AdditionalDerivativesProvider.java

  1. /* Copyright 2002-2025 CS GROUP
  2.  * Licensed to CS GROUP (CS) under one or more
  3.  * contributor license agreements.  See the NOTICE file distributed with
  4.  * this work for additional information regarding copyright ownership.
  5.  * CS licenses this file to You under the Apache License, Version 2.0
  6.  * (the "License"); you may not use this file except in compliance with
  7.  * the License.  You may obtain a copy of the License at
  8.  *
  9.  *   http://www.apache.org/licenses/LICENSE-2.0
  10.  *
  11.  * Unless required by applicable law or agreed to in writing, software
  12.  * distributed under the License is distributed on an "AS IS" BASIS,
  13.  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  14.  * See the License for the specific language governing permissions and
  15.  * limitations under the License.
  16.  */
  17. package org.orekit.propagation.integration;

  18. import org.orekit.propagation.SpacecraftState;
  19. import org.orekit.time.AbsoluteDate;

  20. /** Provider for additional derivatives.
  21.  *
  22.  * <p>
  23.  * In some cases users may need to integrate some problem-specific equations along with
  24.  * classical spacecraft equations of motions. One example is optimal control in low
  25.  * thrust where adjoint parameters linked to the minimized Hamiltonian must be integrated.
  26.  * Another example is formation flying or rendez-vous which use the Clohessy-Whiltshire
  27.  * equations for the relative motion.
  28.  * </p>
  29.  * <p>
  30.  * This interface allows users to add such equations to a {@link
  31.  * org.orekit.propagation.numerical.NumericalPropagator numerical propagator} or a {@link
  32.  * org.orekit.propagation.semianalytical.dsst.DSSTPropagator DSST propagator}. Users provide the
  33.  * equations as an implementation of this interface and register it to the propagator thanks to
  34.  * its {@link AbstractIntegratedPropagator#addAdditionalDerivativesProvider(AdditionalDerivativesProvider)}
  35.  * method. Several such objects can be registered with each numerical propagator, but it is
  36.  * recommended to gather in the same object the sets of parameters which equations can interact
  37.  * on each others states.
  38.  * </p>
  39.  * <p>
  40.  * This interface is the numerical (read not already integrated) counterpart of
  41.  * the {@link org.orekit.propagation.AdditionalDataProvider} interface.
  42.  * It allows to append various additional state parameters to any {@link
  43.  * org.orekit.propagation.numerical.NumericalPropagator numerical propagator} or {@link
  44.  * org.orekit.propagation.semianalytical.dsst.DSSTPropagator DSST propagator}.
  45.  * </p>
  46.  * @see org.orekit.propagation.integration.AbstractIntegratedPropagator
  47.  * @author Luc Maisonobe
  48.  * @since 11.1
  49.  */
  50. public interface AdditionalDerivativesProvider {

  51.     /** Get the name of the additional derivatives (which will become state once integrated).
  52.      * @return name of the additional state (names containing "orekit"
  53.      * with any case are reserved for the library internal use)
  54.      */
  55.     String getName();

  56.     /** Get the dimension of the generated derivative.
  57.      * @return dimension of the generated
  58.      */
  59.     int getDimension();

  60.     /** Initialize the generator at the start of propagation.
  61.      * @param initialState initial state information at the start of propagation
  62.      * @param target       date of propagation
  63.      */
  64.     default void init(final SpacecraftState initialState, final AbsoluteDate target) {
  65.         // nothing by default
  66.     }

  67.     /** Check if this provider should yield so another provider has an opportunity to add missing parts.
  68.      * <p>
  69.      * Decision to yield is often based on an additional state being {@link SpacecraftState#hasAdditionalData(String)
  70.      * already available} in the provided {@code state} (but it could theoretically also depend on
  71.      * an additional state derivative being {@link SpacecraftState#hasAdditionalStateDerivative(String)
  72.      * already available}, or any other criterion). If for example a provider needs the state transition
  73.      * matrix, it could implement this method as:
  74.      * </p>
  75.      * <pre>{@code
  76.      * public boolean yields(final SpacecraftState state) {
  77.      *     return !state.getAdditionalStates().containsKey("STM");
  78.      * }
  79.      * }</pre>
  80.      * <p>
  81.      * The default implementation returns {@code false}, meaning that derivative data can be
  82.      * {@link #combinedDerivatives(SpacecraftState) computed} immediately.
  83.      * </p>
  84.      * @param state state to handle
  85.      * @return true if this provider should yield so another provider has an opportunity to add missing parts
  86.      * as the state is incrementally built up
  87.      */
  88.     default boolean yields(SpacecraftState state) {
  89.         return false;
  90.     }

  91.     /** Compute the derivatives related to the additional state (and optionally main state increments).
  92.      * @param s current state information: date, kinematics, attitude, and
  93.      * additional states this equations depend on (according to the
  94.      * {@link #yields(SpacecraftState) yields} method)
  95.      * @return computed combined derivatives, which may include some incremental
  96.      * coupling effect to add to main state derivatives
  97.      * @since 11.2
  98.      */
  99.     CombinedDerivatives combinedDerivatives(SpacecraftState s);

  100. }