AbstractIntegratedPropagator.java
/* Copyright 2002-2024 CS GROUP
* Licensed to CS GROUP (CS) under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* CS licenses this file to You under the Apache License, Version 2.0
* (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package org.orekit.propagation.integration;
import java.util.ArrayList;
import java.util.Arrays;
import java.util.Collection;
import java.util.Collections;
import java.util.HashMap;
import java.util.LinkedList;
import java.util.List;
import java.util.Map;
import java.util.Queue;
import org.hipparchus.analysis.UnivariateFunction;
import org.hipparchus.analysis.solvers.BracketedUnivariateSolver;
import org.hipparchus.analysis.solvers.BracketingNthOrderBrentSolver;
import org.hipparchus.exception.MathRuntimeException;
import org.hipparchus.ode.DenseOutputModel;
import org.hipparchus.ode.ExpandableODE;
import org.hipparchus.ode.ODEIntegrator;
import org.hipparchus.ode.ODEState;
import org.hipparchus.ode.ODEStateAndDerivative;
import org.hipparchus.ode.OrdinaryDifferentialEquation;
import org.hipparchus.ode.SecondaryODE;
import org.hipparchus.ode.events.Action;
import org.hipparchus.ode.events.AdaptableInterval;
import org.hipparchus.ode.events.ODEEventDetector;
import org.hipparchus.ode.events.ODEEventHandler;
import org.hipparchus.ode.sampling.AbstractODEStateInterpolator;
import org.hipparchus.ode.sampling.ODEStateInterpolator;
import org.hipparchus.ode.sampling.ODEStepHandler;
import org.hipparchus.util.Precision;
import org.orekit.attitudes.AttitudeProvider;
import org.orekit.errors.OrekitException;
import org.orekit.errors.OrekitInternalError;
import org.orekit.errors.OrekitMessages;
import org.orekit.frames.Frame;
import org.orekit.orbits.OrbitType;
import org.orekit.orbits.PositionAngleType;
import org.orekit.propagation.AbstractPropagator;
import org.orekit.propagation.BoundedPropagator;
import org.orekit.propagation.EphemerisGenerator;
import org.orekit.propagation.PropagationType;
import org.orekit.propagation.SpacecraftState;
import org.orekit.propagation.events.EventDetector;
import org.orekit.propagation.events.handlers.EventHandler;
import org.orekit.propagation.sampling.OrekitStepHandler;
import org.orekit.propagation.sampling.OrekitStepInterpolator;
import org.orekit.time.AbsoluteDate;
import org.orekit.utils.DoubleArrayDictionary;
/** Common handling of {@link org.orekit.propagation.Propagator Propagator}
* methods for both numerical and semi-analytical propagators.
* @author Luc Maisonobe
*/
public abstract class AbstractIntegratedPropagator extends AbstractPropagator {
/** Internal name used for complete secondary state dimension.
* @since 11.1
*/
private static final String SECONDARY_DIMENSION = "Orekit-secondary-dimension";
/** Event detectors not related to force models. */
private final List<EventDetector> detectors;
/** Step handlers dedicated to ephemeris generation. */
private final List<StoringStepHandler> ephemerisGenerators;
/** Integrator selected by the user for the orbital extrapolation process. */
private final ODEIntegrator integrator;
/** Offsets of secondary states managed by {@link AdditionalDerivativesProvider}.
* @since 11.1
*/
private final Map<String, Integer> secondaryOffsets;
/** Additional derivatives providers.
* @since 11.1
*/
private final List<AdditionalDerivativesProvider> additionalDerivativesProviders;
/** Map of secondary equation offset in main
/** Counter for differential equations calls. */
private int calls;
/** Mapper between raw double components and space flight dynamics objects. */
private StateMapper stateMapper;
/**
* Attitude provider when evaluating derivatives. Can be a frozen one for performance.
* @since 12.1
*/
private AttitudeProvider attitudeProviderForDerivatives;
/** Flag for resetting the state at end of propagation. */
private boolean resetAtEnd;
/** Type of orbit to output (mean or osculating) <br/>
* <p>
* This is used only in the case of semi-analytical propagators where there is a clear separation between
* mean and short periodic elements. It is ignored by the Numerical propagator.
* </p>
*/
private final PropagationType propagationType;
/** Build a new instance.
* @param integrator numerical integrator to use for propagation.
* @param propagationType type of orbit to output (mean or osculating).
*/
protected AbstractIntegratedPropagator(final ODEIntegrator integrator, final PropagationType propagationType) {
detectors = new ArrayList<>();
ephemerisGenerators = new ArrayList<>();
additionalDerivativesProviders = new ArrayList<>();
this.secondaryOffsets = new HashMap<>();
this.integrator = integrator;
this.propagationType = propagationType;
this.resetAtEnd = true;
}
/** Allow/disallow resetting the initial state at end of propagation.
* <p>
* By default, at the end of the propagation, the propagator resets the initial state
* to the final state, thus allowing a new propagation to be started from there without
* recomputing the part already performed. Calling this method with {@code resetAtEnd} set
* to false changes prevents such reset.
* </p>
* @param resetAtEnd if true, at end of each propagation, the {@link
* #getInitialState() initial state} will be reset to the final state of
* the propagation, otherwise the initial state will be preserved
* @since 9.0
*/
public void setResetAtEnd(final boolean resetAtEnd) {
this.resetAtEnd = resetAtEnd;
}
/** Getter for the resetting flag regarding initial state.
* @return resetting flag
* @since 12.0
*/
public boolean getResetAtEnd() {
return this.resetAtEnd;
}
/**
* Method called when initializing the attitude provider used when evaluating derivatives.
* @return attitude provider for derivatives
*/
protected AttitudeProvider initializeAttitudeProviderForDerivatives() {
return getAttitudeProvider();
}
/** Initialize the mapper. */
protected void initMapper() {
stateMapper = createMapper(null, Double.NaN, null, null, null, null);
}
/** Get the integrator's name.
* @return name of underlying integrator
* @since 12.0
*/
public String getIntegratorName() {
return integrator.getName();
}
/** {@inheritDoc} */
@Override
public void setAttitudeProvider(final AttitudeProvider attitudeProvider) {
super.setAttitudeProvider(attitudeProvider);
stateMapper = createMapper(stateMapper.getReferenceDate(), stateMapper.getMu(),
stateMapper.getOrbitType(), stateMapper.getPositionAngleType(),
attitudeProvider, stateMapper.getFrame());
}
/** Set propagation orbit type.
* @param orbitType orbit type to use for propagation, null for
* propagating using {@link org.orekit.utils.AbsolutePVCoordinates AbsolutePVCoordinates}
* rather than {@link org.orekit.orbits Orbit}
*/
protected void setOrbitType(final OrbitType orbitType) {
stateMapper = createMapper(stateMapper.getReferenceDate(), stateMapper.getMu(),
orbitType, stateMapper.getPositionAngleType(),
stateMapper.getAttitudeProvider(), stateMapper.getFrame());
}
/** Get propagation parameter type.
* @return orbit type used for propagation, null for
* propagating using {@link org.orekit.utils.AbsolutePVCoordinates AbsolutePVCoordinates}
* rather than {@link org.orekit.orbits Orbit}
*/
protected OrbitType getOrbitType() {
return stateMapper.getOrbitType();
}
/** Get the propagation type.
* @return propagation type.
* @since 11.1
*/
public PropagationType getPropagationType() {
return propagationType;
}
/** Set position angle type.
* <p>
* The position parameter type is meaningful only if {@link
* #getOrbitType() propagation orbit type}
* support it. As an example, it is not meaningful for propagation
* in {@link OrbitType#CARTESIAN Cartesian} parameters.
* </p>
* @param positionAngleType angle type to use for propagation
*/
protected void setPositionAngleType(final PositionAngleType positionAngleType) {
stateMapper = createMapper(stateMapper.getReferenceDate(), stateMapper.getMu(),
stateMapper.getOrbitType(), positionAngleType,
stateMapper.getAttitudeProvider(), stateMapper.getFrame());
}
/** Get propagation parameter type.
* @return angle type to use for propagation
*/
protected PositionAngleType getPositionAngleType() {
return stateMapper.getPositionAngleType();
}
/** Set the central attraction coefficient μ.
* @param mu central attraction coefficient (m³/s²)
*/
public void setMu(final double mu) {
stateMapper = createMapper(stateMapper.getReferenceDate(), mu,
stateMapper.getOrbitType(), stateMapper.getPositionAngleType(),
stateMapper.getAttitudeProvider(), stateMapper.getFrame());
}
/** Get the central attraction coefficient μ.
* @return mu central attraction coefficient (m³/s²)
* @see #setMu(double)
*/
public double getMu() {
return stateMapper.getMu();
}
/** Get the number of calls to the differential equations computation method.
* <p>The number of calls is reset each time the {@link #propagate(AbsoluteDate)}
* method is called.</p>
* @return number of calls to the differential equations computation method
*/
public int getCalls() {
return calls;
}
/** {@inheritDoc} */
@Override
public boolean isAdditionalStateManaged(final String name) {
// first look at already integrated states
if (super.isAdditionalStateManaged(name)) {
return true;
}
// then look at states we integrate ourselves
for (final AdditionalDerivativesProvider provider : additionalDerivativesProviders) {
if (provider.getName().equals(name)) {
return true;
}
}
return false;
}
/** {@inheritDoc} */
@Override
public String[] getManagedAdditionalStates() {
final String[] alreadyIntegrated = super.getManagedAdditionalStates();
final String[] managed = new String[alreadyIntegrated.length + additionalDerivativesProviders.size()];
System.arraycopy(alreadyIntegrated, 0, managed, 0, alreadyIntegrated.length);
for (int i = 0; i < additionalDerivativesProviders.size(); ++i) {
managed[i + alreadyIntegrated.length] = additionalDerivativesProviders.get(i).getName();
}
return managed;
}
/** Add a provider for user-specified state derivatives to be integrated along with the orbit propagation.
* @param provider provider for additional derivatives
* @see #addAdditionalStateProvider(org.orekit.propagation.AdditionalStateProvider)
* @since 11.1
*/
public void addAdditionalDerivativesProvider(final AdditionalDerivativesProvider provider) {
// check if the name is already used
if (isAdditionalStateManaged(provider.getName())) {
// these derivatives are already registered, complain
throw new OrekitException(OrekitMessages.ADDITIONAL_STATE_NAME_ALREADY_IN_USE,
provider.getName());
}
// this is really a new set of derivatives, add it
additionalDerivativesProviders.add(provider);
secondaryOffsets.clear();
}
/** Get an unmodifiable list of providers for additional derivatives.
* @return providers for the additional derivatives
* @since 11.1
*/
public List<AdditionalDerivativesProvider> getAdditionalDerivativesProviders() {
return Collections.unmodifiableList(additionalDerivativesProviders);
}
/** {@inheritDoc} */
public void addEventDetector(final EventDetector detector) {
detectors.add(detector);
}
/** {@inheritDoc} */
public Collection<EventDetector> getEventDetectors() {
return Collections.unmodifiableCollection(detectors);
}
/** {@inheritDoc} */
public void clearEventsDetectors() {
detectors.clear();
}
/** Set up all user defined event detectors.
*/
protected void setUpUserEventDetectors() {
for (final EventDetector detector : detectors) {
setUpEventDetector(integrator, detector);
}
}
/** Wrap an Orekit event detector and register it to the integrator.
* @param integ integrator into which event detector should be registered
* @param detector event detector to wrap
*/
protected void setUpEventDetector(final ODEIntegrator integ, final EventDetector detector) {
integ.addEventDetector(new AdaptedEventDetector(detector));
}
/** {@inheritDoc} */
@Override
public EphemerisGenerator getEphemerisGenerator() {
final StoringStepHandler storingHandler = new StoringStepHandler();
ephemerisGenerators.add(storingHandler);
return storingHandler;
}
/** Create a mapper between raw double components and spacecraft state.
/** Simple constructor.
* <p>
* The position parameter type is meaningful only if {@link
* #getOrbitType() propagation orbit type}
* support it. As an example, it is not meaningful for propagation
* in {@link OrbitType#CARTESIAN Cartesian} parameters.
* </p>
* @param referenceDate reference date
* @param mu central attraction coefficient (m³/s²)
* @param orbitType orbit type to use for mapping
* @param positionAngleType angle type to use for propagation
* @param attitudeProvider attitude provider
* @param frame inertial frame
* @return new mapper
*/
protected abstract StateMapper createMapper(AbsoluteDate referenceDate, double mu,
OrbitType orbitType, PositionAngleType positionAngleType,
AttitudeProvider attitudeProvider, Frame frame);
/** Get the differential equations to integrate (for main state only).
* @param integ numerical integrator to use for propagation.
* @return differential equations for main state
*/
protected abstract MainStateEquations getMainStateEquations(ODEIntegrator integ);
/** {@inheritDoc} */
@Override
public SpacecraftState propagate(final AbsoluteDate target) {
if (getStartDate() == null) {
if (getInitialState() == null) {
throw new OrekitException(OrekitMessages.INITIAL_STATE_NOT_SPECIFIED_FOR_ORBIT_PROPAGATION);
}
setStartDate(getInitialState().getDate());
}
return propagate(getStartDate(), target);
}
/** {@inheritDoc} */
public SpacecraftState propagate(final AbsoluteDate tStart, final AbsoluteDate tEnd) {
if (getInitialState() == null) {
throw new OrekitException(OrekitMessages.INITIAL_STATE_NOT_SPECIFIED_FOR_ORBIT_PROPAGATION);
}
// make sure the integrator will be reset properly even if we change its events handlers and step handlers
try (IntegratorResetter resetter = new IntegratorResetter(integrator)) {
// prepare handling of STM and Jacobian matrices
setUpStmAndJacobianGenerators();
// Initialize additional states
initializeAdditionalStates(tEnd);
if (!tStart.equals(getInitialState().getDate())) {
// if propagation start date is not initial date,
// propagate from initial to start date without event detection
try (IntegratorResetter startResetter = new IntegratorResetter(integrator)) {
integrateDynamics(tStart, true);
}
}
// set up events added by user
setUpUserEventDetectors();
// set up step handlers
for (final OrekitStepHandler handler : getMultiplexer().getHandlers()) {
integrator.addStepHandler(new AdaptedStepHandler(handler));
}
for (final StoringStepHandler generator : ephemerisGenerators) {
generator.setEndDate(tEnd);
integrator.addStepHandler(generator);
}
// propagate from start date to end date with event detection
final SpacecraftState finalState = integrateDynamics(tEnd, false);
// Finalize event detectors
getEventDetectors().forEach(detector -> detector.finish(finalState));
return finalState;
}
}
/** Reset initial state with a given propagation type.
*
* <p> By default this method returns the same as {@link #resetInitialState(SpacecraftState)}
* <p> Its purpose is mostly to be derived in DSSTPropagator
*
* @param state new initial state to consider
* @param stateType type of the new state (mean or osculating)
* @since 12.1.3
*/
public void resetInitialState(final SpacecraftState state, final PropagationType stateType) {
// Default behavior, do not take propagation type into account
resetInitialState(state);
}
/** Set up State Transition Matrix and Jacobian matrix handling.
* @since 11.1
*/
protected void setUpStmAndJacobianGenerators() {
// nothing to do by default
}
/** Propagation with or without event detection.
* @param tEnd target date to which orbit should be propagated
* @param forceResetAtEnd flag to force resetting state and date after integration
* @return state at end of propagation
*/
private SpacecraftState integrateDynamics(final AbsoluteDate tEnd, final boolean forceResetAtEnd) {
try {
initializePropagation();
if (getInitialState().getDate().equals(tEnd)) {
// don't extrapolate
return getInitialState();
}
// space dynamics view
stateMapper = createMapper(getInitialState().getDate(), stateMapper.getMu(),
stateMapper.getOrbitType(), stateMapper.getPositionAngleType(),
stateMapper.getAttitudeProvider(), getInitialState().getFrame());
attitudeProviderForDerivatives = initializeAttitudeProviderForDerivatives();
if (Double.isNaN(getMu())) {
setMu(getInitialState().getMu());
}
if (getInitialState().getMass() <= 0.0) {
throw new OrekitException(OrekitMessages.NOT_POSITIVE_SPACECRAFT_MASS,
getInitialState().getMass());
}
// convert space flight dynamics API to math API
final SpacecraftState initialIntegrationState = getInitialIntegrationState();
final ODEState mathInitialState = createInitialState(initialIntegrationState);
final ExpandableODE mathODE = createODE(integrator);
// mathematical integration
final ODEStateAndDerivative mathFinalState;
beforeIntegration(initialIntegrationState, tEnd);
mathFinalState = integrator.integrate(mathODE, mathInitialState,
tEnd.durationFrom(getInitialState().getDate()));
afterIntegration();
// get final state
SpacecraftState finalState =
stateMapper.mapArrayToState(stateMapper.mapDoubleToDate(mathFinalState.getTime(),
tEnd),
mathFinalState.getPrimaryState(),
mathFinalState.getPrimaryDerivative(),
propagationType);
finalState = updateAdditionalStatesAndDerivatives(finalState, mathFinalState);
if (resetAtEnd || forceResetAtEnd) {
resetInitialState(finalState, propagationType);
setStartDate(finalState.getDate());
}
return finalState;
} catch (MathRuntimeException mre) {
throw OrekitException.unwrap(mre);
}
}
/**
* Returns an updated version of the inputted state with additional states, including
* from derivatives providers.
* @param originalState input state
* @param os ODE state and derivative
* @return new state
* @since 12.1
*/
private SpacecraftState updateAdditionalStatesAndDerivatives(final SpacecraftState originalState,
final ODEStateAndDerivative os) {
SpacecraftState updatedState = originalState;
if (os.getNumberOfSecondaryStates() > 0) {
final double[] secondary = os.getSecondaryState(1);
final double[] secondaryDerivative = os.getSecondaryDerivative(1);
for (final AdditionalDerivativesProvider provider : additionalDerivativesProviders) {
final String name = provider.getName();
final int offset = secondaryOffsets.get(name);
final int dimension = provider.getDimension();
updatedState = updatedState.addAdditionalState(name, Arrays.copyOfRange(secondary, offset, offset + dimension));
updatedState = updatedState.addAdditionalStateDerivative(name, Arrays.copyOfRange(secondaryDerivative, offset, offset + dimension));
}
}
return updateAdditionalStates(updatedState);
}
/** Get the initial state for integration.
* @return initial state for integration
*/
protected SpacecraftState getInitialIntegrationState() {
return getInitialState();
}
/** Create an initial state.
* @param initialState initial state in flight dynamics world
* @return initial state in mathematics world
*/
private ODEState createInitialState(final SpacecraftState initialState) {
// retrieve initial state
final double[] primary = new double[getBasicDimension()];
stateMapper.mapStateToArray(initialState, primary, null);
if (secondaryOffsets.isEmpty()) {
// compute dimension of the secondary state
int offset = 0;
for (final AdditionalDerivativesProvider provider : additionalDerivativesProviders) {
secondaryOffsets.put(provider.getName(), offset);
offset += provider.getDimension();
}
secondaryOffsets.put(SECONDARY_DIMENSION, offset);
}
return new ODEState(0.0, primary, secondary(initialState));
}
/** Create secondary state.
* @param state spacecraft state
* @return secondary state
* @since 11.1
*/
private double[][] secondary(final SpacecraftState state) {
if (secondaryOffsets.isEmpty()) {
return null;
}
final double[][] secondary = new double[1][secondaryOffsets.get(SECONDARY_DIMENSION)];
for (final AdditionalDerivativesProvider provider : additionalDerivativesProviders) {
final String name = provider.getName();
final int offset = secondaryOffsets.get(name);
final double[] additional = state.getAdditionalState(name);
System.arraycopy(additional, 0, secondary[0], offset, additional.length);
}
return secondary;
}
/** Create secondary state derivative.
* @param state spacecraft state
* @return secondary state derivative
* @since 11.1
*/
private double[][] secondaryDerivative(final SpacecraftState state) {
if (secondaryOffsets.isEmpty()) {
return null;
}
final double[][] secondaryDerivative = new double[1][secondaryOffsets.get(SECONDARY_DIMENSION)];
for (final AdditionalDerivativesProvider provider : additionalDerivativesProviders) {
final String name = provider.getName();
final int offset = secondaryOffsets.get(name);
final double[] additionalDerivative = state.getAdditionalStateDerivative(name);
System.arraycopy(additionalDerivative, 0, secondaryDerivative[0], offset, additionalDerivative.length);
}
return secondaryDerivative;
}
/** Create an ODE with all equations.
* @param integ numerical integrator to use for propagation.
* @return a new ode
*/
private ExpandableODE createODE(final ODEIntegrator integ) {
final ExpandableODE ode =
new ExpandableODE(new ConvertedMainStateEquations(getMainStateEquations(integ)));
// secondary part of the ODE
if (!additionalDerivativesProviders.isEmpty()) {
ode.addSecondaryEquations(new ConvertedSecondaryStateEquations());
}
return ode;
}
/** Method called just before integration.
* <p>
* The default implementation does nothing, it may be specialized in subclasses.
* </p>
* @param initialState initial state
* @param tEnd target date at which state should be propagated
*/
protected void beforeIntegration(final SpacecraftState initialState,
final AbsoluteDate tEnd) {
// do nothing by default
}
/** Method called just after integration.
* <p>
* The default implementation does nothing, it may be specialized in subclasses.
* </p>
*/
protected void afterIntegration() {
// do nothing by default
}
/** Get state vector dimension without additional parameters.
* @return state vector dimension without additional parameters.
*/
public int getBasicDimension() {
return 7;
}
/** Get the integrator used by the propagator.
* @return the integrator.
*/
protected ODEIntegrator getIntegrator() {
return integrator;
}
/** Convert a state from mathematical world to space flight dynamics world.
* @param os mathematical state
* @return space flight dynamics state
*/
private SpacecraftState convert(final ODEStateAndDerivative os) {
final SpacecraftState s = stateMapper.mapArrayToState(os.getTime(), os.getPrimaryState(),
os.getPrimaryDerivative(), propagationType);
return updateAdditionalStatesAndDerivatives(s, os);
}
/** Convert a state from space flight dynamics world to mathematical world.
* @param state space flight dynamics state
* @return mathematical state
*/
private ODEStateAndDerivative convert(final SpacecraftState state) {
// retrieve initial state
final double[] primary = new double[getBasicDimension()];
final double[] primaryDot = new double[getBasicDimension()];
stateMapper.mapStateToArray(state, primary, primaryDot);
// secondary part of the ODE
final double[][] secondary = secondary(state);
final double[][] secondaryDerivative = secondaryDerivative(state);
return new ODEStateAndDerivative(stateMapper.mapDateToDouble(state.getDate()),
primary, primaryDot,
secondary, secondaryDerivative);
}
/** Differential equations for the main state (orbit, attitude and mass). */
public interface MainStateEquations {
/**
* Initialize the equations at the start of propagation. This method will be
* called before any calls to {@link #computeDerivatives(SpacecraftState)}.
*
* <p> The default implementation of this method does nothing.
*
* @param initialState initial state information at the start of propagation.
* @param target date of propagation. Not equal to {@code
* initialState.getDate()}.
*/
default void init(final SpacecraftState initialState, final AbsoluteDate target) {
}
/** Compute differential equations for main state.
* @param state current state
* @return derivatives of main state
*/
double[] computeDerivatives(SpacecraftState state);
}
/** Differential equations for the main state (orbit, attitude and mass), with converted API. */
private class ConvertedMainStateEquations implements OrdinaryDifferentialEquation {
/** Main state equations. */
private final MainStateEquations main;
/** Simple constructor.
* @param main main state equations
*/
ConvertedMainStateEquations(final MainStateEquations main) {
this.main = main;
calls = 0;
}
/** {@inheritDoc} */
public int getDimension() {
return getBasicDimension();
}
@Override
public void init(final double t0, final double[] y0, final double finalTime) {
// update space dynamics view
SpacecraftState initialState = stateMapper.mapArrayToState(t0, y0, null, PropagationType.MEAN);
initialState = updateAdditionalStates(initialState);
initialState = updateStatesFromAdditionalDerivativesIfKnown(initialState);
final AbsoluteDate target = stateMapper.mapDoubleToDate(finalTime);
main.init(initialState, target);
attitudeProviderForDerivatives = initializeAttitudeProviderForDerivatives();
}
/**
* Returns an updated version of the inputted state, with additional states from
* derivatives providers as given in the stored initial state.
* @param originalState input state
* @return new state
* @since 12.1
*/
private SpacecraftState updateStatesFromAdditionalDerivativesIfKnown(final SpacecraftState originalState) {
SpacecraftState updatedState = originalState;
final SpacecraftState storedInitialState = getInitialState();
final double originalTime = stateMapper.mapDateToDouble(originalState.getDate());
if (storedInitialState != null && stateMapper.mapDateToDouble(storedInitialState.getDate()) == originalTime) {
for (final AdditionalDerivativesProvider provider: additionalDerivativesProviders) {
final String name = provider.getName();
final double[] value = storedInitialState.getAdditionalState(name);
updatedState = updatedState.addAdditionalState(name, value);
}
}
return updatedState;
}
/** {@inheritDoc} */
public double[] computeDerivatives(final double t, final double[] y) {
// increment calls counter
++calls;
// update space dynamics view
stateMapper.setAttitudeProvider(attitudeProviderForDerivatives);
SpacecraftState currentState = stateMapper.mapArrayToState(t, y, null, PropagationType.MEAN);
stateMapper.setAttitudeProvider(getAttitudeProvider());
currentState = updateAdditionalStates(currentState);
// compute main state differentials
return main.computeDerivatives(currentState);
}
}
/** Differential equations for the secondary state (Jacobians, user variables ...), with converted API. */
private class ConvertedSecondaryStateEquations implements SecondaryODE {
/** Dimension of the combined additional states. */
private final int combinedDimension;
/** Simple constructor.
*/
ConvertedSecondaryStateEquations() {
this.combinedDimension = secondaryOffsets.get(SECONDARY_DIMENSION);
}
/** {@inheritDoc} */
@Override
public int getDimension() {
return combinedDimension;
}
/** {@inheritDoc} */
@Override
public void init(final double t0, final double[] primary0,
final double[] secondary0, final double finalTime) {
// update space dynamics view
final SpacecraftState initialState = convert(t0, primary0, null, secondary0);
final AbsoluteDate target = stateMapper.mapDoubleToDate(finalTime);
for (final AdditionalDerivativesProvider provider : additionalDerivativesProviders) {
provider.init(initialState, target);
}
}
/** {@inheritDoc} */
@Override
public double[] computeDerivatives(final double t, final double[] primary,
final double[] primaryDot, final double[] secondary) {
// update space dynamics view
// the integrable generators generate method will be called here,
// according to the generators yield order
SpacecraftState updated = convert(t, primary, primaryDot, secondary);
// set up queue for equations
final Queue<AdditionalDerivativesProvider> pending = new LinkedList<>(additionalDerivativesProviders);
// gather the derivatives from all additional equations, taking care of dependencies
final double[] secondaryDot = new double[combinedDimension];
int yieldCount = 0;
while (!pending.isEmpty()) {
final AdditionalDerivativesProvider provider = pending.remove();
if (provider.yields(updated)) {
// this provider has to wait for another one,
// we put it again in the pending queue
pending.add(provider);
if (++yieldCount >= pending.size()) {
// all pending providers yielded!, they probably need data not yet initialized
// we let the propagation proceed, if these data are really needed right now
// an appropriate exception will be triggered when caller tries to access them
break;
}
} else {
// we can use these equations right now
final String name = provider.getName();
final int offset = secondaryOffsets.get(name);
final int dimension = provider.getDimension();
final CombinedDerivatives derivatives = provider.combinedDerivatives(updated);
final double[] additionalPart = derivatives.getAdditionalDerivatives();
final double[] mainPart = derivatives.getMainStateDerivativesIncrements();
System.arraycopy(additionalPart, 0, secondaryDot, offset, dimension);
updated = updated.addAdditionalStateDerivative(name, additionalPart);
if (mainPart != null) {
// this equation does change the main state derivatives
for (int i = 0; i < mainPart.length; ++i) {
primaryDot[i] += mainPart[i];
}
}
yieldCount = 0;
}
}
return secondaryDot;
}
/** Convert mathematical view to space view.
* @param t current value of the independent <I>time</I> variable
* @param primary array containing the current value of the primary state vector
* @param primaryDot array containing the derivative of the primary state vector
* @param secondary array containing the current value of the secondary state vector
* @return space view of the state
*/
private SpacecraftState convert(final double t, final double[] primary,
final double[] primaryDot, final double[] secondary) {
SpacecraftState initialState = stateMapper.mapArrayToState(t, primary, primaryDot, PropagationType.MEAN);
for (final AdditionalDerivativesProvider provider : additionalDerivativesProviders) {
final String name = provider.getName();
final int offset = secondaryOffsets.get(name);
final int dimension = provider.getDimension();
initialState = initialState.addAdditionalState(name, Arrays.copyOfRange(secondary, offset, offset + dimension));
}
return updateAdditionalStates(initialState);
}
}
/** Adapt an {@link org.orekit.propagation.events.EventDetector}
* to Hipparchus {@link org.hipparchus.ode.events.ODEEventDetector} interface.
* @author Fabien Maussion
*/
private class AdaptedEventDetector implements ODEEventDetector {
/** Underlying event detector. */
private final EventDetector detector;
/** Underlying event handler.
* @since 12.0
*/
private final EventHandler handler;
/** Time of the previous call to g. */
private double lastT;
/** Value from the previous call to g. */
private double lastG;
/** Build a wrapped event detector.
* @param detector event detector to wrap
*/
AdaptedEventDetector(final EventDetector detector) {
this.detector = detector;
this.handler = detector.getHandler();
this.lastT = Double.NaN;
this.lastG = Double.NaN;
}
/** {@inheritDoc} */
@Override
public AdaptableInterval getMaxCheckInterval() {
return (state, isForward) -> detector.getMaxCheckInterval().currentInterval(convert(state), isForward);
}
/** {@inheritDoc} */
@Override
public int getMaxIterationCount() {
return detector.getMaxIterationCount();
}
/** {@inheritDoc} */
@Override
public BracketedUnivariateSolver<UnivariateFunction> getSolver() {
return new BracketingNthOrderBrentSolver(0, detector.getThreshold(), 0, 5);
}
/** {@inheritDoc} */
@Override
public void init(final ODEStateAndDerivative s0, final double t) {
detector.init(convert(s0), stateMapper.mapDoubleToDate(t));
this.lastT = Double.NaN;
this.lastG = Double.NaN;
}
/** {@inheritDoc} */
public double g(final ODEStateAndDerivative s) {
if (!Precision.equals(lastT, s.getTime(), 0)) {
lastT = s.getTime();
lastG = detector.g(convert(s));
}
return lastG;
}
/** {@inheritDoc} */
public ODEEventHandler getHandler() {
return new ODEEventHandler() {
/** {@inheritDoc} */
public Action eventOccurred(final ODEStateAndDerivative s, final ODEEventDetector d, final boolean increasing) {
return handler.eventOccurred(convert(s), detector, increasing);
}
/** {@inheritDoc} */
@Override
public ODEState resetState(final ODEEventDetector d, final ODEStateAndDerivative s) {
final SpacecraftState oldState = convert(s);
final SpacecraftState newState = handler.resetState(detector, oldState);
stateChanged(newState);
// main part
final double[] primary = new double[s.getPrimaryStateDimension()];
stateMapper.mapStateToArray(newState, primary, null);
// secondary part
final double[][] secondary = new double[1][secondaryOffsets.get(SECONDARY_DIMENSION)];
for (final AdditionalDerivativesProvider provider : additionalDerivativesProviders) {
final String name = provider.getName();
final int offset = secondaryOffsets.get(name);
final int dimension = provider.getDimension();
System.arraycopy(newState.getAdditionalState(name), 0, secondary[0], offset, dimension);
}
return new ODEState(newState.getDate().durationFrom(getStartDate()),
primary, secondary);
}
};
}
}
/** Adapt an {@link org.orekit.propagation.sampling.OrekitStepHandler}
* to Hipparchus {@link ODEStepHandler} interface.
* @author Luc Maisonobe
*/
private class AdaptedStepHandler implements ODEStepHandler {
/** Underlying handler. */
private final OrekitStepHandler handler;
/** Build an instance.
* @param handler underlying handler to wrap
*/
AdaptedStepHandler(final OrekitStepHandler handler) {
this.handler = handler;
}
/** {@inheritDoc} */
@Override
public void init(final ODEStateAndDerivative s0, final double t) {
handler.init(convert(s0), stateMapper.mapDoubleToDate(t));
}
/** {@inheritDoc} */
@Override
public void handleStep(final ODEStateInterpolator interpolator) {
handler.handleStep(new AdaptedStepInterpolator(interpolator));
}
/** {@inheritDoc} */
@Override
public void finish(final ODEStateAndDerivative finalState) {
handler.finish(convert(finalState));
}
}
/** Adapt an Hipparchus {@link ODEStateInterpolator}
* to an orekit {@link OrekitStepInterpolator} interface.
* @author Luc Maisonobe
*/
private class AdaptedStepInterpolator implements OrekitStepInterpolator {
/** Underlying raw rawInterpolator. */
private final ODEStateInterpolator mathInterpolator;
/** Simple constructor.
* @param mathInterpolator underlying raw interpolator
*/
AdaptedStepInterpolator(final ODEStateInterpolator mathInterpolator) {
this.mathInterpolator = mathInterpolator;
}
/** {@inheritDoc}} */
@Override
public SpacecraftState getPreviousState() {
return convert(mathInterpolator.getPreviousState());
}
/** {@inheritDoc}} */
@Override
public boolean isPreviousStateInterpolated() {
return mathInterpolator.isPreviousStateInterpolated();
}
/** {@inheritDoc}} */
@Override
public SpacecraftState getCurrentState() {
return convert(mathInterpolator.getCurrentState());
}
/** {@inheritDoc}} */
@Override
public boolean isCurrentStateInterpolated() {
return mathInterpolator.isCurrentStateInterpolated();
}
/** {@inheritDoc}} */
@Override
public SpacecraftState getInterpolatedState(final AbsoluteDate date) {
return convert(mathInterpolator.getInterpolatedState(date.durationFrom(stateMapper.getReferenceDate())));
}
/** {@inheritDoc}} */
@Override
public boolean isForward() {
return mathInterpolator.isForward();
}
/** {@inheritDoc}} */
@Override
public AdaptedStepInterpolator restrictStep(final SpacecraftState newPreviousState,
final SpacecraftState newCurrentState) {
try {
final AbstractODEStateInterpolator aosi = (AbstractODEStateInterpolator) mathInterpolator;
return new AdaptedStepInterpolator(aosi.restrictStep(convert(newPreviousState),
convert(newCurrentState)));
} catch (ClassCastException cce) {
// this should never happen
throw new OrekitInternalError(cce);
}
}
}
/** Specialized step handler storing interpolators for ephemeris generation.
* @since 11.0
*/
private class StoringStepHandler implements ODEStepHandler, EphemerisGenerator {
/** Underlying raw mathematical model. */
private DenseOutputModel model;
/** the user supplied end date. Propagation may not end on this date. */
private AbsoluteDate endDate;
/** Generated ephemeris. */
private BoundedPropagator ephemeris;
/** Last interpolator handled by the object.*/
private ODEStateInterpolator lastInterpolator;
/** Set the end date.
* @param endDate end date
*/
public void setEndDate(final AbsoluteDate endDate) {
this.endDate = endDate;
}
/** {@inheritDoc} */
@Override
public void init(final ODEStateAndDerivative s0, final double t) {
this.model = new DenseOutputModel();
model.init(s0, t);
// ephemeris will be generated when last step is processed
this.ephemeris = null;
this.lastInterpolator = null;
}
/** {@inheritDoc} */
@Override
public BoundedPropagator getGeneratedEphemeris() {
// Each time we try to get the ephemeris, rebuild it using the last data.
buildEphemeris();
return ephemeris;
}
/** {@inheritDoc} */
@Override
public void handleStep(final ODEStateInterpolator interpolator) {
model.handleStep(interpolator);
lastInterpolator = interpolator;
}
/** {@inheritDoc} */
@Override
public void finish(final ODEStateAndDerivative finalState) {
buildEphemeris();
}
/** Method used to produce ephemeris at a given time.
* Can be used at multiple times, updating the ephemeris to
* its last state.
*/
private void buildEphemeris() {
// buildEphemeris was built in order to allow access to what was previously the finish method.
// This now allows to call it through getGeneratedEphemeris, therefore through an external call,
// which was not previously the case.
// Update the model's finalTime with the last interpolator.
model.finish(lastInterpolator.getCurrentState());
// set up the boundary dates
final double tI = model.getInitialTime();
final double tF = model.getFinalTime();
// tI is almost? always zero
final AbsoluteDate startDate =
stateMapper.mapDoubleToDate(tI);
final AbsoluteDate finalDate =
stateMapper.mapDoubleToDate(tF, this.endDate);
final AbsoluteDate minDate;
final AbsoluteDate maxDate;
if (tF < tI) {
minDate = finalDate;
maxDate = startDate;
} else {
minDate = startDate;
maxDate = finalDate;
}
// get the initial additional states that are not managed
final DoubleArrayDictionary unmanaged = new DoubleArrayDictionary();
for (final DoubleArrayDictionary.Entry initial : getInitialState().getAdditionalStatesValues().getData()) {
if (!isAdditionalStateManaged(initial.getKey())) {
// this additional state was in the initial state, but is unknown to the propagator
// we simply copy its initial value as is
unmanaged.put(initial.getKey(), initial.getValue());
}
}
// get the names of additional states managed by differential equations
final String[] names = new String[additionalDerivativesProviders.size()];
final int[] dimensions = new int[additionalDerivativesProviders.size()];
for (int i = 0; i < names.length; ++i) {
names[i] = additionalDerivativesProviders.get(i).getName();
dimensions[i] = additionalDerivativesProviders.get(i).getDimension();
}
// create the ephemeris
ephemeris = new IntegratedEphemeris(startDate, minDate, maxDate,
stateMapper, propagationType, model,
unmanaged, getAdditionalStateProviders(),
names, dimensions);
}
}
/** Wrapper for resetting an integrator handlers.
* <p>
* This class is intended to be used in a try-with-resource statement.
* If propagator-specific event handlers and step handlers are added to
* the integrator in the try block, they will be removed automatically
* when leaving the block, so the integrator only keeps its own handlers
* between calls to {@link AbstractIntegratedPropagator#propagate(AbsoluteDate, AbsoluteDate).
* </p>
* @since 11.0
*/
private static class IntegratorResetter implements AutoCloseable {
/** Wrapped integrator. */
private final ODEIntegrator integrator;
/** Initial event detectors list. */
private final List<ODEEventDetector> detectors;
/** Initial step handlers list. */
private final List<ODEStepHandler> stepHandlers;
/** Simple constructor.
* @param integrator wrapped integrator
*/
IntegratorResetter(final ODEIntegrator integrator) {
this.integrator = integrator;
this.detectors = new ArrayList<>(integrator.getEventDetectors());
this.stepHandlers = new ArrayList<>(integrator.getStepHandlers());
}
/** {@inheritDoc}
* <p>
* Reset event handlers and step handlers back to the initial list
* </p>
*/
@Override
public void close() {
// reset event handlers
integrator.clearEventDetectors();
detectors.forEach(integrator::addEventDetector);
// reset step handlers
integrator.clearStepHandlers();
stepHandlers.forEach(integrator::addStepHandler);
}
}
}