NumericalPropagator.java
- /* Copyright 2002-2025 CS GROUP
- * Licensed to CS GROUP (CS) under one or more
- * contributor license agreements. See the NOTICE file distributed with
- * this work for additional information regarding copyright ownership.
- * CS licenses this file to You under the Apache License, Version 2.0
- * (the "License"); you may not use this file except in compliance with
- * the License. You may obtain a copy of the License at
- *
- * http://www.apache.org/licenses/LICENSE-2.0
- *
- * Unless required by applicable law or agreed to in writing, software
- * distributed under the License is distributed on an "AS IS" BASIS,
- * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- * See the License for the specific language governing permissions and
- * limitations under the License.
- */
- package org.orekit.propagation.numerical;
- import org.hipparchus.exception.LocalizedCoreFormats;
- import org.hipparchus.geometry.euclidean.threed.Vector3D;
- import org.hipparchus.linear.MatrixUtils;
- import org.hipparchus.linear.QRDecomposition;
- import org.hipparchus.linear.RealMatrix;
- import org.hipparchus.ode.ODEIntegrator;
- import org.hipparchus.util.FastMath;
- import org.hipparchus.util.Precision;
- import org.orekit.annotation.DefaultDataContext;
- import org.orekit.attitudes.Attitude;
- import org.orekit.attitudes.AttitudeProvider;
- import org.orekit.attitudes.AttitudeProviderModifier;
- import org.orekit.data.DataContext;
- import org.orekit.errors.OrekitException;
- import org.orekit.errors.OrekitIllegalArgumentException;
- import org.orekit.errors.OrekitInternalError;
- import org.orekit.errors.OrekitMessages;
- import org.orekit.forces.ForceModel;
- import org.orekit.forces.gravity.NewtonianAttraction;
- import org.orekit.forces.inertia.InertialForces;
- import org.orekit.forces.maneuvers.Maneuver;
- import org.orekit.forces.maneuvers.jacobians.Duration;
- import org.orekit.forces.maneuvers.jacobians.MedianDate;
- import org.orekit.forces.maneuvers.jacobians.TriggerDate;
- import org.orekit.forces.maneuvers.trigger.ManeuverTriggerDetector;
- import org.orekit.forces.maneuvers.trigger.ResettableManeuverTriggers;
- import org.orekit.frames.Frame;
- import org.orekit.orbits.Orbit;
- import org.orekit.orbits.OrbitType;
- import org.orekit.orbits.PositionAngleType;
- import org.orekit.propagation.AbstractMatricesHarvester;
- import org.orekit.propagation.AdditionalDataProvider;
- import org.orekit.propagation.CartesianToleranceProvider;
- import org.orekit.propagation.MatricesHarvester;
- import org.orekit.propagation.PropagationType;
- import org.orekit.propagation.Propagator;
- import org.orekit.propagation.SpacecraftState;
- import org.orekit.propagation.ToleranceProvider;
- import org.orekit.propagation.events.EventDetector;
- import org.orekit.propagation.events.ParameterDrivenDateIntervalDetector;
- import org.orekit.propagation.integration.AbstractIntegratedPropagator;
- import org.orekit.propagation.integration.AdditionalDerivativesProvider;
- import org.orekit.propagation.integration.StateMapper;
- import org.orekit.time.AbsoluteDate;
- import org.orekit.utils.AbsolutePVCoordinates;
- import org.orekit.utils.DoubleArrayDictionary;
- import org.orekit.utils.ParameterDriver;
- import org.orekit.utils.ParameterDriversList;
- import org.orekit.utils.ParameterDriversList.DelegatingDriver;
- import org.orekit.utils.ParameterObserver;
- import org.orekit.utils.TimeSpanMap;
- import org.orekit.utils.TimeSpanMap.Span;
- import org.orekit.utils.TimeStampedPVCoordinates;
- import java.util.ArrayList;
- import java.util.Arrays;
- import java.util.Collection;
- import java.util.Collections;
- import java.util.List;
- import java.util.stream.Collectors;
- /** This class propagates {@link org.orekit.orbits.Orbit orbits} using
- * numerical integration.
- * <p>Numerical propagation is much more accurate than analytical propagation
- * like for example {@link org.orekit.propagation.analytical.KeplerianPropagator
- * Keplerian} or {@link org.orekit.propagation.analytical.EcksteinHechlerPropagator
- * Eckstein-Hechler}, but requires a few more steps to set up to be used properly.
- * Whereas analytical propagators are configured only thanks to their various
- * constructors and can be used immediately after construction, numerical propagators
- * configuration involve setting several parameters between construction time
- * and propagation time.</p>
- * <p>The configuration parameters that can be set are:</p>
- * <ul>
- * <li>the initial spacecraft state ({@link #setInitialState(SpacecraftState)})</li>
- * <li>the central attraction coefficient ({@link #setMu(double)})</li>
- * <li>the various force models ({@link #addForceModel(ForceModel)},
- * {@link #removeForceModels()})</li>
- * <li>the {@link OrbitType type} of orbital parameters to be used for propagation
- * ({@link #setOrbitType(OrbitType)}),</li>
- * <li>the {@link PositionAngleType type} of position angle to be used in orbital parameters
- * to be used for propagation where it is relevant ({@link
- * #setPositionAngleType(PositionAngleType)}),</li>
- * <li>whether {@link MatricesHarvester state transition matrices and Jacobians matrices}
- * should be propagated along with orbital state ({@link
- * #setupMatricesComputation(String, RealMatrix, DoubleArrayDictionary)}),</li>
- * <li>whether {@link org.orekit.propagation.integration.AdditionalDerivativesProvider additional derivatives}
- * should be propagated along with orbital state ({@link
- * #addAdditionalDerivativesProvider(AdditionalDerivativesProvider)}),</li>
- * <li>the discrete events that should be triggered during propagation
- * ({@link #addEventDetector(EventDetector)},
- * {@link #clearEventsDetectors()})</li>
- * <li>the binding logic with the rest of the application ({@link #getMultiplexer()})</li>
- * </ul>
- * <p>From these configuration parameters, only the initial state is mandatory. The default
- * propagation settings are in {@link OrbitType#EQUINOCTIAL equinoctial} parameters with
- * {@link PositionAngleType#ECCENTRIC} longitude argument. If the central attraction coefficient
- * is not explicitly specified, the one used to define the initial orbit will be used.
- * However, specifying only the initial state and perhaps the central attraction coefficient
- * would mean the propagator would use only Keplerian forces. In this case, the simpler {@link
- * org.orekit.propagation.analytical.KeplerianPropagator KeplerianPropagator} class would
- * perhaps be more effective.</p>
- * <p>The underlying numerical integrator set up in the constructor may also have its own
- * configuration parameters. Typical configuration parameters for adaptive stepsize integrators
- * are the min, max and perhaps start step size as well as the absolute and/or relative errors
- * thresholds.</p>
- * <p>The state that is seen by the integrator is a simple seven elements double array.
- * The six first elements are either:
- * <ul>
- * <li>the {@link org.orekit.orbits.EquinoctialOrbit equinoctial orbit parameters} (a, e<sub>x</sub>,
- * e<sub>y</sub>, h<sub>x</sub>, h<sub>y</sub>, λ<sub>M</sub> or λ<sub>E</sub>
- * or λ<sub>v</sub>) in meters and radians,</li>
- * <li>the {@link org.orekit.orbits.KeplerianOrbit Keplerian orbit parameters} (a, e, i, ω, Ω,
- * M or E or v) in meters and radians,</li>
- * <li>the {@link org.orekit.orbits.CircularOrbit circular orbit parameters} (a, e<sub>x</sub>, e<sub>y</sub>, i,
- * Ω, α<sub>M</sub> or α<sub>E</sub> or α<sub>v</sub>) in meters
- * and radians,</li>
- * <li>the {@link org.orekit.orbits.CartesianOrbit Cartesian orbit parameters} (x, y, z, v<sub>x</sub>,
- * v<sub>y</sub>, v<sub>z</sub>) in meters and meters per seconds.
- * </ul>
- * <p> The last element is the mass in kilograms and changes only during thrusters firings
- *
- * <p>The following code snippet shows a typical setting for Low Earth Orbit propagation in
- * equinoctial parameters and true longitude argument:</p>
- * <pre>
- * final double dP = 0.001;
- * final double minStep = 0.001;
- * final double maxStep = 500;
- * final double initStep = 60;
- * final double[][] tolerance = ToleranceProvider.getDefaultToleranceProvider(dP).getTolerances(orbit, OrbitType.EQUINOCTIAL);
- * AdaptiveStepsizeIntegrator integrator = new DormandPrince853Integrator(minStep, maxStep, tolerance[0], tolerance[1]);
- * integrator.setInitialStepSize(initStep);
- * propagator = new NumericalPropagator(integrator);
- * </pre>
- * <p>By default, at the end of the propagation, the propagator resets the initial state to the final state,
- * thus allowing a new propagation to be started from there without recomputing the part already performed.
- * This behaviour can be changed by calling {@link #setResetAtEnd(boolean)}.
- * </p>
- * <p>Beware the same instance cannot be used simultaneously by different threads, the class is <em>not</em>
- * thread-safe.</p>
- *
- * @see SpacecraftState
- * @see ForceModel
- * @see org.orekit.propagation.sampling.OrekitStepHandler
- * @see org.orekit.propagation.sampling.OrekitFixedStepHandler
- * @see org.orekit.propagation.integration.IntegratedEphemeris
- * @see TimeDerivativesEquations
- *
- * @author Mathieu Roméro
- * @author Luc Maisonobe
- * @author Guylaine Prat
- * @author Fabien Maussion
- * @author Véronique Pommier-Maurussane
- */
- public class NumericalPropagator extends AbstractIntegratedPropagator {
- /** Default orbit type. */
- public static final OrbitType DEFAULT_ORBIT_TYPE = OrbitType.EQUINOCTIAL;
- /** Default position angle type. */
- public static final PositionAngleType DEFAULT_POSITION_ANGLE_TYPE = PositionAngleType.ECCENTRIC;
- /** Space dimension. */
- private static final int SPACE_DIMENSION = 3;
- /** State dimension. */
- private static final int STATE_DIMENSION = 2 * SPACE_DIMENSION;
- /** Threshold for matrix solving. */
- private static final double THRESHOLD = Precision.SAFE_MIN;
- /** Force models used during the extrapolation of the orbit. */
- private final List<ForceModel> forceModels;
- /** boolean to ignore or not the creation of a NewtonianAttraction. */
- private boolean ignoreCentralAttraction;
- /**
- * boolean to know if a full attitude (with rates) is needed when computing derivatives for the ODE.
- * since 12.1
- */
- private boolean needFullAttitudeForDerivatives = true;
- /** Create a new instance of NumericalPropagator, based on orbit definition mu.
- * After creation, the instance is empty, i.e. the attitude provider is set to an
- * unspecified default law and there are no perturbing forces at all.
- * This means that if {@link #addForceModel addForceModel} is not
- * called after creation, the integrated orbit will follow a Keplerian
- * evolution only. The defaults are {@link OrbitType#EQUINOCTIAL}
- * for {@link #setOrbitType(OrbitType) propagation
- * orbit type} and {@link PositionAngleType#ECCENTRIC} for {@link
- * #setPositionAngleType(PositionAngleType) position angle type}.
- *
- * <p>This constructor uses the {@link DataContext#getDefault() default data context}.
- *
- * @param integrator numerical integrator to use for propagation.
- * @see #NumericalPropagator(ODEIntegrator, AttitudeProvider)
- */
- @DefaultDataContext
- public NumericalPropagator(final ODEIntegrator integrator) {
- this(integrator,
- Propagator.getDefaultLaw(DataContext.getDefault().getFrames()));
- }
- /** Create a new instance of NumericalPropagator, based on orbit definition mu.
- * After creation, the instance is empty, i.e. the attitude provider is set to an
- * unspecified default law and there are no perturbing forces at all.
- * This means that if {@link #addForceModel addForceModel} is not
- * called after creation, the integrated orbit will follow a Keplerian
- * evolution only. The defaults are {@link OrbitType#EQUINOCTIAL}
- * for {@link #setOrbitType(OrbitType) propagation
- * orbit type} and {@link PositionAngleType#ECCENTRIC} for {@link
- * #setPositionAngleType(PositionAngleType) position angle type}.
- * @param integrator numerical integrator to use for propagation.
- * @param attitudeProvider the attitude law.
- * @since 10.1
- */
- public NumericalPropagator(final ODEIntegrator integrator,
- final AttitudeProvider attitudeProvider) {
- super(integrator, PropagationType.OSCULATING);
- forceModels = new ArrayList<>();
- ignoreCentralAttraction = false;
- initMapper();
- setAttitudeProvider(attitudeProvider);
- clearStepHandlers();
- setOrbitType(DEFAULT_ORBIT_TYPE);
- setPositionAngleType(DEFAULT_POSITION_ANGLE_TYPE);
- }
- /** Set the flag to ignore or not the creation of a {@link NewtonianAttraction}.
- * @param ignoreCentralAttraction if true, {@link NewtonianAttraction} is <em>not</em>
- * added automatically if missing
- */
- public void setIgnoreCentralAttraction(final boolean ignoreCentralAttraction) {
- this.ignoreCentralAttraction = ignoreCentralAttraction;
- }
- /** Set the central attraction coefficient μ.
- * <p>
- * Setting the central attraction coefficient is
- * equivalent to {@link #addForceModel(ForceModel) add}
- * a {@link NewtonianAttraction} force model.
- * * </p>
- * @param mu central attraction coefficient (m³/s²)
- * @see #addForceModel(ForceModel)
- * @see #getAllForceModels()
- */
- @Override
- public void setMu(final double mu) {
- if (ignoreCentralAttraction) {
- superSetMu(mu);
- } else {
- addForceModel(new NewtonianAttraction(mu));
- superSetMu(mu);
- }
- }
- /** Set the central attraction coefficient μ only in upper class.
- * @param mu central attraction coefficient (m³/s²)
- */
- private void superSetMu(final double mu) {
- super.setMu(mu);
- }
- /** Check if Newtonian attraction force model is available.
- * <p>
- * Newtonian attraction is always the last force model in the list.
- * </p>
- * @return true if Newtonian attraction force model is available
- */
- private boolean hasNewtonianAttraction() {
- final int last = forceModels.size() - 1;
- return last >= 0 && forceModels.get(last) instanceof NewtonianAttraction;
- }
- /** Add a force model.
- * <p>If this method is not called at all, the integrated orbit will follow
- * a Keplerian evolution only.</p>
- * @param model {@link ForceModel} to add (it can be either a perturbing force
- * model or an instance of {@link NewtonianAttraction})
- * @see #removeForceModels()
- * @see #setMu(double)
- */
- public void addForceModel(final ForceModel model) {
- if (model instanceof NewtonianAttraction) {
- // we want to add the central attraction force model
- try {
- // ensure we are notified of any mu change
- model.getParametersDrivers().get(0).addObserver(new ParameterObserver() {
- /** {@inheritDoc} */
- @Override
- public void valueSpanMapChanged(final TimeSpanMap<Double> previousValue, final ParameterDriver driver) {
- superSetMu(driver.getValue());
- }
- /** {@inheritDoc} */
- @Override
- public void valueChanged(final double previousValue, final ParameterDriver driver, final AbsoluteDate date) {
- superSetMu(driver.getValue());
- }
- });
- } catch (OrekitException oe) {
- // this should never happen
- throw new OrekitInternalError(oe);
- }
- if (hasNewtonianAttraction()) {
- // there is already a central attraction model, replace it
- forceModels.set(forceModels.size() - 1, model);
- } else {
- // there are no central attraction model yet, add it at the end of the list
- forceModels.add(model);
- }
- } else {
- // we want to add a perturbing force model
- if (hasNewtonianAttraction()) {
- // insert the new force model before Newtonian attraction,
- // which should always be the last one in the list
- forceModels.add(forceModels.size() - 1, model);
- } else {
- // we only have perturbing force models up to now, just append at the end of the list
- forceModels.add(model);
- }
- }
- }
- /** Remove all force models (except central attraction).
- * <p>Once all perturbing forces have been removed (and as long as no new force
- * model is added), the integrated orbit will follow a Keplerian evolution
- * only.</p>
- * @see #addForceModel(ForceModel)
- */
- public void removeForceModels() {
- final int last = forceModels.size() - 1;
- if (hasNewtonianAttraction()) {
- // preserve the Newtonian attraction model at the end
- final ForceModel newton = forceModels.get(last);
- forceModels.clear();
- forceModels.add(newton);
- } else {
- forceModels.clear();
- }
- }
- /** Get all the force models, perturbing forces and Newtonian attraction included.
- * @return list of perturbing force models, with Newtonian attraction being the
- * last one
- * @see #addForceModel(ForceModel)
- * @see #setMu(double)
- */
- public List<ForceModel> getAllForceModels() {
- return Collections.unmodifiableList(forceModels);
- }
- /** Set propagation orbit type.
- * @param orbitType orbit type to use for propagation, null for
- * propagating using {@link org.orekit.utils.AbsolutePVCoordinates} rather than {@link Orbit}
- */
- @Override
- public void setOrbitType(final OrbitType orbitType) {
- super.setOrbitType(orbitType);
- }
- /** Get propagation parameter type.
- * @return orbit type used for propagation, null for
- * propagating using {@link org.orekit.utils.AbsolutePVCoordinates} rather than {@link Orbit}
- */
- @Override
- public OrbitType getOrbitType() {
- return super.getOrbitType();
- }
- /** Set position angle type.
- * <p>
- * The position parameter type is meaningful only if {@link
- * #getOrbitType() propagation orbit type}
- * support it. As an example, it is not meaningful for propagation
- * in {@link OrbitType#CARTESIAN Cartesian} parameters.
- * </p>
- * @param positionAngleType angle type to use for propagation
- */
- @Override
- public void setPositionAngleType(final PositionAngleType positionAngleType) {
- super.setPositionAngleType(positionAngleType);
- }
- /** Get propagation parameter type.
- * @return angle type to use for propagation
- */
- @Override
- public PositionAngleType getPositionAngleType() {
- return super.getPositionAngleType();
- }
- /** Set the initial state.
- * @param initialState initial state
- */
- public void setInitialState(final SpacecraftState initialState) {
- resetInitialState(initialState);
- }
- /** {@inheritDoc} */
- @Override
- public void resetInitialState(final SpacecraftState state) {
- super.resetInitialState(state);
- if (!hasNewtonianAttraction()) {
- // use the state to define central attraction
- setMu(state.isOrbitDefined() ? state.getOrbit().getMu() : Double.NaN);
- }
- setStartDate(state.getDate());
- }
- /** Get the names of the parameters in the matrix returned by {@link MatricesHarvester#getParametersJacobian}.
- * @return names of the parameters (i.e. columns) of the Jacobian matrix
- */
- List<String> getJacobiansColumnsNames() {
- final List<String> columnsNames = new ArrayList<>();
- for (final ForceModel forceModel : getAllForceModels()) {
- for (final ParameterDriver driver : forceModel.getParametersDrivers()) {
- if (driver.isSelected() && !columnsNames.contains(driver.getNamesSpanMap().getFirstSpan().getData())) {
- // As driver with same name should have same NamesSpanMap we only check if the first span is present,
- // if not we add all span names to columnsNames
- for (Span<String> span = driver.getNamesSpanMap().getFirstSpan(); span != null; span = span.next()) {
- columnsNames.add(span.getData());
- }
- }
- }
- }
- Collections.sort(columnsNames);
- return columnsNames;
- }
- /** {@inheritDoc} */
- @Override
- protected AbstractMatricesHarvester createHarvester(final String stmName, final RealMatrix initialStm,
- final DoubleArrayDictionary initialJacobianColumns) {
- return new NumericalPropagationHarvester(this, stmName, initialStm, initialJacobianColumns);
- }
- /** {@inheritDoc} */
- @Override
- protected void setUpStmAndJacobianGenerators() {
- final AbstractMatricesHarvester harvester = getHarvester();
- if (harvester != null) {
- // set up the additional equations and additional state providers
- final StateTransitionMatrixGenerator stmGenerator = setUpStmGenerator();
- final List<String> triggersDates = setUpTriggerDatesJacobiansColumns(stmGenerator.getName());
- setUpRegularParametersJacobiansColumns(stmGenerator, triggersDates);
- // as we are now starting the propagation, everything is configured
- // we can freeze the names in the harvester
- harvester.freezeColumnsNames();
- }
- }
- /** Set up the State Transition Matrix Generator.
- * @return State Transition Matrix Generator
- * @since 11.1
- */
- private StateTransitionMatrixGenerator setUpStmGenerator() {
- final AbstractMatricesHarvester harvester = getHarvester();
- // add the STM generator corresponding to the current settings, and setup state accordingly
- StateTransitionMatrixGenerator stmGenerator = null;
- for (final AdditionalDerivativesProvider equations : getAdditionalDerivativesProviders()) {
- if (equations instanceof StateTransitionMatrixGenerator &&
- equations.getName().equals(harvester.getStmName())) {
- // the STM generator has already been set up in a previous propagation
- stmGenerator = (StateTransitionMatrixGenerator) equations;
- break;
- }
- }
- if (stmGenerator == null) {
- // this is the first time we need the STM generate, create it
- stmGenerator = new StateTransitionMatrixGenerator(harvester.getStmName(), getAllForceModels(), getAttitudeProvider());
- addAdditionalDerivativesProvider(stmGenerator);
- }
- if (!getInitialIntegrationState().hasAdditionalData(harvester.getStmName())) {
- // add the initial State Transition Matrix if it is not already there
- // (perhaps due to a previous propagation)
- setInitialState(stmGenerator.setInitialStateTransitionMatrix(getInitialState(),
- harvester.getInitialStateTransitionMatrix(),
- getOrbitType(),
- getPositionAngleType()));
- }
- return stmGenerator;
- }
- /** Set up the Jacobians columns generator dedicated to trigger dates.
- * @param stmName name of the State Transition Matrix state
- * @return names of the columns corresponding to trigger dates
- * @since 11.1
- */
- private List<String> setUpTriggerDatesJacobiansColumns(final String stmName) {
- final List<String> names = new ArrayList<>();
- for (final ForceModel forceModel : getAllForceModels()) {
- if (forceModel instanceof Maneuver && ((Maneuver) forceModel).getManeuverTriggers() instanceof ResettableManeuverTriggers) {
- final Maneuver maneuver = (Maneuver) forceModel;
- final ResettableManeuverTriggers maneuverTriggers = (ResettableManeuverTriggers) maneuver.getManeuverTriggers();
- final Collection<EventDetector> selectedDetectors = maneuverTriggers.getEventDetectors().
- filter(ManeuverTriggerDetector.class::isInstance).
- map(triggerDetector -> ((ManeuverTriggerDetector<?>) triggerDetector).getDetector())
- .collect(Collectors.toList());
- for (final EventDetector detector: selectedDetectors) {
- if (detector instanceof ParameterDrivenDateIntervalDetector) {
- final ParameterDrivenDateIntervalDetector d = (ParameterDrivenDateIntervalDetector) detector;
- TriggerDate start;
- TriggerDate stop;
- if (d.getStartDriver().isSelected() || d.getMedianDriver().isSelected() || d.getDurationDriver().isSelected()) {
- // normally datedriver should have only 1 span but just in case the user defines several span, there will
- // be no problem here
- for (Span<String> span = d.getStartDriver().getNamesSpanMap().getFirstSpan(); span != null; span = span.next()) {
- start = manageTriggerDate(stmName, maneuver, maneuverTriggers, span.getData(), true, d.getThreshold());
- names.add(start.getName());
- start = null;
- }
- }
- if (d.getStopDriver().isSelected() || d.getMedianDriver().isSelected() || d.getDurationDriver().isSelected()) {
- // normally datedriver should have only 1 span but just in case the user defines several span, there will
- // be no problem here
- for (Span<String> span = d.getStopDriver().getNamesSpanMap().getFirstSpan(); span != null; span = span.next()) {
- stop = manageTriggerDate(stmName, maneuver, maneuverTriggers, span.getData(), false, d.getThreshold());
- names.add(stop.getName());
- stop = null;
- }
- }
- if (d.getMedianDriver().isSelected()) {
- // for first span
- Span<String> currentMedianNameSpan = d.getMedianDriver().getNamesSpanMap().getFirstSpan();
- MedianDate median =
- manageMedianDate(d.getStartDriver().getNamesSpanMap().getFirstSpan().getData(),
- d.getStopDriver().getNamesSpanMap().getFirstSpan().getData(), currentMedianNameSpan.getData());
- names.add(median.getName());
- // for all span
- // normally datedriver should have only 1 span but just in case the user defines several span, there will
- // be no problem here. /!\ medianDate driver, startDate driver and stopDate driver must have same span number
- for (int spanNumber = 1; spanNumber < d.getMedianDriver().getNamesSpanMap().getSpansNumber(); ++spanNumber) {
- currentMedianNameSpan = d.getMedianDriver().getNamesSpanMap().getSpan(currentMedianNameSpan.getEnd());
- median =
- manageMedianDate(d.getStartDriver().getNamesSpanMap().getSpan(currentMedianNameSpan.getStart()).getData(),
- d.getStopDriver().getNamesSpanMap().getSpan(currentMedianNameSpan.getStart()).getData(),
- currentMedianNameSpan.getData());
- names.add(median.getName());
- }
- }
- if (d.getDurationDriver().isSelected()) {
- // for first span
- Span<String> currentDurationNameSpan = d.getDurationDriver().getNamesSpanMap().getFirstSpan();
- Duration duration =
- manageManeuverDuration(d.getStartDriver().getNamesSpanMap().getFirstSpan().getData(),
- d.getStopDriver().getNamesSpanMap().getFirstSpan().getData(), currentDurationNameSpan.getData());
- names.add(duration.getName());
- // for all span
- for (int spanNumber = 1; spanNumber < d.getDurationDriver().getNamesSpanMap().getSpansNumber(); ++spanNumber) {
- currentDurationNameSpan = d.getDurationDriver().getNamesSpanMap().getSpan(currentDurationNameSpan.getEnd());
- duration =
- manageManeuverDuration(d.getStartDriver().getNamesSpanMap().getSpan(currentDurationNameSpan.getStart()).getData(),
- d.getStopDriver().getNamesSpanMap().getSpan(currentDurationNameSpan.getStart()).getData(),
- currentDurationNameSpan.getData());
- names.add(duration.getName());
- }
- }
- }
- }
- }
- }
- return names;
- }
- /** Manage a maneuver trigger date.
- * @param stmName name of the State Transition Matrix state
- * @param maneuver maneuver force model
- * @param mt trigger to which the driver is bound
- * @param driverName name of the date driver
- * @param start if true, the driver is a maneuver start
- * @param threshold event detector threshold
- * @return generator for the date driver
- * @since 11.1
- */
- private TriggerDate manageTriggerDate(final String stmName,
- final Maneuver maneuver,
- final ResettableManeuverTriggers mt,
- final String driverName,
- final boolean start,
- final double threshold) {
- TriggerDate triggerGenerator = null;
- // check if we already have set up the provider
- for (final AdditionalDataProvider<?> provider : getAdditionalDataProviders()) {
- if (provider instanceof TriggerDate &&
- provider.getName().equals(driverName)) {
- // the Jacobian column generator has already been set up in a previous propagation
- triggerGenerator = (TriggerDate) provider;
- break;
- }
- }
- if (triggerGenerator == null) {
- // this is the first time we need the Jacobian column generator, create it
- triggerGenerator = new TriggerDate(stmName, driverName, start, maneuver, threshold);
- mt.addResetter(triggerGenerator);
- addAdditionalDerivativesProvider(triggerGenerator.getMassDepletionDelay());
- addAdditionalDataProvider(triggerGenerator);
- }
- if (!getInitialIntegrationState().hasAdditionalData(driverName)) {
- // add the initial Jacobian column if it is not already there
- // (perhaps due to a previous propagation)
- setInitialColumn(triggerGenerator.getMassDepletionDelay().getName(), new double[6]);
- setInitialColumn(driverName, getHarvester().getInitialJacobianColumn(driverName));
- }
- return triggerGenerator;
- }
- /** Manage a maneuver median date.
- * @param startName name of the start driver
- * @param stopName name of the stop driver
- * @param medianName name of the median driver
- * @return generator for the median driver
- * @since 11.1
- */
- private MedianDate manageMedianDate(final String startName, final String stopName, final String medianName) {
- MedianDate medianGenerator = null;
- // check if we already have set up the provider
- for (final AdditionalDataProvider<?> provider : getAdditionalDataProviders()) {
- if (provider instanceof MedianDate &&
- provider.getName().equals(medianName)) {
- // the Jacobian column generator has already been set up in a previous propagation
- medianGenerator = (MedianDate) provider;
- break;
- }
- }
- if (medianGenerator == null) {
- // this is the first time we need the Jacobian column generator, create it
- medianGenerator = new MedianDate(startName, stopName, medianName);
- addAdditionalDataProvider(medianGenerator);
- }
- if (!getInitialIntegrationState().hasAdditionalData(medianName)) {
- // add the initial Jacobian column if it is not already there
- // (perhaps due to a previous propagation)
- setInitialColumn(medianName, getHarvester().getInitialJacobianColumn(medianName));
- }
- return medianGenerator;
- }
- /** Manage a maneuver duration.
- * @param startName name of the start driver
- * @param stopName name of the stop driver
- * @param durationName name of the duration driver
- * @return generator for the median driver
- * @since 11.1
- */
- private Duration manageManeuverDuration(final String startName, final String stopName, final String durationName) {
- Duration durationGenerator = null;
- // check if we already have set up the provider
- for (final AdditionalDataProvider<?> provider : getAdditionalDataProviders()) {
- if (provider instanceof Duration &&
- provider.getName().equals(durationName)) {
- // the Jacobian column generator has already been set up in a previous propagation
- durationGenerator = (Duration) provider;
- break;
- }
- }
- if (durationGenerator == null) {
- // this is the first time we need the Jacobian column generator, create it
- durationGenerator = new Duration(startName, stopName, durationName);
- addAdditionalDataProvider(durationGenerator);
- }
- if (!getInitialIntegrationState().hasAdditionalData(durationName)) {
- // add the initial Jacobian column if it is not already there
- // (perhaps due to a previous propagation)
- setInitialColumn(durationName, getHarvester().getInitialJacobianColumn(durationName));
- }
- return durationGenerator;
- }
- /** Set up the Jacobians columns generator for regular parameters.
- * @param stmGenerator generator for the State Transition Matrix
- * @param triggerDates names of the columns already managed as trigger dates
- * @since 11.1
- */
- private void setUpRegularParametersJacobiansColumns(final StateTransitionMatrixGenerator stmGenerator,
- final List<String> triggerDates) {
- // first pass: gather all parameters (excluding trigger dates), binding similar names together
- final ParameterDriversList selected = new ParameterDriversList();
- for (final ForceModel forceModel : getAllForceModels()) {
- for (final ParameterDriver driver : forceModel.getParametersDrivers()) {
- if (!triggerDates.contains(driver.getNamesSpanMap().getFirstSpan().getData())) {
- // if the first span is not in triggerDates,
- // it means that the driver is not a trigger date and can be selected here
- selected.add(driver);
- }
- }
- }
- // second pass: now that shared parameter names are bound together,
- // their selections status have been synchronized, we can filter them
- selected.filter(true);
- // third pass: sort parameters lexicographically
- selected.sort();
- // add the Jacobians column generators corresponding to parameters, and setup state accordingly
- // a new column is needed for each value estimated so for each span of the parameterDriver
- for (final DelegatingDriver driver : selected.getDrivers()) {
- for (Span<String> currentNameSpan = driver.getNamesSpanMap().getFirstSpan(); currentNameSpan != null; currentNameSpan = currentNameSpan.next()) {
- IntegrableJacobianColumnGenerator generator = null;
- // check if we already have set up the providers
- for (final AdditionalDerivativesProvider provider : getAdditionalDerivativesProviders()) {
- if (provider instanceof IntegrableJacobianColumnGenerator &&
- provider.getName().equals(currentNameSpan.getData())) {
- // the Jacobian column generator has already been set up in a previous propagation
- generator = (IntegrableJacobianColumnGenerator) provider;
- break;
- }
- }
- if (generator == null) {
- // this is the first time we need the Jacobian column generator, create it
- generator = new IntegrableJacobianColumnGenerator(stmGenerator, currentNameSpan.getData());
- addAdditionalDerivativesProvider(generator);
- }
- if (!getInitialIntegrationState().hasAdditionalData(currentNameSpan.getData())) {
- // add the initial Jacobian column if it is not already there
- // (perhaps due to a previous propagation)
- setInitialColumn(currentNameSpan.getData(), getHarvester().getInitialJacobianColumn(currentNameSpan.getData()));
- }
- }
- }
- }
- /** Add the initial value of the column to the initial state.
- * <p>
- * The initial state must already contain the Cartesian State Transition Matrix.
- * </p>
- * @param columnName name of the column
- * @param dYdQ column of the Jacobian ∂Y/∂qₘ with respect to propagation type,
- * if null (which is the most frequent case), assumed to be 0
- * @since 11.1
- */
- private void setInitialColumn(final String columnName, final double[] dYdQ) {
- final SpacecraftState state = getInitialState();
- if (dYdQ.length != STATE_DIMENSION) {
- throw new OrekitException(LocalizedCoreFormats.DIMENSIONS_MISMATCH,
- dYdQ.length, STATE_DIMENSION);
- }
- // convert to Cartesian Jacobian
- final double[][] dYdC = new double[STATE_DIMENSION][STATE_DIMENSION];
- getOrbitType().convertType(state.getOrbit()).getJacobianWrtCartesian(getPositionAngleType(), dYdC);
- final double[] column = new QRDecomposition(MatrixUtils.createRealMatrix(dYdC), THRESHOLD).
- getSolver().
- solve(MatrixUtils.createRealVector(dYdQ)).
- toArray();
- // set additional state
- setInitialState(state.addAdditionalData(columnName, column));
- }
- /** {@inheritDoc} */
- @Override
- protected AttitudeProvider initializeAttitudeProviderForDerivatives() {
- final AttitudeProvider attitudeProvider = getAttitudeProvider();
- return needFullAttitudeForDerivatives ? attitudeProvider :
- AttitudeProviderModifier.getFrozenAttitudeProvider(attitudeProvider);
- }
- /** {@inheritDoc} */
- @Override
- protected StateMapper createMapper(final AbsoluteDate referenceDate, final double mu,
- final OrbitType orbitType, final PositionAngleType positionAngleType,
- final AttitudeProvider attitudeProvider, final Frame frame) {
- return new OsculatingMapper(referenceDate, mu, orbitType, positionAngleType, attitudeProvider, frame);
- }
- /** Internal mapper using directly osculating parameters. */
- private static class OsculatingMapper extends StateMapper {
- /** Simple constructor.
- * <p>
- * The position parameter type is meaningful only if {@link
- * #getOrbitType() propagation orbit type}
- * support it. As an example, it is not meaningful for propagation
- * in {@link OrbitType#CARTESIAN Cartesian} parameters.
- * </p>
- * @param referenceDate reference date
- * @param mu central attraction coefficient (m³/s²)
- * @param orbitType orbit type to use for mapping (can be null for {@link AbsolutePVCoordinates})
- * @param positionAngleType angle type to use for propagation
- * @param attitudeProvider attitude provider
- * @param frame inertial frame
- */
- OsculatingMapper(final AbsoluteDate referenceDate, final double mu,
- final OrbitType orbitType, final PositionAngleType positionAngleType,
- final AttitudeProvider attitudeProvider, final Frame frame) {
- super(referenceDate, mu, orbitType, positionAngleType, attitudeProvider, frame);
- }
- /** {@inheritDoc} */
- public SpacecraftState mapArrayToState(final AbsoluteDate date, final double[] y, final double[] yDot,
- final PropagationType type) {
- // the parameter type is ignored for the Numerical Propagator
- final double mass = y[6];
- if (mass <= 0.0) {
- throw new OrekitException(OrekitMessages.NOT_POSITIVE_SPACECRAFT_MASS, mass);
- }
- if (getOrbitType() == null) {
- // propagation uses absolute position-velocity-acceleration
- final Vector3D p = new Vector3D(y[0], y[1], y[2]);
- final Vector3D v = new Vector3D(y[3], y[4], y[5]);
- final Vector3D a;
- final AbsolutePVCoordinates absPva;
- if (yDot == null) {
- absPva = new AbsolutePVCoordinates(getFrame(), new TimeStampedPVCoordinates(date, p, v));
- } else {
- a = new Vector3D(yDot[3], yDot[4], yDot[5]);
- absPva = new AbsolutePVCoordinates(getFrame(), new TimeStampedPVCoordinates(date, p, v, a));
- }
- final Attitude attitude = getAttitudeProvider().getAttitude(absPva, date, getFrame());
- return new SpacecraftState(absPva, attitude).withMass(mass);
- } else {
- // propagation uses regular orbits
- final Orbit orbit = getOrbitType().mapArrayToOrbit(y, yDot, getPositionAngleType(), date, getMu(), getFrame());
- final Attitude attitude = getAttitudeProvider().getAttitude(orbit, date, getFrame());
- return new SpacecraftState(orbit, attitude).withMass(mass);
- }
- }
- /** {@inheritDoc} */
- public void mapStateToArray(final SpacecraftState state, final double[] y, final double[] yDot) {
- if (getOrbitType() == null) {
- // propagation uses absolute position-velocity-acceleration
- final Vector3D p = state.getAbsPVA().getPosition();
- final Vector3D v = state.getAbsPVA().getVelocity();
- y[0] = p.getX();
- y[1] = p.getY();
- y[2] = p.getZ();
- y[3] = v.getX();
- y[4] = v.getY();
- y[5] = v.getZ();
- y[6] = state.getMass();
- }
- else {
- getOrbitType().mapOrbitToArray(state.getOrbit(), getPositionAngleType(), y, yDot);
- y[6] = state.getMass();
- }
- }
- }
- /** {@inheritDoc} */
- protected MainStateEquations getMainStateEquations(final ODEIntegrator integrator) {
- return new Main(integrator);
- }
- /** Internal class for osculating parameters integration. */
- private class Main implements MainStateEquations, TimeDerivativesEquations {
- /** Derivatives array. */
- private final double[] yDot;
- /** Current state. */
- private SpacecraftState currentState;
- /** Jacobian of the orbital parameters with respect to the Cartesian parameters. */
- private final double[][] jacobian;
- /** Flag keeping track whether Jacobian matrix needs to be recomputed or not. */
- private boolean recomputingJacobian;
- /** Simple constructor.
- * @param integrator numerical integrator to use for propagation.
- */
- Main(final ODEIntegrator integrator) {
- this.yDot = new double[7];
- this.jacobian = new double[6][6];
- this.recomputingJacobian = true;
- // feed internal event detectors
- for (final ForceModel forceModel : forceModels) {
- forceModel.getEventDetectors().forEach(detector -> setUpEventDetector(integrator, detector));
- }
- getAttitudeProvider().getEventDetectors().forEach(detector -> setUpEventDetector(integrator, detector));
- // default value for Jacobian is identity
- for (int i = 0; i < jacobian.length; ++i) {
- Arrays.fill(jacobian[i], 0.0);
- jacobian[i][i] = 1.0;
- }
- }
- /** {@inheritDoc} */
- @Override
- public void init(final SpacecraftState initialState, final AbsoluteDate target) {
- needFullAttitudeForDerivatives = forceModels.stream().anyMatch(ForceModel::dependsOnAttitudeRate);
- forceModels.forEach(fm -> fm.init(initialState, target));
- final int numberOfForces = forceModels.size();
- final OrbitType orbitType = getOrbitType();
- if (orbitType != null && orbitType != OrbitType.CARTESIAN && numberOfForces > 0) {
- if (numberOfForces > 1) {
- recomputingJacobian = true;
- } else {
- recomputingJacobian = !(forceModels.get(0) instanceof NewtonianAttraction);
- }
- } else {
- recomputingJacobian = false;
- }
- }
- /** {@inheritDoc} */
- @Override
- public double[] computeDerivatives(final SpacecraftState state) {
- currentState = state;
- Arrays.fill(yDot, 0.0);
- if (recomputingJacobian) {
- // propagation uses Jacobian matrix of orbital parameters w.r.t. Cartesian ones
- currentState.getOrbit().getJacobianWrtCartesian(getPositionAngleType(), jacobian);
- }
- // compute the contributions of all perturbing forces,
- // using the Kepler contribution at the end since
- // NewtonianAttraction is always the last instance in the list
- for (final ForceModel forceModel : forceModels) {
- forceModel.addContribution(state, this);
- }
- if (getOrbitType() == null) {
- // position derivative is velocity, and was not added above in the force models
- // (it is added when orbit type is non-null because NewtonianAttraction considers it)
- final Vector3D velocity = currentState.getPVCoordinates().getVelocity();
- yDot[0] += velocity.getX();
- yDot[1] += velocity.getY();
- yDot[2] += velocity.getZ();
- }
- return yDot.clone();
- }
- /** {@inheritDoc} */
- @Override
- public void addKeplerContribution(final double mu) {
- if (getOrbitType() == null) {
- // if mu is neither 0 nor NaN, we want to include Newtonian acceleration
- if (mu > 0) {
- // velocity derivative is Newtonian acceleration
- final Vector3D position = currentState.getPosition();
- final double r2 = position.getNormSq();
- final double coeff = -mu / (r2 * FastMath.sqrt(r2));
- yDot[3] += coeff * position.getX();
- yDot[4] += coeff * position.getY();
- yDot[5] += coeff * position.getZ();
- }
- } else {
- // propagation uses regular orbits
- currentState.getOrbit().addKeplerContribution(getPositionAngleType(), mu, yDot);
- }
- }
- /** {@inheritDoc} */
- public void addNonKeplerianAcceleration(final Vector3D gamma) {
- for (int i = 0; i < 6; ++i) {
- final double[] jRow = jacobian[i];
- yDot[i] += jRow[3] * gamma.getX() + jRow[4] * gamma.getY() + jRow[5] * gamma.getZ();
- }
- }
- /** {@inheritDoc} */
- @Override
- public void addMassDerivative(final double q) {
- if (q > 0) {
- throw new OrekitIllegalArgumentException(OrekitMessages.POSITIVE_FLOW_RATE, q);
- }
- yDot[6] += q;
- }
- }
- /** Estimate tolerance vectors for integrators when propagating in absolute position-velocity-acceleration.
- * @param dP user specified position error
- * @param absPva reference absolute position-velocity-acceleration
- * @return a two rows array, row 0 being the absolute tolerance error and row 1
- * being the relative tolerance error
- * @deprecated since 13.0. Use {@link ToleranceProvider} for default and custom tolerances.
- */
- @Deprecated
- public static double[][] tolerances(final double dP, final AbsolutePVCoordinates absPva) {
- return ToleranceProvider.of(CartesianToleranceProvider.of(dP)).getTolerances(absPva);
- }
- /** Estimate tolerance vectors for integrators when propagating in orbits.
- * <p>
- * The errors are estimated from partial derivatives properties of orbits,
- * starting from a scalar position error specified by the user.
- * Considering the energy conservation equation V = sqrt(mu (2/r - 1/a)),
- * we get at constant energy (i.e. on a Keplerian trajectory):
- * <pre>
- * V r² |dV| = mu |dr|
- * </pre>
- * <p> So we deduce a scalar velocity error consistent with the position error.
- * From here, we apply orbits Jacobians matrices to get consistent errors
- * on orbital parameters.
- *
- * <p>
- * The tolerances are only <em>orders of magnitude</em>, and integrator tolerances
- * are only local estimates, not global ones. So some care must be taken when using
- * these tolerances. Setting 1mm as a position error does NOT mean the tolerances
- * will guarantee a 1mm error position after several orbits integration.
- * </p>
- * @param dP user specified position error
- * @param orbit reference orbit
- * @param type propagation type for the meaning of the tolerance vectors elements
- * (it may be different from {@code orbit.getType()})
- * @return a two rows array, row 0 being the absolute tolerance error and row 1
- * being the relative tolerance error
- * @deprecated since 13.0. Use {@link ToleranceProvider} for default and custom tolerances.
- */
- @Deprecated
- public static double[][] tolerances(final double dP, final Orbit orbit, final OrbitType type) {
- return ToleranceProvider.getDefaultToleranceProvider(dP).getTolerances(orbit, type, PositionAngleType.TRUE);
- }
- /** Estimate tolerance vectors for integrators when propagating in orbits.
- * <p>
- * The errors are estimated from partial derivatives properties of orbits,
- * starting from scalar position and velocity errors specified by the user.
- * <p>
- * The tolerances are only <em>orders of magnitude</em>, and integrator tolerances
- * are only local estimates, not global ones. So some care must be taken when using
- * these tolerances. Setting 1mm as a position error does NOT mean the tolerances
- * will guarantee a 1mm error position after several orbits integration.
- * </p>
- * @param dP user specified position error
- * @param dV user specified velocity error
- * @param orbit reference orbit
- * @param type propagation type for the meaning of the tolerance vectors elements
- * (it may be different from {@code orbit.getType()})
- * @return a two rows array, row 0 being the absolute tolerance error and row 1
- * being the relative tolerance error
- * @since 10.3
- * @deprecated since 13.0. Use {@link ToleranceProvider} for default and custom tolerances.
- */
- @Deprecated
- public static double[][] tolerances(final double dP, final double dV,
- final Orbit orbit, final OrbitType type) {
- return ToleranceProvider.of(CartesianToleranceProvider.of(dP, dV, CartesianToleranceProvider.DEFAULT_ABSOLUTE_MASS_TOLERANCE))
- .getTolerances(orbit, type, PositionAngleType.TRUE);
- }
- /** {@inheritDoc} */
- @Override
- protected void beforeIntegration(final SpacecraftState initialState, final AbsoluteDate tEnd) {
- if (!getFrame().isPseudoInertial()) {
- // inspect all force models to find InertialForces
- for (ForceModel force : forceModels) {
- if (force instanceof InertialForces) {
- return;
- }
- }
- // throw exception if no inertial forces found
- throw new OrekitException(OrekitMessages.INERTIAL_FORCE_MODEL_MISSING, getFrame().getName());
- }
- }
- }