FieldPVCoordinates.java

  1. /* Copyright 2002-2025 CS GROUP
  2.  * Licensed to CS GROUP (CS) under one or more
  3.  * contributor license agreements.  See the NOTICE file distributed with
  4.  * this work for additional information regarding copyright ownership.
  5.  * CS licenses this file to You under the Apache License, Version 2.0
  6.  * (the "License"); you may not use this file except in compliance with
  7.  * the License.  You may obtain a copy of the License at
  8.  *
  9.  *   http://www.apache.org/licenses/LICENSE-2.0
  10.  *
  11.  * Unless required by applicable law or agreed to in writing, software
  12.  * distributed under the License is distributed on an "AS IS" BASIS,
  13.  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  14.  * See the License for the specific language governing permissions and
  15.  * limitations under the License.
  16.  */
  17. package org.orekit.utils;

  18. import org.hipparchus.Field;
  19. import org.hipparchus.CalculusFieldElement;
  20. import org.hipparchus.analysis.differentiation.FDSFactory;
  21. import org.hipparchus.analysis.differentiation.FieldDerivative;
  22. import org.hipparchus.analysis.differentiation.FieldDerivativeStructure;
  23. import org.hipparchus.analysis.differentiation.FieldUnivariateDerivative1;
  24. import org.hipparchus.analysis.differentiation.FieldUnivariateDerivative2;
  25. import org.hipparchus.exception.MathIllegalArgumentException;
  26. import org.hipparchus.geometry.euclidean.threed.FieldVector3D;
  27. import org.hipparchus.util.FastMath;
  28. import org.hipparchus.util.FieldBlendable;
  29. import org.orekit.errors.OrekitException;
  30. import org.orekit.errors.OrekitMessages;
  31. import org.orekit.time.FieldTimeShiftable;

  32. /** Simple container for Position/Velocity pairs, using {@link CalculusFieldElement}.
  33.  * <p>
  34.  * The state can be slightly shifted to close dates. This shift is based on
  35.  * a simple linear model. It is <em>not</em> intended as a replacement for
  36.  * proper orbit propagation (it is not even Keplerian!) but should be sufficient
  37.  * for either small time shifts or coarse accuracy.
  38.  * </p>
  39.  * <p>
  40.  * This class is the angular counterpart to {@link FieldAngularCoordinates}.
  41.  * </p>
  42.  * <p>Instances of this class are guaranteed to be immutable.</p>
  43.  * @param <T> the type of the field elements
  44.  * @author Luc Maisonobe
  45.  * @since 6.0
  46.  * @see PVCoordinates
  47.  */
  48. public class FieldPVCoordinates<T extends CalculusFieldElement<T>>
  49.     implements FieldTimeShiftable<FieldPVCoordinates<T>, T>, FieldBlendable<FieldPVCoordinates<T>, T> {

  50.     /** The position. */
  51.     private final FieldVector3D<T> position;

  52.     /** The velocity. */
  53.     private final FieldVector3D<T> velocity;

  54.     /** The acceleration. */
  55.     private final FieldVector3D<T> acceleration;

  56.     /** Builds a FieldPVCoordinates triplet with zero acceleration.
  57.      * @param position the position vector (m)
  58.      * @param velocity the velocity vector (m/s)
  59.      */
  60.     public FieldPVCoordinates(final FieldVector3D<T> position, final FieldVector3D<T> velocity) {
  61.         this.position     = position;
  62.         this.velocity     = velocity;
  63.         final T zero      = position.getX().getField().getZero();
  64.         this.acceleration = new FieldVector3D<>(zero, zero, zero);
  65.     }

  66.     /** Builds a FieldPVCoordinates triplet.
  67.      * @param position the position vector (m)
  68.      * @param velocity the velocity vector (m/s)
  69.      * @param acceleration the acceleration vector (m/s²)
  70.      */
  71.     public FieldPVCoordinates(final FieldVector3D<T> position, final FieldVector3D<T> velocity,
  72.                               final FieldVector3D<T> acceleration) {
  73.         this.position     = position;
  74.         this.velocity     = velocity;
  75.         this.acceleration = acceleration;
  76.     }

  77.     /** Builds a FieldPVCoordinates from a field and a regular PVCoordinates.
  78.      * @param field field for the components
  79.      * @param pv PVCoordinates triplet to convert
  80.      */
  81.     public FieldPVCoordinates(final Field<T> field, final PVCoordinates pv) {
  82.         this.position     = new FieldVector3D<>(field, pv.getPosition());
  83.         this.velocity     = new FieldVector3D<>(field, pv.getVelocity());
  84.         this.acceleration = new FieldVector3D<>(field, pv.getAcceleration());
  85.     }

  86.     /** Multiplicative constructor.
  87.      * <p>Build a PVCoordinates from another one and a scale factor.</p>
  88.      * <p>The PVCoordinates built will be a * pv</p>
  89.      * @param a scale factor
  90.      * @param pv base (unscaled) PVCoordinates
  91.      */
  92.     public FieldPVCoordinates(final double a, final FieldPVCoordinates<T> pv) {
  93.         position     = new FieldVector3D<>(a, pv.position);
  94.         velocity     = new FieldVector3D<>(a, pv.velocity);
  95.         acceleration = new FieldVector3D<>(a, pv.acceleration);
  96.     }

  97.     /** Multiplicative constructor.
  98.      * <p>Build a PVCoordinates from another one and a scale factor.</p>
  99.      * <p>The PVCoordinates built will be a * pv</p>
  100.      * @param a scale factor
  101.      * @param pv base (unscaled) PVCoordinates
  102.      */
  103.     public FieldPVCoordinates(final T a, final FieldPVCoordinates<T> pv) {
  104.         position     = new FieldVector3D<>(a, pv.position);
  105.         velocity     = new FieldVector3D<>(a, pv.velocity);
  106.         acceleration = new FieldVector3D<>(a, pv.acceleration);
  107.     }

  108.     /** Multiplicative constructor.
  109.      * <p>Build a PVCoordinates from another one and a scale factor.</p>
  110.      * <p>The PVCoordinates built will be a * pv</p>
  111.      * @param a scale factor
  112.      * @param pv base (unscaled) PVCoordinates
  113.      */
  114.     public FieldPVCoordinates(final T a, final PVCoordinates pv) {
  115.         position     = new FieldVector3D<>(a, pv.getPosition());
  116.         velocity     = new FieldVector3D<>(a, pv.getVelocity());
  117.         acceleration = new FieldVector3D<>(a, pv.getAcceleration());
  118.     }

  119.     /** Subtractive constructor.
  120.      * <p>Build a relative PVCoordinates from a start and an end position.</p>
  121.      * <p>The PVCoordinates built will be end - start.</p>
  122.      * @param start Starting PVCoordinates
  123.      * @param end ending PVCoordinates
  124.      */
  125.     public FieldPVCoordinates(final FieldPVCoordinates<T> start, final FieldPVCoordinates<T> end) {
  126.         this.position     = end.position.subtract(start.position);
  127.         this.velocity     = end.velocity.subtract(start.velocity);
  128.         this.acceleration = end.acceleration.subtract(start.acceleration);
  129.     }

  130.     /** Linear constructor.
  131.      * <p>Build a PVCoordinates from two other ones and corresponding scale factors.</p>
  132.      * <p>The PVCoordinates built will be a1 * u1 + a2 * u2</p>
  133.      * @param a1 first scale factor
  134.      * @param pv1 first base (unscaled) PVCoordinates
  135.      * @param a2 second scale factor
  136.      * @param pv2 second base (unscaled) PVCoordinates
  137.      */
  138.     public FieldPVCoordinates(final double a1, final FieldPVCoordinates<T> pv1,
  139.                               final double a2, final FieldPVCoordinates<T> pv2) {
  140.         position     = new FieldVector3D<>(a1, pv1.position, a2, pv2.position);
  141.         velocity     = new FieldVector3D<>(a1, pv1.velocity, a2, pv2.velocity);
  142.         acceleration = new FieldVector3D<>(a1, pv1.acceleration, a2, pv2.acceleration);
  143.     }

  144.     /** Linear constructor.
  145.      * <p>Build a PVCoordinates from two other ones and corresponding scale factors.</p>
  146.      * <p>The PVCoordinates built will be a1 * u1 + a2 * u2</p>
  147.      * @param a1 first scale factor
  148.      * @param pv1 first base (unscaled) PVCoordinates
  149.      * @param a2 second scale factor
  150.      * @param pv2 second base (unscaled) PVCoordinates
  151.      */
  152.     public FieldPVCoordinates(final T a1, final FieldPVCoordinates<T> pv1,
  153.                               final T a2, final FieldPVCoordinates<T> pv2) {
  154.         position     = new FieldVector3D<>(a1, pv1.position, a2, pv2.position);
  155.         velocity     = new FieldVector3D<>(a1, pv1.velocity, a2, pv2.velocity);
  156.         acceleration = new FieldVector3D<>(a1, pv1.acceleration, a2, pv2.acceleration);
  157.     }

  158.     /** Linear constructor.
  159.      * <p>Build a PVCoordinates from two other ones and corresponding scale factors.</p>
  160.      * <p>The PVCoordinates built will be a1 * u1 + a2 * u2</p>
  161.      * @param a1 first scale factor
  162.      * @param pv1 first base (unscaled) PVCoordinates
  163.      * @param a2 second scale factor
  164.      * @param pv2 second base (unscaled) PVCoordinates
  165.      */
  166.     public FieldPVCoordinates(final T a1, final PVCoordinates pv1,
  167.                               final T a2, final PVCoordinates pv2) {
  168.         position     = new FieldVector3D<>(a1, pv1.getPosition(), a2, pv2.getPosition());
  169.         velocity     = new FieldVector3D<>(a1, pv1.getVelocity(), a2, pv2.getVelocity());
  170.         acceleration = new FieldVector3D<>(a1, pv1.getAcceleration(), a2, pv2.getAcceleration());
  171.     }

  172.     /** Linear constructor.
  173.      * <p>Build a PVCoordinates from three other ones and corresponding scale factors.</p>
  174.      * <p>The PVCoordinates built will be a1 * u1 + a2 * u2 + a3 * u3</p>
  175.      * @param a1 first scale factor
  176.      * @param pv1 first base (unscaled) PVCoordinates
  177.      * @param a2 second scale factor
  178.      * @param pv2 second base (unscaled) PVCoordinates
  179.      * @param a3 third scale factor
  180.      * @param pv3 third base (unscaled) PVCoordinates
  181.      */
  182.     public FieldPVCoordinates(final double a1, final FieldPVCoordinates<T> pv1,
  183.                               final double a2, final FieldPVCoordinates<T> pv2,
  184.                               final double a3, final FieldPVCoordinates<T> pv3) {
  185.         position     = new FieldVector3D<>(a1, pv1.position,     a2, pv2.position,     a3, pv3.position);
  186.         velocity     = new FieldVector3D<>(a1, pv1.velocity,     a2, pv2.velocity,     a3, pv3.velocity);
  187.         acceleration = new FieldVector3D<>(a1, pv1.acceleration, a2, pv2.acceleration, a3, pv3.acceleration);
  188.     }

  189.     /** Linear constructor.
  190.      * <p>Build a PVCoordinates from three other ones and corresponding scale factors.</p>
  191.      * <p>The PVCoordinates built will be a1 * u1 + a2 * u2 + a3 * u3</p>
  192.      * @param a1 first scale factor
  193.      * @param pv1 first base (unscaled) PVCoordinates
  194.      * @param a2 second scale factor
  195.      * @param pv2 second base (unscaled) PVCoordinates
  196.      * @param a3 third scale factor
  197.      * @param pv3 third base (unscaled) PVCoordinates
  198.      */
  199.     public FieldPVCoordinates(final T a1, final FieldPVCoordinates<T> pv1,
  200.                               final T a2, final FieldPVCoordinates<T> pv2,
  201.                               final T a3, final FieldPVCoordinates<T> pv3) {
  202.         position     = new FieldVector3D<>(a1, pv1.position,     a2, pv2.position,     a3, pv3.position);
  203.         velocity     = new FieldVector3D<>(a1, pv1.velocity,     a2, pv2.velocity,     a3, pv3.velocity);
  204.         acceleration = new FieldVector3D<>(a1, pv1.acceleration, a2, pv2.acceleration, a3, pv3.acceleration);
  205.     }

  206.     /** Linear constructor.
  207.      * <p>Build a PVCoordinates from three other ones and corresponding scale factors.</p>
  208.      * <p>The PVCoordinates built will be a1 * u1 + a2 * u2 + a3 * u3</p>
  209.      * @param a1 first scale factor
  210.      * @param pv1 first base (unscaled) PVCoordinates
  211.      * @param a2 second scale factor
  212.      * @param pv2 second base (unscaled) PVCoordinates
  213.      * @param a3 third scale factor
  214.      * @param pv3 third base (unscaled) PVCoordinates
  215.      */
  216.     public FieldPVCoordinates(final T a1, final PVCoordinates pv1,
  217.                               final T a2, final PVCoordinates pv2,
  218.                               final T a3, final PVCoordinates pv3) {
  219.         position     = new FieldVector3D<>(a1, pv1.getPosition(),     a2, pv2.getPosition(),     a3, pv3.getPosition());
  220.         velocity     = new FieldVector3D<>(a1, pv1.getVelocity(),     a2, pv2.getVelocity(),     a3, pv3.getVelocity());
  221.         acceleration = new FieldVector3D<>(a1, pv1.getAcceleration(), a2, pv2.getAcceleration(), a3, pv3.getAcceleration());
  222.     }

  223.     /** Linear constructor.
  224.      * <p>Build a PVCoordinates from four other ones and corresponding scale factors.</p>
  225.      * <p>The PVCoordinates built will be a1 * u1 + a2 * u2 + a3 * u3 + a4 * u4</p>
  226.      * @param a1 first scale factor
  227.      * @param pv1 first base (unscaled) PVCoordinates
  228.      * @param a2 second scale factor
  229.      * @param pv2 second base (unscaled) PVCoordinates
  230.      * @param a3 third scale factor
  231.      * @param pv3 third base (unscaled) PVCoordinates
  232.      * @param a4 fourth scale factor
  233.      * @param pv4 fourth base (unscaled) PVCoordinates
  234.      */
  235.     public FieldPVCoordinates(final double a1, final FieldPVCoordinates<T> pv1,
  236.                               final double a2, final FieldPVCoordinates<T> pv2,
  237.                               final double a3, final FieldPVCoordinates<T> pv3,
  238.                               final double a4, final FieldPVCoordinates<T> pv4) {
  239.         position     = new FieldVector3D<>(a1, pv1.position,     a2, pv2.position,     a3, pv3.position,     a4, pv4.position);
  240.         velocity     = new FieldVector3D<>(a1, pv1.velocity,     a2, pv2.velocity,     a3, pv3.velocity,     a4, pv4.velocity);
  241.         acceleration = new FieldVector3D<>(a1, pv1.acceleration, a2, pv2.acceleration, a3, pv3.acceleration, a4, pv4.acceleration);
  242.     }

  243.     /** Linear constructor.
  244.      * <p>Build a PVCoordinates from four other ones and corresponding scale factors.</p>
  245.      * <p>The PVCoordinates built will be a1 * u1 + a2 * u2 + a3 * u3 + a4 * u4</p>
  246.      * @param a1 first scale factor
  247.      * @param pv1 first base (unscaled) PVCoordinates
  248.      * @param a2 second scale factor
  249.      * @param pv2 second base (unscaled) PVCoordinates
  250.      * @param a3 third scale factor
  251.      * @param pv3 third base (unscaled) PVCoordinates
  252.      * @param a4 fourth scale factor
  253.      * @param pv4 fourth base (unscaled) PVCoordinates
  254.      */
  255.     public FieldPVCoordinates(final T a1, final FieldPVCoordinates<T> pv1,
  256.                               final T a2, final FieldPVCoordinates<T> pv2,
  257.                               final T a3, final FieldPVCoordinates<T> pv3,
  258.                               final T a4, final FieldPVCoordinates<T> pv4) {
  259.         position     = new FieldVector3D<>(a1, pv1.position,     a2, pv2.position,     a3, pv3.position,     a4, pv4.position);
  260.         velocity     = new FieldVector3D<>(a1, pv1.velocity,     a2, pv2.velocity,     a3, pv3.velocity,     a4, pv4.velocity);
  261.         acceleration = new FieldVector3D<>(a1, pv1.acceleration, a2, pv2.acceleration, a3, pv3.acceleration, a4, pv4.acceleration);
  262.     }

  263.     /** Linear constructor.
  264.      * <p>Build a PVCoordinates from four other ones and corresponding scale factors.</p>
  265.      * <p>The PVCoordinates built will be a1 * u1 + a2 * u2 + a3 * u3 + a4 * u4</p>
  266.      * @param a1 first scale factor
  267.      * @param pv1 first base (unscaled) PVCoordinates
  268.      * @param a2 second scale factor
  269.      * @param pv2 second base (unscaled) PVCoordinates
  270.      * @param a3 third scale factor
  271.      * @param pv3 third base (unscaled) PVCoordinates
  272.      * @param a4 fourth scale factor
  273.      * @param pv4 fourth base (unscaled) PVCoordinates
  274.      */
  275.     public FieldPVCoordinates(final T a1, final PVCoordinates pv1,
  276.                               final T a2, final PVCoordinates pv2,
  277.                               final T a3, final PVCoordinates pv3,
  278.                               final T a4, final PVCoordinates pv4) {
  279.         position     = new FieldVector3D<>(a1, pv1.getPosition(),     a2, pv2.getPosition(),
  280.                                            a3, pv3.getPosition(),     a4, pv4.getPosition());
  281.         velocity     = new FieldVector3D<>(a1, pv1.getVelocity(),     a2, pv2.getVelocity(),
  282.                                            a3, pv3.getVelocity(),     a4, pv4.getVelocity());
  283.         acceleration = new FieldVector3D<>(a1, pv1.getAcceleration(), a2, pv2.getAcceleration(),
  284.                                            a3, pv3.getAcceleration(), a4, pv4.getAcceleration());
  285.     }

  286.     /** Builds a FieldPVCoordinates triplet from  a {@link FieldVector3D}&lt;{@link FieldDerivative}&gt;.
  287.      * <p>
  288.      * The vector components must have time as their only derivation parameter and
  289.      * have consistent derivation orders.
  290.      * </p>
  291.      * @param p vector with time-derivatives embedded within the coordinates
  292.      * @param <U> type of the derivative
  293.      * @since 9.2
  294.      */
  295.     public <U extends FieldDerivative<T, U>> FieldPVCoordinates(final FieldVector3D<U> p) {
  296.         position = new FieldVector3D<>(p.getX().getValue(), p.getY().getValue(), p.getZ().getValue());
  297.         if (p.getX().getOrder() >= 1) {
  298.             velocity = new FieldVector3D<>(p.getX().getPartialDerivative(1),
  299.                                            p.getY().getPartialDerivative(1),
  300.                                            p.getZ().getPartialDerivative(1));
  301.             if (p.getX().getOrder() >= 2) {
  302.                 acceleration = new FieldVector3D<>(p.getX().getPartialDerivative(2),
  303.                                                    p.getY().getPartialDerivative(2),
  304.                                                    p.getZ().getPartialDerivative(2));
  305.             } else {
  306.                 acceleration = FieldVector3D.getZero(position.getX().getField());
  307.             }
  308.         } else {
  309.             final FieldVector3D<T> zero = FieldVector3D.getZero(position.getX().getField());
  310.             velocity     = zero;
  311.             acceleration = zero;
  312.         }
  313.     }

  314.     /** Get fixed position/velocity at origin (both p, v and a are zero vectors).
  315.      * @param field field for the components
  316.      * @param <T> the type of the field elements
  317.      * @return a new fixed position/velocity at origin
  318.      */
  319.     public static <T extends CalculusFieldElement<T>> FieldPVCoordinates<T> getZero(final Field<T> field) {
  320.         return new FieldPVCoordinates<>(field, PVCoordinates.ZERO);
  321.     }

  322.     /** Transform the instance to a {@link FieldVector3D}&lt;{@link FieldDerivativeStructure}&gt;.
  323.      * <p>
  324.      * The {@link FieldDerivativeStructure} coordinates correspond to time-derivatives up
  325.      * to the user-specified order.
  326.      * </p>
  327.      * @param order derivation order for the vector components (must be either 0, 1 or 2)
  328.      * @return vector with time-derivatives embedded within the coordinates
  329.           * @since 9.2
  330.      */
  331.     public FieldVector3D<FieldDerivativeStructure<T>> toDerivativeStructureVector(final int order) {

  332.         final FDSFactory<T> factory;
  333.         final FieldDerivativeStructure<T> x;
  334.         final FieldDerivativeStructure<T> y;
  335.         final FieldDerivativeStructure<T> z;
  336.         switch (order) {
  337.             case 0 :
  338.                 factory = new FDSFactory<>(getPosition().getX().getField(), 1, order);
  339.                 x = factory.build(position.getX());
  340.                 y = factory.build(position.getY());
  341.                 z = factory.build(position.getZ());
  342.                 break;
  343.             case 1 :
  344.                 factory = new FDSFactory<>(getPosition().getX().getField(), 1, order);
  345.                 x = factory.build(position.getX(), velocity.getX());
  346.                 y = factory.build(position.getY(), velocity.getY());
  347.                 z = factory.build(position.getZ(), velocity.getZ());
  348.                 break;
  349.             case 2 :
  350.                 factory = new FDSFactory<>(getPosition().getX().getField(), 1, order);
  351.                 x = factory.build(position.getX(), velocity.getX(), acceleration.getX());
  352.                 y = factory.build(position.getY(), velocity.getY(), acceleration.getY());
  353.                 z = factory.build(position.getZ(), velocity.getZ(), acceleration.getZ());
  354.                 break;
  355.             default :
  356.                 throw new OrekitException(OrekitMessages.OUT_OF_RANGE_DERIVATION_ORDER, order);
  357.         }

  358.         return new FieldVector3D<>(x, y, z);

  359.     }

  360.     /** Transform the instance to a {@link FieldVector3D}&lt;{@link FieldUnivariateDerivative1}&gt;.
  361.      * <p>
  362.      * The {@link FieldUnivariateDerivative1} coordinates correspond to time-derivatives up
  363.      * to the order 1.
  364.      * </p>
  365.      * @return vector with time-derivatives embedded within the coordinates
  366.      * @see #toUnivariateDerivative2Vector()
  367.      * @since 10.2
  368.      */
  369.     public FieldVector3D<FieldUnivariateDerivative1<T>> toUnivariateDerivative1Vector() {

  370.         final FieldUnivariateDerivative1<T> x = new FieldUnivariateDerivative1<>(position.getX(), velocity.getX());
  371.         final FieldUnivariateDerivative1<T> y = new FieldUnivariateDerivative1<>(position.getY(), velocity.getY());
  372.         final FieldUnivariateDerivative1<T> z = new FieldUnivariateDerivative1<>(position.getZ(), velocity.getZ());

  373.         return new FieldVector3D<>(x, y, z);
  374.     }

  375.     /** Transform the instance to a {@link FieldVector3D}&lt;{@link FieldUnivariateDerivative2}&gt;.
  376.      * <p>
  377.      * The {@link FieldUnivariateDerivative2} coordinates correspond to time-derivatives up
  378.      * to the order 2.
  379.      * </p>
  380.      * @return vector with time-derivatives embedded within the coordinates
  381.      * @see #toUnivariateDerivative1Vector()
  382.      * @since 10.2
  383.      */
  384.     public FieldVector3D<FieldUnivariateDerivative2<T>> toUnivariateDerivative2Vector() {

  385.         final FieldUnivariateDerivative2<T> x = new FieldUnivariateDerivative2<>(position.getX(), velocity.getX(), acceleration.getX());
  386.         final FieldUnivariateDerivative2<T> y = new FieldUnivariateDerivative2<>(position.getY(), velocity.getY(), acceleration.getY());
  387.         final FieldUnivariateDerivative2<T> z = new FieldUnivariateDerivative2<>(position.getZ(), velocity.getZ(), acceleration.getZ());

  388.         return new FieldVector3D<>(x, y, z);
  389.     }

  390.     /** Transform the instance to a {@link FieldPVCoordinates}&lt;{@link FieldDerivativeStructure}&gt;.
  391.      * <p>
  392.      * The {@link FieldDerivativeStructure} coordinates correspond to time-derivatives up
  393.      * to the user-specified order. As both the instance components {@link #getPosition() position},
  394.      * {@link #getVelocity() velocity} and {@link #getAcceleration() acceleration} and the
  395.      * {@link FieldDerivativeStructure#getPartialDerivative(int...) derivatives} of the components
  396.      * holds time-derivatives, there are several ways to retrieve these derivatives. If for example
  397.      * the {@code order} is set to 2, then both {@code pv.getPosition().getX().getPartialDerivative(2)},
  398.      * {@code pv.getVelocity().getX().getPartialDerivative(1)} and
  399.      * {@code pv.getAcceleration().getX().getValue()} return the exact same value.
  400.      * </p>
  401.      * <p>
  402.      * If derivation order is 1, the first derivative of acceleration will be computed as a
  403.      * Keplerian-only jerk. If derivation order is 2, the second derivative of velocity (which
  404.      * is also the first derivative of acceleration) will be computed as a Keplerian-only jerk,
  405.      * and the second derivative of acceleration will be computed as a Keplerian-only jounce.
  406.      * </p>
  407.      * @param order derivation order for the vector components (must be either 0, 1 or 2)
  408.      * @return pv coordinates with time-derivatives embedded within the coordinates
  409.           * @since 9.2
  410.      */
  411.     public FieldPVCoordinates<FieldDerivativeStructure<T>> toDerivativeStructurePV(final int order) {

  412.         final FDSFactory<T> factory;
  413.         final FieldDerivativeStructure<T> x0;
  414.         final FieldDerivativeStructure<T> y0;
  415.         final FieldDerivativeStructure<T> z0;
  416.         final FieldDerivativeStructure<T> x1;
  417.         final FieldDerivativeStructure<T> y1;
  418.         final FieldDerivativeStructure<T> z1;
  419.         final FieldDerivativeStructure<T> x2;
  420.         final FieldDerivativeStructure<T> y2;
  421.         final FieldDerivativeStructure<T> z2;
  422.         switch (order) {
  423.             case 0 :
  424.                 factory = new FDSFactory<>(getPosition().getX().getField(), 1, order);
  425.                 x0 = factory.build(position.getX());
  426.                 y0 = factory.build(position.getY());
  427.                 z0 = factory.build(position.getZ());
  428.                 x1 = factory.build(velocity.getX());
  429.                 y1 = factory.build(velocity.getY());
  430.                 z1 = factory.build(velocity.getZ());
  431.                 x2 = factory.build(acceleration.getX());
  432.                 y2 = factory.build(acceleration.getY());
  433.                 z2 = factory.build(acceleration.getZ());
  434.                 break;
  435.             case 1 : {
  436.                 factory = new FDSFactory<>(getPosition().getX().getField(), 1, order);
  437.                 final T                r2            = position.getNormSq();
  438.                 final T                r             = r2.sqrt();
  439.                 final T                pvOr2         = FieldVector3D.dotProduct(position, velocity).divide(r2);
  440.                 final T                a             = acceleration.getNorm();
  441.                 final T                aOr           = a.divide(r);
  442.                 final FieldVector3D<T> keplerianJerk = new FieldVector3D<>(pvOr2.multiply(-3), acceleration,
  443.                                                                            aOr.negate(), velocity);
  444.                 x0 = factory.build(position.getX(),     velocity.getX());
  445.                 y0 = factory.build(position.getY(),     velocity.getY());
  446.                 z0 = factory.build(position.getZ(),     velocity.getZ());
  447.                 x1 = factory.build(velocity.getX(),     acceleration.getX());
  448.                 y1 = factory.build(velocity.getY(),     acceleration.getY());
  449.                 z1 = factory.build(velocity.getZ(),     acceleration.getZ());
  450.                 x2 = factory.build(acceleration.getX(), keplerianJerk.getX());
  451.                 y2 = factory.build(acceleration.getY(), keplerianJerk.getY());
  452.                 z2 = factory.build(acceleration.getZ(), keplerianJerk.getZ());
  453.                 break;
  454.             }
  455.             case 2 : {
  456.                 factory = new FDSFactory<>(getPosition().getX().getField(), 1, order);
  457.                 final T                r2              = position.getNormSq();
  458.                 final T                r               = r2.sqrt();
  459.                 final T                pvOr2           = FieldVector3D.dotProduct(position, velocity).divide(r2);
  460.                 final T                a               = acceleration.getNorm();
  461.                 final T                aOr             = a.divide(r);
  462.                 final FieldVector3D<T> keplerianJerk   = new FieldVector3D<>(pvOr2.multiply(-3), acceleration,
  463.                                                                              aOr.negate(), velocity);
  464.                 final T                v2              = velocity.getNormSq();
  465.                 final T                pa              = FieldVector3D.dotProduct(position, acceleration);
  466.                 final T                aj              = FieldVector3D.dotProduct(acceleration, keplerianJerk);
  467.                 final FieldVector3D<T> keplerianJounce = new FieldVector3D<>(v2.add(pa).multiply(-3).divide(r2).add(pvOr2.multiply(pvOr2).multiply(15)).subtract(aOr), acceleration,
  468.                                                                              aOr.multiply(4).multiply(pvOr2).subtract(aj.divide(a.multiply(r))), velocity);
  469.                 x0 = factory.build(position.getX(),     velocity.getX(),      acceleration.getX());
  470.                 y0 = factory.build(position.getY(),     velocity.getY(),      acceleration.getY());
  471.                 z0 = factory.build(position.getZ(),     velocity.getZ(),      acceleration.getZ());
  472.                 x1 = factory.build(velocity.getX(),     acceleration.getX(),  keplerianJerk.getX());
  473.                 y1 = factory.build(velocity.getY(),     acceleration.getY(),  keplerianJerk.getY());
  474.                 z1 = factory.build(velocity.getZ(),     acceleration.getZ(),  keplerianJerk.getZ());
  475.                 x2 = factory.build(acceleration.getX(), keplerianJerk.getX(), keplerianJounce.getX());
  476.                 y2 = factory.build(acceleration.getY(), keplerianJerk.getY(), keplerianJounce.getY());
  477.                 z2 = factory.build(acceleration.getZ(), keplerianJerk.getZ(), keplerianJounce.getZ());
  478.                 break;
  479.             }
  480.             default :
  481.                 throw new OrekitException(OrekitMessages.OUT_OF_RANGE_DERIVATION_ORDER, order);
  482.         }

  483.         return new FieldPVCoordinates<>(new FieldVector3D<>(x0, y0, z0),
  484.                                         new FieldVector3D<>(x1, y1, z1),
  485.                                         new FieldVector3D<>(x2, y2, z2));

  486.     }


  487.     /** Transform the instance to a {@link FieldPVCoordinates}&lt;{@link FieldUnivariateDerivative1}&gt;.
  488.      * <p>
  489.      * The {@link FieldUnivariateDerivative1} coordinates correspond to time-derivatives up
  490.      * to the order 1.
  491.      * The first derivative of acceleration will be computed as a Keplerian-only jerk.
  492.      * </p>
  493.      * @return pv coordinates with time-derivatives embedded within the coordinates
  494.      * @since 10.2
  495.      */
  496.     public FieldPVCoordinates<FieldUnivariateDerivative1<T>> toUnivariateDerivative1PV() {

  497.         final T   r2            = position.getNormSq();
  498.         final T   r             = FastMath.sqrt(r2);
  499.         final T   pvOr2         = FieldVector3D.dotProduct(position, velocity).divide(r2);
  500.         final T   a             = acceleration.getNorm();
  501.         final T   aOr           = a.divide(r);
  502.         final FieldVector3D<T> keplerianJerk   = new FieldVector3D<>(pvOr2.multiply(-3), acceleration,
  503.                                                                      aOr.negate(), velocity);

  504.         final FieldUnivariateDerivative1<T> x0 = new FieldUnivariateDerivative1<>(position.getX(),     velocity.getX());
  505.         final FieldUnivariateDerivative1<T> y0 = new FieldUnivariateDerivative1<>(position.getY(),     velocity.getY());
  506.         final FieldUnivariateDerivative1<T> z0 = new FieldUnivariateDerivative1<>(position.getZ(),     velocity.getZ());
  507.         final FieldUnivariateDerivative1<T> x1 = new FieldUnivariateDerivative1<>(velocity.getX(),     acceleration.getX());
  508.         final FieldUnivariateDerivative1<T> y1 = new FieldUnivariateDerivative1<>(velocity.getY(),     acceleration.getY());
  509.         final FieldUnivariateDerivative1<T> z1 = new FieldUnivariateDerivative1<>(velocity.getZ(),     acceleration.getZ());
  510.         final FieldUnivariateDerivative1<T> x2 = new FieldUnivariateDerivative1<>(acceleration.getX(), keplerianJerk.getX());
  511.         final FieldUnivariateDerivative1<T> y2 = new FieldUnivariateDerivative1<>(acceleration.getY(), keplerianJerk.getY());
  512.         final FieldUnivariateDerivative1<T> z2 = new FieldUnivariateDerivative1<>(acceleration.getZ(), keplerianJerk.getZ());

  513.         return new FieldPVCoordinates<>(new FieldVector3D<>(x0, y0, z0),
  514.                                         new FieldVector3D<>(x1, y1, z1),
  515.                                         new FieldVector3D<>(x2, y2, z2));

  516.     }

  517.     /** Transform the instance to a {@link FieldPVCoordinates}&lt;{@link FieldUnivariateDerivative2}&gt;.
  518.      * <p>
  519.      * The {@link FieldUnivariateDerivative2} coordinates correspond to time-derivatives up
  520.      * to the order 2.
  521.      * As derivation order is 2, the second derivative of velocity (which
  522.      * is also the first derivative of acceleration) will be computed as a Keplerian-only jerk,
  523.      * and the second derivative of acceleration will be computed as a Keplerian-only jounce.
  524.      * </p>
  525.      * @return pv coordinates with time-derivatives embedded within the coordinates
  526.      * @since 10.2
  527.      */
  528.     public FieldPVCoordinates<FieldUnivariateDerivative2<T>> toUnivariateDerivative2PV() {

  529.         final T                r2              = position.getNormSq();
  530.         final T                r               = r2.sqrt();
  531.         final T                pvOr2           = FieldVector3D.dotProduct(position, velocity).divide(r2);
  532.         final T                a               = acceleration.getNorm();
  533.         final T                aOr             = a.divide(r);
  534.         final FieldVector3D<T> keplerianJerk   = new FieldVector3D<>(pvOr2.multiply(-3), acceleration,
  535.                                                                      aOr.negate(), velocity);
  536.         final T                v2              = velocity.getNormSq();
  537.         final T                pa              = FieldVector3D.dotProduct(position, acceleration);
  538.         final T                aj              = FieldVector3D.dotProduct(acceleration, keplerianJerk);
  539.         final FieldVector3D<T> keplerianJounce = new FieldVector3D<>(v2.add(pa).multiply(-3).divide(r2).add(pvOr2.multiply(pvOr2).multiply(15)).subtract(aOr), acceleration,
  540.                                                                      aOr.multiply(4).multiply(pvOr2).subtract(aj.divide(a.multiply(r))), velocity);

  541.         final FieldUnivariateDerivative2<T> x0 = new FieldUnivariateDerivative2<>(position.getX(),     velocity.getX(),      acceleration.getX());
  542.         final FieldUnivariateDerivative2<T> y0 = new FieldUnivariateDerivative2<>(position.getY(),     velocity.getY(),      acceleration.getY());
  543.         final FieldUnivariateDerivative2<T> z0 = new FieldUnivariateDerivative2<>(position.getZ(),     velocity.getZ(),      acceleration.getZ());
  544.         final FieldUnivariateDerivative2<T> x1 = new FieldUnivariateDerivative2<>(velocity.getX(),     acceleration.getX(),  keplerianJerk.getX());
  545.         final FieldUnivariateDerivative2<T> y1 = new FieldUnivariateDerivative2<>(velocity.getY(),     acceleration.getY(),  keplerianJerk.getY());
  546.         final FieldUnivariateDerivative2<T> z1 = new FieldUnivariateDerivative2<>(velocity.getZ(),     acceleration.getZ(),  keplerianJerk.getZ());
  547.         final FieldUnivariateDerivative2<T> x2 = new FieldUnivariateDerivative2<>(acceleration.getX(), keplerianJerk.getX(), keplerianJounce.getX());
  548.         final FieldUnivariateDerivative2<T> y2 = new FieldUnivariateDerivative2<>(acceleration.getY(), keplerianJerk.getY(), keplerianJounce.getY());
  549.         final FieldUnivariateDerivative2<T> z2 = new FieldUnivariateDerivative2<>(acceleration.getZ(), keplerianJerk.getZ(), keplerianJounce.getZ());

  550.         return new FieldPVCoordinates<>(new FieldVector3D<>(x0, y0, z0),
  551.                                         new FieldVector3D<>(x1, y1, z1),
  552.                                         new FieldVector3D<>(x2, y2, z2));

  553.     }

  554.     /** Estimate velocity between two positions.
  555.      * <p>Estimation is based on a simple fixed velocity translation
  556.      * during the time interval between the two positions.</p>
  557.      * @param start start position
  558.      * @param end end position
  559.      * @param dt time elapsed between the dates of the two positions
  560.      * @param <T> the type of the field elements
  561.      * @return velocity allowing to go from start to end positions
  562.      */
  563.     public static <T extends CalculusFieldElement<T>> FieldVector3D<T> estimateVelocity(final FieldVector3D<T> start,
  564.                                                                                     final FieldVector3D<T> end,
  565.                                                                                     final double dt) {
  566.         final double scale = 1.0 / dt;
  567.         return new FieldVector3D<>(scale, end, -scale, start);
  568.     }

  569.     /** Get a time-shifted state.
  570.      * <p>
  571.      * The state can be slightly shifted to close dates. This shift is based on
  572.      * a simple quadratic model. It is <em>not</em> intended as a replacement for
  573.      * proper orbit propagation (it is not even Keplerian!) but should be sufficient
  574.      * for either small time shifts or coarse accuracy.
  575.      * </p>
  576.      * @param dt time shift in seconds
  577.      * @return a new state, shifted with respect to the instance (which is immutable)
  578.      */
  579.     @Override
  580.     public FieldPVCoordinates<T> shiftedBy(final double dt) {
  581.         return new FieldPVCoordinates<>(new FieldVector3D<>(1, position, dt, velocity, 0.5 * dt * dt, acceleration),
  582.                                         new FieldVector3D<>(1, velocity, dt, acceleration),
  583.                                         acceleration);
  584.     }

  585.     /** Get a time-shifted state.
  586.      * <p>
  587.      * The state can be slightly shifted to close dates. This shift is based on
  588.      * a simple quadratic model. It is <em>not</em> intended as a replacement for
  589.      * proper orbit propagation (it is not even Keplerian!) but should be sufficient
  590.      * for either small time shifts or coarse accuracy.
  591.      * </p>
  592.      * @param dt time shift in seconds
  593.      * @return a new state, shifted with respect to the instance (which is immutable)
  594.      */
  595.     @Override
  596.     public FieldPVCoordinates<T> shiftedBy(final T dt) {
  597.         final T one = dt.getField().getOne();
  598.         return new FieldPVCoordinates<>(positionShiftedBy(dt),
  599.                                         new FieldVector3D<>(one, velocity, dt, acceleration),
  600.                                         acceleration);
  601.     }

  602.     /**
  603.      * Get a time-shifted position. Same as {@link #shiftedBy(CalculusFieldElement)} except
  604.      * that only the sifted position is returned.
  605.      * <p>
  606.      * The state can be slightly shifted to close dates. This shift is based on
  607.      * a simple Taylor expansion. It is <em>not</em> intended as a replacement
  608.      * for proper orbit propagation (it is not even Keplerian!) but should be
  609.      * sufficient for either small time shifts or coarse accuracy.
  610.      * </p>
  611.      *
  612.      * @param dt time shift in seconds
  613.      * @return a new state, shifted with respect to the instance (which is
  614.      * immutable)
  615.      * @since 11.2
  616.      */
  617.     public FieldVector3D<T> positionShiftedBy(final T dt) {
  618.         final T one = dt.getField().getOne();
  619.         return new FieldVector3D<>(one, position, dt, velocity, dt.square().multiply(0.5), acceleration);
  620.     }

  621.     /** Gets the position.
  622.      * @return the position vector (m).
  623.      */
  624.     public FieldVector3D<T> getPosition() {
  625.         return position;
  626.     }

  627.     /** Gets the velocity.
  628.      * @return the velocity vector (m/s).
  629.      */
  630.     public FieldVector3D<T> getVelocity() {
  631.         return velocity;
  632.     }

  633.     /** Gets the acceleration.
  634.      * @return the acceleration vector (m/s²).
  635.      */
  636.     public FieldVector3D<T> getAcceleration() {
  637.         return acceleration;
  638.     }

  639.     /** Gets the momentum.
  640.      * <p>This vector is the p &otimes; v where p is position, v is velocity
  641.      * and &otimes; is cross product. To get the real physical angular momentum
  642.      * you need to multiply this vector by the mass.</p>
  643.      * <p>The returned vector is recomputed each time this method is called, it
  644.      * is not cached.</p>
  645.      * @return a new instance of the momentum vector (m²/s).
  646.      */
  647.     public FieldVector3D<T> getMomentum() {
  648.         return FieldVector3D.crossProduct(position, velocity);
  649.     }

  650.     /**
  651.      * Get the angular velocity (spin) of this point as seen from the origin.
  652.      *
  653.      * <p> The angular velocity vector is parallel to the {@link #getMomentum()
  654.      * angular * momentum} and is computed by ω = p &times; v / ||p||²
  655.      *
  656.      * @return the angular velocity vector
  657.      * @see <a href="http://en.wikipedia.org/wiki/Angular_velocity">Angular Velocity on
  658.      *      Wikipedia</a>
  659.      */
  660.     public FieldVector3D<T> getAngularVelocity() {
  661.         return this.getMomentum().scalarMultiply(
  662.                 this.getPosition().getNormSq().reciprocal());
  663.     }

  664.     /** Get the opposite of the instance.
  665.      * @return a new position-velocity which is opposite to the instance
  666.      */
  667.     public FieldPVCoordinates<T> negate() {
  668.         return new FieldPVCoordinates<>(position.negate(), velocity.negate(), acceleration.negate());
  669.     }

  670.     /** Normalize the position part of the instance.
  671.      * <p>
  672.      * The computed coordinates first component (position) will be a
  673.      * normalized vector, the second component (velocity) will be the
  674.      * derivative of the first component (hence it will generally not
  675.      * be normalized), and the third component (acceleration) will be the
  676.      * derivative of the second component (hence it will generally not
  677.      * be normalized).
  678.      * </p>
  679.      * @return a new instance, with first component normalized and
  680.      * remaining component computed to have consistent derivatives
  681.      */
  682.     public FieldPVCoordinates<T> normalize() {
  683.         final T   inv     = position.getNorm().reciprocal();
  684.         final FieldVector3D<T> u       = new FieldVector3D<>(inv, position);
  685.         final FieldVector3D<T> v       = new FieldVector3D<>(inv, velocity);
  686.         final FieldVector3D<T> w       = new FieldVector3D<>(inv, acceleration);
  687.         final T   uv      = FieldVector3D.dotProduct(u, v);
  688.         final T   v2      = FieldVector3D.dotProduct(v, v);
  689.         final T   uw      = FieldVector3D.dotProduct(u, w);
  690.         final FieldVector3D<T> uDot    = new FieldVector3D<>(inv.getField().getOne(), v,
  691.                                                              uv.multiply(-1), u);
  692.         final FieldVector3D<T> uDotDot = new FieldVector3D<>(inv.getField().getOne(), w,
  693.                                                              uv.multiply(-2), v,
  694.                                                              uv.multiply(uv).multiply(3).subtract(v2).subtract(uw), u);
  695.         return new FieldPVCoordinates<>(u, uDot, uDotDot);
  696.     }

  697.     /** Compute the cross-product of two instances.
  698.      * @param pv2 second instances
  699.      * @return the cross product v1 ^ v2 as a new instance
  700.      */
  701.     public FieldPVCoordinates<T> crossProduct(final FieldPVCoordinates<T> pv2) {
  702.         final FieldVector3D<T> p1 = position;
  703.         final FieldVector3D<T> v1 = velocity;
  704.         final FieldVector3D<T> a1 = acceleration;
  705.         final FieldVector3D<T> p2 = pv2.position;
  706.         final FieldVector3D<T> v2 = pv2.velocity;
  707.         final FieldVector3D<T> a2 = pv2.acceleration;
  708.         return new FieldPVCoordinates<>(FieldVector3D.crossProduct(p1, p2),
  709.                                         new FieldVector3D<>(1, FieldVector3D.crossProduct(p1, v2),
  710.                                                             1, FieldVector3D.crossProduct(v1, p2)),
  711.                                         new FieldVector3D<>(1, FieldVector3D.crossProduct(p1, a2),
  712.                                                             2, FieldVector3D.crossProduct(v1, v2),
  713.                                                             1, FieldVector3D.crossProduct(a1, p2)));
  714.     }

  715.     /** Convert to a constant position-velocity.
  716.      * @return a constant position-velocity
  717.      */
  718.     public PVCoordinates toPVCoordinates() {
  719.         return new PVCoordinates(position.toVector3D(), velocity.toVector3D(), acceleration.toVector3D());
  720.     }

  721.     /** Return a string representation of this position/velocity pair.
  722.      * @return string representation of this position/velocity pair
  723.      */
  724.     public String toString() {
  725.         final String comma = ", ";
  726.         return new StringBuilder().append('{').append("P(").
  727.                                   append(position.getX().getReal()).append(comma).
  728.                                   append(position.getY().getReal()).append(comma).
  729.                                   append(position.getZ().getReal()).append("), V(").
  730.                                   append(velocity.getX().getReal()).append(comma).
  731.                                   append(velocity.getY().getReal()).append(comma).
  732.                                   append(velocity.getZ().getReal()).append("), A(").
  733.                                   append(acceleration.getX().getReal()).append(comma).
  734.                                   append(acceleration.getY().getReal()).append(comma).
  735.                                   append(acceleration.getZ().getReal()).append(")}").toString();
  736.     }

  737.     /** {@inheritDoc} */
  738.     @Override
  739.     public FieldPVCoordinates<T> blendArithmeticallyWith(final FieldPVCoordinates<T> other,
  740.                                                          final T blendingValue)
  741.             throws MathIllegalArgumentException {
  742.         final FieldVector3D<T> blendedPosition     = position.blendArithmeticallyWith(other.getPosition(), blendingValue);
  743.         final FieldVector3D<T> blendedVelocity     = velocity.blendArithmeticallyWith(other.getVelocity(), blendingValue);
  744.         final FieldVector3D<T> blendedAcceleration = acceleration.blendArithmeticallyWith(other.getAcceleration(), blendingValue);

  745.         return new FieldPVCoordinates<>(blendedPosition, blendedVelocity, blendedAcceleration);
  746.     }
  747. }