordinates correspond to time-derivatives up
- * to the order 2.
- * </p>
- * @return vector with time-derivatives embedded within the coordinates
- * @see #toUnivariateDerivative1Vector()
- * @since 10.2
- */
- public FieldVector3D<FieldUnivariateDerivative2<T>> toUnivariateDerivative2Vector() {
- final FieldUnivariateDerivative2<T> x = new FieldUnivariateDerivative2<>(position.getX(), velocity.getX(), acceleration.getX());
- final FieldUnivariateDerivative2<T> y = new FieldUnivariateDerivative2<>(position.getY(), velocity.getY(), acceleration.getY());
- final FieldUnivariateDerivative2<T> z = new FieldUnivariateDerivative2<>(position.getZ(), velocity.getZ(), acceleration.getZ());
- return new FieldVector3D<>(x, y, z);
- }
- /** Transform the instance to a {@link FieldPVCoordinates}<{@link FieldDerivativeStructure}>.
- * <p>
- * The {@link FieldDerivativeStructure} coordinates correspond to time-derivatives up
- * to the user-specified order. As both the instance components {@link #getPosition() position},
- * {@link #getVelocity() velocity} and {@link #getAcceleration() acceleration} and the
- * {@link FieldDerivativeStructure#getPartialDerivative(int...) derivatives} of the components
- * holds time-derivatives, there are several ways to retrieve these derivatives. If for example
- * the {@code order} is set to 2, then both {@code pv.getPosition().getX().getPartialDerivative(2)},
- * {@code pv.getVelocity().getX().getPartialDerivative(1)} and
- * {@code pv.getAcceleration().getX().getValue()} return the exact same value.
- * </p>
- * <p>
- * If derivation order is 1, the first derivative of acceleration will be computed as a
- * Keplerian-only jerk. If derivation order is 2, the second derivative of velocity (which
- * is also the first derivative of acceleration) will be computed as a Keplerian-only jerk,
- * and the second derivative of acceleration will be computed as a Keplerian-only jounce.
- * </p>
- * @param order derivation order for the vector components (must be either 0, 1 or 2)
- * @return pv coordinates with time-derivatives embedded within the coordinates
- * @since 9.2
- */
- public FieldPVCoordinates<FieldDerivativeStructure<T>> toDerivativeStructurePV(final int order) {
- final FDSFactory<T> factory;
- final FieldDerivativeStructure<T> x0;
- final FieldDerivativeStructure<T> y0;
- final FieldDerivativeStructure<T> z0;
- final FieldDerivativeStructure<T> x1;
- final FieldDerivativeStructure<T> y1;
- final FieldDerivativeStructure<T> z1;
- final FieldDerivativeStructure<T> x2;
- final FieldDerivativeStructure<T> y2;
- final FieldDerivativeStructure<T> z2;
- switch (order) {
- case 0 :
- factory = new FDSFactory<>(getPosition().getX().getField(), 1, order);
- x0 = factory.build(position.getX());
- y0 = factory.build(position.getY());
- z0 = factory.build(position.getZ());
- x1 = factory.build(velocity.getX());
- y1 = factory.build(velocity.getY());
- z1 = factory.build(velocity.getZ());
- x2 = factory.build(acceleration.getX());
- y2 = factory.build(acceleration.getY());
- z2 = factory.build(acceleration.getZ());
- break;
- case 1 : {
- factory = new FDSFactory<>(getPosition().getX().getField(), 1, order);
- final T r2 = position.getNormSq();
- final T r = r2.sqrt();
- final T pvOr2 = FieldVector3D.dotProduct(position, velocity).divide(r2);
- final T a = acceleration.getNorm();
- final T aOr = a.divide(r);
- final FieldVector3D<T> keplerianJerk = new FieldVector3D<>(pvOr2.multiply(-3), acceleration,
- aOr.negate(), velocity);
- x0 = factory.build(position.getX(), velocity.getX());
- y0 = factory.build(position.getY(), velocity.getY());
- z0 = factory.build(position.getZ(), velocity.getZ());
- x1 = factory.build(velocity.getX(), acceleration.getX());
- y1 = factory.build(velocity.getY(), acceleration.getY());
- z1 = factory.build(velocity.getZ(), acceleration.getZ());
- x2 = factory.build(acceleration.getX(), keplerianJerk.getX());
- y2 = factory.build(acceleration.getY(), keplerianJerk.getY());
- z2 = factory.build(acceleration.getZ(), keplerianJerk.getZ());
- break;
- }
- case 2 : {
- factory = new FDSFactory<>(getPosition().getX().getField(), 1, order);
- final T r2 = position.getNormSq();
- final T r = r2.sqrt();
- final T pvOr2 = FieldVector3D.dotProduct(position, velocity).divide(r2);
- final T a = acceleration.getNorm();
- final T aOr = a.divide(r);
- final FieldVector3D<T> keplerianJerk = new FieldVector3D<>(pvOr2.multiply(-3), acceleration,
- aOr.negate(), velocity);
- final T v2 = velocity.getNormSq();
- final T pa = FieldVector3D.dotProduct(position, acceleration);
- final T aj = FieldVector3D.dotProduct(acceleration, keplerianJerk);
- final FieldVector3D<T> keplerianJounce = new FieldVector3D<>(v2.add(pa).multiply(-3).divide(r2).add(pvOr2.multiply(pvOr2).multiply(15)).subtract(aOr), acceleration,
- aOr.multiply(4).multiply(pvOr2).subtract(aj.divide(a.multiply(r))), velocity);
- x0 = factory.build(position.getX(), velocity.getX(), acceleration.getX());
- y0 = factory.build(position.getY(), velocity.getY(), acceleration.getY());
- z0 = factory.build(position.getZ(), velocity.getZ(), acceleration.getZ());
- x1 = factory.build(velocity.getX(), acceleration.getX(), keplerianJerk.getX());
- y1 = factory.build(velocity.getY(), acceleration.getY(), keplerianJerk.getY());
- z1 = factory.build(velocity.getZ(), acceleration.getZ(), keplerianJerk.getZ());
- x2 = factory.build(acceleration.getX(), keplerianJerk.getX(), keplerianJounce.getX());
- y2 = factory.build(acceleration.getY(), keplerianJerk.getY(), keplerianJounce.getY());
- z2 = factory.build(acceleration.getZ(), keplerianJerk.getZ(), keplerianJounce.getZ());
- break;
- }
- default :
- throw new OrekitException(OrekitMessages.OUT_OF_RANGE_DERIVATION_ORDER, order);
- }
- return new FieldPVCoordinates<>(new FieldVector3D<>(x0, y0, z0),
- new FieldVector3D<>(x1, y1, z1),
- new FieldVector3D<>(x2, y2, z2));
- }
- /** Transform the instance to a {@link FieldPVCoordinates}<{@link FieldUnivariateDerivative1}>.
- * <p>
- * The {@link FieldUnivariateDerivative1} coordinates correspond to time-derivatives up
- * to the order 1.
- * The first derivative of acceleration will be computed as a Keplerian-only jerk.
- * </p>
- * @return pv coordinates with time-derivatives embedded within the coordinates
- * @since 10.2
- */
- public FieldPVCoordinates<FieldUnivariateDerivative1<T>> toUnivariateDerivative1PV() {
- final T r2 = position.getNormSq();
- final T r = FastMath.sqrt(r2);
- final T pvOr2 = FieldVector3D.dotProduct(position, velocity).divide(r2);
- final T a = acceleration.getNorm();
- final T aOr = a.divide(r);
- final FieldVector3D<T> keplerianJerk = new FieldVector3D<>(pvOr2.multiply(-3), acceleration,
- aOr.negate(), velocity);
- final FieldUnivariateDerivative1<T> x0 = new FieldUnivariateDerivative1<>(position.getX(), velocity.getX());
- final FieldUnivariateDerivative1<T> y0 = new FieldUnivariateDerivative1<>(position.getY(), velocity.getY());
- final FieldUnivariateDerivative1<T> z0 = new FieldUnivariateDerivative1<>(position.getZ(), velocity.getZ());
- final FieldUnivariateDerivative1<T> x1 = new FieldUnivariateDerivative1<>(velocity.getX(), acceleration.getX());
- final FieldUnivariateDerivative1<T> y1 = new FieldUnivariateDerivative1<>(velocity.getY(), acceleration.getY());
- final FieldUnivariateDerivative1<T> z1 = new FieldUnivariateDerivative1<>(velocity.getZ(), acceleration.getZ());
- final FieldUnivariateDerivative1<T> x2 = new FieldUnivariateDerivative1<>(acceleration.getX(), keplerianJerk.getX());
- final FieldUnivariateDerivative1<T> y2 = new FieldUnivariateDerivative1<>(acceleration.getY(), keplerianJerk.getY());
- final FieldUnivariateDerivative1<T> z2 = new FieldUnivariateDerivative1<>(acceleration.getZ(), keplerianJerk.getZ());
- return new FieldPVCoordinates<>(new FieldVector3D<>(x0, y0, z0),
- new FieldVector3D<>(x1, y1, z1),
- new FieldVector3D<>(x2, y2, z2));
- }
- /** Transform the instance to a {@link FieldPVCoordinates}<{@link FieldUnivariateDerivative2}>.
- * <p>
- * The {@link FieldUnivariateDerivative2} coordinates correspond to time-derivatives up
- * to the order 2.
- * As derivation order is 2, the second derivative of velocity (which
- * is also the first derivative of acceleration) will be computed as a Keplerian-only jerk,
- * and the second derivative of acceleration will be computed as a Keplerian-only jounce.
- * </p>
- * @return pv coordinates with time-derivatives embedded within the coordinates
- * @since 10.2
- */
- public FieldPVCoordinates<FieldUnivariateDerivative2<T>> toUnivariateDerivative2PV() {
- final T r2 = position.getNormSq();
- final T r = r2.sqrt();
- final T pvOr2 = FieldVector3D.dotProduct(position, velocity).divide(r2);
- final T a = acceleration.getNorm();
- final T aOr = a.divide(r);
- final FieldVector3D<T> keplerianJerk = new FieldVector3D<>(pvOr2.multiply(-3), acceleration,
- aOr.negate(), velocity);
- final T v2 = velocity.getNormSq();
- final T pa = FieldVector3D.dotProduct(position, acceleration);
- final T aj = FieldVector3D.dotProduct(acceleration, keplerianJerk);
- final FieldVector3D<T> keplerianJounce = new FieldVector3D<>(v2.add(pa).multiply(-3).divide(r2).add(pvOr2.multiply(pvOr2).multiply(15)).subtract(aOr), acceleration,
- aOr.multiply(4).multiply(pvOr2).subtract(aj.divide(a.multiply(r))), velocity);
- final FieldUnivariateDerivative2<T> x0 = new FieldUnivariateDerivative2<>(position.getX(), velocity.getX(), acceleration.getX());
- final FieldUnivariateDerivative2<T> y0 = new FieldUnivariateDerivative2<>(position.getY(), velocity.getY(), acceleration.getY());
- final FieldUnivariateDerivative2<T> z0 = new FieldUnivariateDerivative2<>(position.getZ(), velocity.getZ(), acceleration.getZ());
- final FieldUnivariateDerivative2<T> x1 = new FieldUnivariateDerivative2<>(velocity.getX(), acceleration.getX(), keplerianJerk.getX());
- final FieldUnivariateDerivative2<T> y1 = new FieldUnivariateDerivative2<>(velocity.getY(), acceleration.getY(), keplerianJerk.getY());
- final FieldUnivariateDerivative2<T> z1 = new FieldUnivariateDerivative2<>(velocity.getZ(), acceleration.getZ(), keplerianJerk.getZ());
- final FieldUnivariateDerivative2<T> x2 = new FieldUnivariateDerivative2<>(acceleration.getX(), keplerianJerk.getX(), keplerianJounce.getX());
- final FieldUnivariateDerivative2<T> y2 = new FieldUnivariateDerivative2<>(acceleration.getY(), keplerianJerk.getY(), keplerianJounce.getY());
- final FieldUnivariateDerivative2<T> z2 = new FieldUnivariateDerivative2<>(acceleration.getZ(), keplerianJerk.getZ(), keplerianJounce.getZ());
- return new FieldPVCoordinates<>(new FieldVector3D<>(x0, y0, z0),
- new FieldVector3D<>(x1, y1, z1),
- new FieldVector3D<>(x2, y2, z2));
- }
- /** Estimate velocity between two positions.
- * <p>Estimation is based on a simple fixed velocity translation
- * during the time interval between the two positions.</p>
- * @param start start position
- * @param end end position
- * @param dt time elapsed between the dates of the two positions
- * @param <T> the type of the field elements
- * @return velocity allowing to go from start to end positions
- */
- public static <T extends CalculusFieldElement<T>> FieldVector3D<T> estimateVelocity(final FieldVector3D<T> start,
- final FieldVector3D<T> end,
- final double dt) {
- final double scale = 1.0 / dt;
- return new FieldVector3D<>(scale, end, -scale, start);
- }
- /** Get a time-shifted state.
- * <p>
- * The state can be slightly shifted to close dates. This shift is based on
- * a simple quadratic model. It is <em>not</em> intended as a replacement for
- * proper orbit propagation (it is not even Keplerian!) but should be sufficient
- * for either small time shifts or coarse accuracy.
- * </p>
- * @param dt time shift in seconds
- * @return a new state, shifted with respect to the instance (which is immutable)
- */
- @Override
- public FieldPVCoordinates<T> shiftedBy(final double dt) {
- return new FieldPVCoordinates<>(new FieldVector3D<>(1, position, dt, velocity, 0.5 * dt * dt, acceleration),
- new FieldVector3D<>(1, velocity, dt, acceleration),
- acceleration);
- }
- /** Get a time-shifted state.
- * <p>
- * The state can be slightly shifted to close dates. This shift is based on
- * a simple quadratic model. It is <em>not</em> intended as a replacement for
- * proper orbit propagation (it is not even Keplerian!) but should be sufficient
- * for either small time shifts or coarse accuracy.
- * </p>
- * @param dt time shift in seconds
- * @return a new state, shifted with respect to the instance (which is immutable)
- */
- @Override
- public FieldPVCoordinates<T> shiftedBy(final T dt) {
- final T one = dt.getField().getOne();
- return new FieldPVCoordinates<>(positionShiftedBy(dt),
- new FieldVector3D<>(one, velocity, dt, acceleration),
- acceleration);
- }
- /**
- * Get a time-shifted position. Same as {@link #shiftedBy(CalculusFieldElement)} except
- * that only the sifted position is returned.
- * <p>
- * The state can be slightly shifted to close dates. This shift is based on
- * a simple Taylor expansion. It is <em>not</em> intended as a replacement
- * for proper orbit propagation (it is not even Keplerian!) but should be
- * sufficient for either small time shifts or coarse accuracy.
- * </p>
- *
- * @param dt time shift in seconds
- * @return a new state, shifted with respect to the instance (which is
- * immutable)
- * @since 11.2
- */
- public FieldVector3D<T> positionShiftedBy(final T dt) {
- final T one = dt.getField().getOne();
- return new FieldVector3D<>(one, position, dt, velocity, dt.square().multiply(0.5), acceleration);
- }
- /** Gets the position.
- * @return the position vector (m).
- */
- public FieldVector3D<T> getPosition() {
- return position;
- }
- /** Gets the velocity.
- * @return the velocity vector (m/s).
- */
- public FieldVector3D<T> getVelocity() {
- return velocity;
- }
- /** Gets the acceleration.
- * @return the acceleration vector (m/s²).
- */
- public FieldVector3D<T> getAcceleration() {
- return acceleration;
- }
- /** Gets the momentum.
- * <p>This vector is the p ⊗ v where p is position, v is velocity
- * and ⊗ is cross product. To get the real physical angular momentum
- * you need to multiply this vector by the mass.</p>
- * <p>The returned vector is recomputed each time this method is called, it
- * is not cached.</p>
- * @return a new instance of the momentum vector (m²/s).
- */
- public FieldVector3D<T> getMomentum() {
- return FieldVector3D.crossProduct(position, velocity);
- }
- /**
- * Get the angular velocity (spin) of this point as seen from the origin.
- *
- * <p> The angular velocity vector is parallel to the {@link #getMomentum()
- * angular * momentum} and is computed by ω = p × v / ||p||²
- *
- * @return the angular velocity vector
- * @see <a href="http://en.wikipedia.org/wiki/Angular_velocity">Angular Velocity on
- * Wikipedia</a>
- */
- public FieldVector3D<T> getAngularVelocity() {
- return this.getMomentum().scalarMultiply(
- this.getPosition().getNormSq().reciprocal());
- }
- /** Get the opposite of the instance.
- * @return a new position-velocity which is opposite to the instance
- */
- public FieldPVCoordinates<T> negate() {
- return new FieldPVCoordinates<>(position.negate(), velocity.negate(), acceleration.negate());
- }
- /** Normalize the position part of the instance.
- * <p>
- * The computed coordinates first component (position) will be a
- * normalized vector, the second component (velocity) will be the
- * derivative of the first component (hence it will generally not
- * be normalized), and the third component (acceleration) will be the
- * derivative of the second component (hence it will generally not
- * be normalized).
- * </p>
- * @return a new instance, with first component normalized and
- * remaining component computed to have consistent derivatives
- */
- public FieldPVCoordinates<T> normalize() {
- final T inv = position.getNorm().reciprocal();
- final FieldVector3D<T> u = new FieldVector3D<>(inv, position);
- final FieldVector3D<T> v = new FieldVector3D<>(inv, velocity);
- final FieldVector3D<T> w = new FieldVector3D<>(inv, acceleration);
- final T uv = FieldVector3D.dotProduct(u, v);
- final T v2 = FieldVector3D.dotProduct(v, v);
- final T uw = FieldVector3D.dotProduct(u, w);
- final FieldVector3D<T> uDot = new FieldVector3D<>(inv.getField().getOne(), v,
- uv.multiply(-1), u);
- final FieldVector3D<T> uDotDot = new FieldVector3D<>(inv.getField().getOne(), w,
- uv.multiply(-2), v,
- uv.multiply(uv).multiply(3).subtract(v2).subtract(uw), u);
- return new FieldPVCoordinates<>(u, uDot, uDotDot);
- }
- /** Compute the cross-product of two instances.
- * @param pv2 second instances
- * @return the cross product v1 ^ v2 as a new instance
- */
- public FieldPVCoordinates<T> crossProduct(final FieldPVCoordinates<T> pv2) {
- final FieldVector3D<T> p1 = position;
- final FieldVector3D<T> v1 = velocity;
- final FieldVector3D<T> a1 = acceleration;
- final FieldVector3D<T> p2 = pv2.position;
- final FieldVector3D<T> v2 = pv2.velocity;
- final FieldVector3D<T> a2 = pv2.acceleration;
- return new FieldPVCoordinates<>(FieldVector3D.crossProduct(p1, p2),
- new FieldVector3D<>(1, FieldVector3D.crossProduct(p1, v2),
- 1, FieldVector3D.crossProduct(v1, p2)),
- new FieldVector3D<>(1, FieldVector3D.crossProduct(p1, a2),
- 2, FieldVector3D.crossProduct(v1, v2),
- 1, FieldVector3D.crossProduct(a1, p2)));
- }
- /** Convert to a constant position-velocity.
- * @return a constant position-velocity
- */
- public PVCoordinates toPVCoordinates() {
- return new PVCoordinates(position.toVector3D(), velocity.toVector3D(), acceleration.toVector3D());
- }
- /** Return a string representation of this position/velocity pair.
- * @return string representation of this position/velocity pair
- */
- public String toString() {
- final String comma = ", ";
- return new StringBuilder().append('{').append("P(").
- append(position.getX().getReal()).append(comma).
- append(position.getY().getReal()).append(comma).
- append(position.getZ().getReal()).append("), V(").
- append(velocity.getX().getReal()).append(comma).
- append(velocity.getY().getReal()).append(comma).
- append(velocity.getZ().getReal()).append("), A(").
- append(acceleration.getX().getReal()).append(comma).
- append(acceleration.getY().getReal()).append(comma).
- append(acceleration.getZ().getReal()).append(")}").toString();
- }
- /** {@inheritDoc} */
- @Override
- public FieldPVCoordinates<T> blendArithmeticallyWith(final FieldPVCoordinates<T> other,
- final T blendingValue)
- throws MathIllegalArgumentException {
- final FieldVector3D<T> blendedPosition = position.blendArithmeticallyWith(other.getPosition(), blendingValue);
- final FieldVector3D<T> blendedVelocity = velocity.blendArithmeticallyWith(other.getVelocity(), blendingValue);
- final FieldVector3D<T> blendedAcceleration = acceleration.blendArithmeticallyWith(other.getAcceleration(), blendingValue);
- return new FieldPVCoordinates<>(blendedPosition, blendedVelocity, blendedAcceleration);
- }
- }