AbstractPropagatorConverter.java
- /* Copyright 2002-2025 CS GROUP
- * Licensed to CS GROUP (CS) under one or more
- * contributor license agreements. See the NOTICE file distributed with
- * this work for additional information regarding copyright ownership.
- * CS licenses this file to You under the Apache License, Version 2.0
- * (the "License"); you may not use this file except in compliance with
- * the License. You may obtain a copy of the License at
- *
- * http://www.apache.org/licenses/LICENSE-2.0
- *
- * Unless required by applicable law or agreed to in writing, software
- * distributed under the License is distributed on an "AS IS" BASIS,
- * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- * See the License for the specific language governing permissions and
- * limitations under the License.
- */
- package org.orekit.propagation.conversion;
- import java.util.ArrayList;
- import java.util.Arrays;
- import java.util.List;
- import org.hipparchus.analysis.MultivariateVectorFunction;
- import org.hipparchus.exception.MathRuntimeException;
- import org.hipparchus.linear.DiagonalMatrix;
- import org.hipparchus.optim.ConvergenceChecker;
- import org.hipparchus.optim.SimpleVectorValueChecker;
- import org.hipparchus.optim.nonlinear.vector.leastsquares.LeastSquaresBuilder;
- import org.hipparchus.optim.nonlinear.vector.leastsquares.LeastSquaresFactory;
- import org.hipparchus.optim.nonlinear.vector.leastsquares.LeastSquaresOptimizer;
- import org.hipparchus.optim.nonlinear.vector.leastsquares.LeastSquaresProblem;
- import org.hipparchus.optim.nonlinear.vector.leastsquares.LevenbergMarquardtOptimizer;
- import org.hipparchus.optim.nonlinear.vector.leastsquares.MultivariateJacobianFunction;
- import org.hipparchus.util.FastMath;
- import org.orekit.errors.OrekitException;
- import org.orekit.errors.OrekitMessages;
- import org.orekit.frames.Frame;
- import org.orekit.propagation.Propagator;
- import org.orekit.propagation.SpacecraftState;
- import org.orekit.propagation.integration.AbstractIntegratedPropagator;
- import org.orekit.time.AbsoluteDate;
- import org.orekit.utils.PVCoordinates;
- import org.orekit.utils.ParameterDriver;
- /** Common handling of {@link PropagatorConverter} methods for propagators conversions.
- * <p>
- * This abstract class factors the common code for propagators conversion.
- * Only one method must be implemented by derived classes: {@link #getObjectiveFunction()}.
- * </p>
- * <p>
- * The converter uses the LevenbergMarquardtOptimizer from the <a
- * href="https://hipparchus.org/">Hipparchus</a> library.
- * Different implementations correspond to different methods for computing the Jacobian.
- * </p>
- * @author Pascal Parraud
- * @since 6.0
- */
- public abstract class AbstractPropagatorConverter implements PropagatorConverter {
- /** Spacecraft states sample. */
- private List<SpacecraftState> sample;
- /** Target position and velocities at sample points. */
- private double[] target;
- /** Weight for residuals. */
- private double[] weight;
- /** Auxiliary outputData: RMS of solution. */
- private double rms;
- /** Position use indicator. */
- private boolean onlyPosition;
- /** Adapted propagator. */
- private Propagator adapted;
- /** Propagator builder. */
- private final PropagatorBuilder builder;
- /** Frame. */
- private final Frame frame;
- /** Optimizer for fitting. */
- private final LevenbergMarquardtOptimizer optimizer;
- /** Optimum found. */
- private LeastSquaresOptimizer.Optimum optimum;
- /** Convergence checker for optimization algorithm. */
- private final ConvergenceChecker<LeastSquaresProblem.Evaluation> checker;
- /** Maximum number of iterations for optimization. */
- private final int maxIterations;
- /** Build a new instance.
- * @param builder propagator builder
- * @param threshold absolute convergence threshold for optimization algorithm
- * @param maxIterations maximum number of iterations for fitting
- */
- protected AbstractPropagatorConverter(final PropagatorBuilder builder,
- final double threshold,
- final int maxIterations) {
- this.builder = builder;
- this.frame = builder.getFrame();
- this.optimizer = new LevenbergMarquardtOptimizer();
- this.maxIterations = maxIterations;
- this.sample = new ArrayList<>();
- final SimpleVectorValueChecker svvc = new SimpleVectorValueChecker(-1.0, threshold);
- this.checker = LeastSquaresFactory.evaluationChecker(svvc);
- }
- /** Convert a propagator to another.
- * @param source initial propagator (the propagator will be used for sample
- * generation, if it is a numerical propagator, its initial state will
- * be reset unless {@link AbstractIntegratedPropagator#setResetAtEnd(boolean)}
- * has been called beforehand)
- * @param timeSpan time span for fitting
- * @param nbPoints number of fitting points over time span
- * @param freeParameters names of the free parameters
- * @return adapted propagator
- * @exception IllegalArgumentException if one of the parameters cannot be free
- */
- public Propagator convert(final Propagator source,
- final double timeSpan,
- final int nbPoints,
- final List<String> freeParameters)
- throws IllegalArgumentException {
- setFreeParameters(freeParameters);
- final List<SpacecraftState> states = createSample(source, timeSpan, nbPoints);
- return convert(states, false, freeParameters);
- }
- /** Convert a propagator to another.
- * @param source initial propagator (the propagator will be used for sample
- * generation, if it is a numerical propagator, its initial state will
- * be reset unless {@link AbstractIntegratedPropagator#setResetAtEnd(boolean)}
- * has been called beforehand)
- * @param timeSpan time span for fitting
- * @param nbPoints number of fitting points over time span
- * @param freeParameters names of the free parameters
- * @return adapted propagator
- * @exception IllegalArgumentException if one of the parameters cannot be free
- */
- public Propagator convert(final Propagator source,
- final double timeSpan,
- final int nbPoints,
- final String... freeParameters)
- throws IllegalArgumentException {
- setFreeParameters(Arrays.asList(freeParameters));
- final List<SpacecraftState> states = createSample(source, timeSpan, nbPoints);
- return convert(states, false, freeParameters);
- }
- /** Find the propagator that minimize the mean square error for a sample of {@link SpacecraftState states}.
- * @param states spacecraft states sample to fit
- * @param positionOnly if true, consider only position data otherwise both position and velocity are used
- * @param freeParameters names of the free parameters
- * @return adapted propagator
- * @exception IllegalArgumentException if one of the parameters cannot be free
- */
- public Propagator convert(final List<SpacecraftState> states,
- final boolean positionOnly,
- final List<String> freeParameters)
- throws IllegalArgumentException {
- setFreeParameters(freeParameters);
- return adapt(states, positionOnly);
- }
- /** Find the propagator that minimize the mean square error for a sample of {@link SpacecraftState states}.
- * @param states spacecraft states sample to fit
- * @param positionOnly if true, consider only position data otherwise both position and velocity are used
- * @param freeParameters names of the free parameters
- * @return adapted propagator
- * @exception IllegalArgumentException if one of the parameters cannot be free
- */
- public Propagator convert(final List<SpacecraftState> states,
- final boolean positionOnly,
- final String... freeParameters)
- throws IllegalArgumentException {
- setFreeParameters(Arrays.asList(freeParameters));
- return adapt(states, positionOnly);
- }
- /** Get the adapted propagator.
- * @return adapted propagator
- */
- public Propagator getAdaptedPropagator() {
- return adapted;
- }
- /** Get the Root Mean Square Deviation of the fitting.
- * @return RMSD
- */
- public double getRMS() {
- return rms;
- }
- /** Get the number of objective function evaluations.
- * @return the number of objective function evaluations.
- */
- public int getEvaluations() {
- return optimum.getEvaluations();
- }
- /** Get the function computing position/velocity at sample points.
- * @return function computing position/velocity at sample points
- */
- protected abstract MultivariateVectorFunction getObjectiveFunction();
- /** Get the Jacobian of the function computing position/velocity at sample points.
- * @return Jacobian of the function computing position/velocity at sample points
- */
- protected abstract MultivariateJacobianFunction getModel();
- /** Check if fitting uses only sample positions.
- * @return true if fitting uses only sample positions
- */
- protected boolean isOnlyPosition() {
- return onlyPosition;
- }
- /** Get the size of the target.
- * @return target size
- */
- protected int getTargetSize() {
- return target.length;
- }
- /** Get the frame of the initial state.
- * @return the orbit frame
- */
- protected Frame getFrame() {
- return frame;
- }
- /** Get the states sample.
- * @return the states sample
- */
- protected List<SpacecraftState> getSample() {
- return sample;
- }
- /** Create a sample of {@link SpacecraftState}.
- * @param source initial propagator
- * @param timeSpan time span for the sample
- * @param nbPoints number of points for the sample over the time span
- * @return a sample of {@link SpacecraftState}
- */
- private List<SpacecraftState> createSample(final Propagator source,
- final double timeSpan,
- final int nbPoints) {
- final List<SpacecraftState> states = new ArrayList<>();
- final double stepSize = timeSpan / (nbPoints - 1);
- final AbsoluteDate iniDate = source.getInitialState().getDate();
- for (double dt = 0; dt < timeSpan; dt += stepSize) {
- states.add(source.propagate(iniDate.shiftedBy(dt)));
- }
- return states;
- }
- /** Free some parameters.
- * @param freeParameters names of the free parameters
- */
- private void setFreeParameters(final Iterable<String> freeParameters) {
- // start by setting all parameters as not estimated
- for (final ParameterDriver driver : builder.getPropagationParametersDrivers().getDrivers()) {
- driver.setSelected(false);
- }
- // set only the selected parameters as estimated
- for (final String parameter : freeParameters) {
- boolean found = false;
- for (final ParameterDriver driver : builder.getPropagationParametersDrivers().getDrivers()) {
- if (driver.getName().equals(parameter)) {
- found = true;
- driver.setSelected(true);
- break;
- }
- }
- if (!found) {
- // build the list of supported parameters
- final StringBuilder sBuilder = new StringBuilder();
- for (final ParameterDriver driver : builder.getPropagationParametersDrivers().getDrivers()) {
- if (sBuilder.length() > 0) {
- sBuilder.append(", ");
- }
- sBuilder.append(driver.getName());
- }
- throw new OrekitException(OrekitMessages.UNSUPPORTED_PARAMETER_NAME,
- parameter, sBuilder.toString());
- }
- }
- }
- /** Adapt a propagator to minimize the mean square error for a set of {@link SpacecraftState states}.
- * @param states set of spacecraft states to fit
- * @param positionOnly if true, consider only position data otherwise both position and velocity are used
- * @return adapted propagator
- */
- private Propagator adapt(final List<SpacecraftState> states,
- final boolean positionOnly) {
- this.onlyPosition = positionOnly;
- // very rough first guess using osculating parameters of first sample point
- final double[] initial = builder.getSelectedNormalizedParameters();
- // warm-up iterations, using only a few points
- setSample(states.subList(0, onlyPosition ? 2 : 1));
- final double[] intermediate = fit(initial);
- // final search using all points
- setSample(states);
- final double[] result = fit(intermediate);
- rms = getRMS(result);
- adapted = buildAdaptedPropagator(result);
- return adapted;
- }
- /** Find the propagator that minimize the mean square error for a sample of {@link SpacecraftState states}.
- * @param initial initial estimation parameters (position, velocity, free parameters)
- * @return fitted parameters
- * @exception MathRuntimeException if maximal number of iterations is exceeded
- */
- private double[] fit(final double[] initial)
- throws MathRuntimeException {
- final LeastSquaresProblem problem = new LeastSquaresBuilder().
- maxIterations(maxIterations).
- maxEvaluations(Integer.MAX_VALUE).
- model(getModel()).
- target(target).
- weight(new DiagonalMatrix(weight)).
- start(initial).
- checker(checker).
- build();
- optimum = optimizer.optimize(problem);
- return optimum.getPoint().toArray();
- }
- /** Get the Root Mean Square Deviation for a given parameters set.
- * @param parameterSet position/velocity parameters set
- * @return RMSD
- */
- private double getRMS(final double[] parameterSet) {
- final double[] residuals = getObjectiveFunction().value(parameterSet);
- for (int i = 0; i < residuals.length; ++i) {
- residuals[i] = target[i] - residuals[i];
- }
- double sum2 = 0;
- for (final double residual : residuals) {
- sum2 += residual * residual;
- }
- return FastMath.sqrt(sum2 / residuals.length);
- }
- /** Build the adpated propagator for a given position/velocity(/free) parameters set.
- * @param parameterSet position/velocity(/free) parameters set
- * @return adapted propagator
- */
- private Propagator buildAdaptedPropagator(final double[] parameterSet) {
- return builder.buildPropagator(parameterSet);
- }
- /** Set the states sample.
- * @param states spacecraft states sample
- */
- private void setSample(final List<SpacecraftState> states) {
- this.sample = states;
- if (onlyPosition) {
- target = new double[states.size() * 3];
- weight = new double[states.size() * 3];
- } else {
- target = new double[states.size() * 6];
- weight = new double[states.size() * 6];
- }
- int k = 0;
- for (SpacecraftState state : states) {
- final PVCoordinates pv = state.getPVCoordinates(frame);
- // position
- target[k] = pv.getPosition().getX();
- weight[k++] = 1;
- target[k] = pv.getPosition().getY();
- weight[k++] = 1;
- target[k] = pv.getPosition().getZ();
- weight[k++] = 1;
- // velocity
- if (!onlyPosition) {
- // velocity weight relative to position
- final double r2 = pv.getPosition().getNormSq();
- final double v = pv.getVelocity().getNorm();
- final double vWeight = v * r2 / state.getOrbit().getMu();
- target[k] = pv.getVelocity().getX();
- weight[k++] = vWeight;
- target[k] = pv.getVelocity().getY();
- weight[k++] = vWeight;
- target[k] = pv.getVelocity().getZ();
- weight[k++] = vWeight;
- }
- }
- }
- }