LOF.java
- /* Copyright 2002-2025 CS GROUP
- * Licensed to CS GROUP (CS) under one or more
- * contributor license agreements. See the NOTICE file distributed with
- * this work for additional information regarding copyright ownership.
- * CS licenses this file to You under the Apache License, Version 2.0
- * (the "License"); you may not use this file except in compliance with
- * the License. You may obtain a copy of the License at
- *
- * http://www.apache.org/licenses/LICENSE-2.0
- *
- * Unless required by applicable law or agreed to in writing, software
- * distributed under the License is distributed on an "AS IS" BASIS,
- * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- * See the License for the specific language governing permissions and
- * limitations under the License.
- */
- package org.orekit.frames;
- import org.hipparchus.CalculusFieldElement;
- import org.hipparchus.Field;
- import org.hipparchus.analysis.differentiation.FieldUnivariateDerivative2;
- import org.hipparchus.analysis.differentiation.FieldUnivariateDerivative2Field;
- import org.hipparchus.analysis.differentiation.UnivariateDerivative2;
- import org.hipparchus.analysis.differentiation.UnivariateDerivative2Field;
- import org.hipparchus.geometry.euclidean.threed.FieldRotation;
- import org.hipparchus.geometry.euclidean.threed.FieldVector3D;
- import org.hipparchus.geometry.euclidean.threed.Rotation;
- import org.hipparchus.geometry.euclidean.threed.RotationConvention;
- import org.hipparchus.geometry.euclidean.threed.Vector3D;
- import org.orekit.time.AbsoluteDate;
- import org.orekit.time.FieldAbsoluteDate;
- import org.orekit.utils.AngularCoordinates;
- import org.orekit.utils.FieldAngularCoordinates;
- import org.orekit.utils.FieldPVCoordinates;
- import org.orekit.utils.PVCoordinates;
- /**
- * Interface for local orbital frame.
- *
- * @author Vincent Cucchietti
- */
- public interface LOF {
- /**
- * Get the rotation from input to output {@link LOF local orbital frame}.
- * <p>
- * This rotation does not include any time derivatives. If first time derivatives (i.e. rotation rate) is needed as well,
- * the full {@link #transformFromLOFInToLOFOut(LOF, LOF, FieldAbsoluteDate, FieldPVCoordinates)} method must be called and
- * the complete rotation transform must be extracted from it.
- *
- * @param field field to which the elements belong
- * @param in input commonly used local orbital frame
- * @param out output commonly used local orbital frame
- * @param date date of the rotation
- * @param pv position-velocity of the spacecraft in some inertial frame
- * @param <T> type of the field elements
- *
- * @return rotation from input to output local orbital frame
- *
- * @since 11.3
- */
- static <T extends CalculusFieldElement<T>> FieldRotation<T> rotationFromLOFInToLOFOut(final Field<T> field,
- final LOF in, final LOF out,
- final FieldAbsoluteDate<T> date,
- final FieldPVCoordinates<T> pv) {
- return out.rotationFromLOF(field, in, date, pv);
- }
- /**
- * Get the transform from input to output {@link LOF local orbital frame}.
- *
- * @param in input commonly used local orbital frame
- * @param out output commonly used local orbital frame
- * @param date date of the transform
- * @param pv position-velocity of the spacecraft in some inertial frame
- * @param <T> type of the field elements
- *
- * @return rotation from input to output local orbital frame.
- *
- * @since 11.3
- */
- static <T extends CalculusFieldElement<T>> FieldTransform<T> transformFromLOFInToLOFOut(final LOF in, final LOF out,
- final FieldAbsoluteDate<T> date,
- final FieldPVCoordinates<T> pv) {
- return out.transformFromLOF(in, date, pv);
- }
- /**
- * Get the rotation from input to output {@link LOF local orbital frame}.
- * <p>
- * This rotation does not include any time derivatives. If first time derivatives (i.e. rotation rate) is needed as well,
- * the full {@link #transformFromLOFInToLOFOut(LOF, LOF, AbsoluteDate, PVCoordinates)} method must be called and
- * the complete rotation transform must be extracted from it.
- *
- * @param in input commonly used local orbital frame
- * @param out output commonly used local orbital frame
- * @param date date of the rotation
- * @param pv position-velocity of the spacecraft in some inertial frame
- *
- * @return rotation from input to output local orbital frame.
- *
- * @since 11.3
- */
- static Rotation rotationFromLOFInToLOFOut(final LOF in, final LOF out, final AbsoluteDate date, final PVCoordinates pv) {
- return out.rotationFromLOF(in, date, pv);
- }
- /**
- * Get the transform from input to output {@link LOF local orbital frame}.
- *
- * @param in input commonly used local orbital frame
- * @param out output commonly used local orbital frame
- * @param date date of the transform
- * @param pv position-velocity of the spacecraft in some inertial frame
- *
- * @return rotation from input to output local orbital frame
- *
- * @since 11.3
- */
- static Transform transformFromLOFInToLOFOut(final LOF in, final LOF out, final AbsoluteDate date,
- final PVCoordinates pv) {
- return out.transformFromLOF(in, date, pv);
- }
- /**
- * Get the rotation from input {@link LOF local orbital frame} to the instance.
- * <p>
- * This rotation does not include any time derivatives. If first time derivatives (i.e. rotation rate) is needed as well,
- * the full {@link #transformFromLOF(LOF, FieldAbsoluteDate, FieldPVCoordinates)} method must be called and
- * the complete rotation transform must be extracted from it.
- *
- * @param field field to which the elements belong
- * @param fromLOF input local orbital frame
- * @param date date of the rotation
- * @param pv position-velocity of the spacecraft in some inertial frame
- * @param <T> type of the field elements
- *
- * @return rotation from input local orbital frame to the instance
- *
- * @since 11.3
- */
- default <T extends CalculusFieldElement<T>> FieldRotation<T> rotationFromLOF(final Field<T> field,
- final LOF fromLOF,
- final FieldAbsoluteDate<T> date,
- final FieldPVCoordinates<T> pv) {
- // First compute the rotation from the input LOF to the pivot inertial
- final FieldRotation<T> fromLOFToInertial = fromLOF.rotationFromInertial(field, date, pv).revert();
- // Then compute the rotation from the pivot inertial to the output LOF
- final FieldRotation<T> inertialToThis = this.rotationFromInertial(field, date, pv);
- // Output composed rotation
- return fromLOFToInertial.compose(inertialToThis, RotationConvention.FRAME_TRANSFORM);
- }
- /**
- * Get the rotation from input {@link LOF commonly used local orbital frame} to the instance.
- *
- * @param fromLOF input local orbital frame
- * @param date date of the transform
- * @param pv position-velocity of the spacecraft in some inertial frame
- * @param <T> type of the field elements
- *
- * @return rotation from input local orbital frame to the instance
- *
- * @since 11.3
- */
- default <T extends CalculusFieldElement<T>> FieldTransform<T> transformFromLOF(final LOF fromLOF,
- final FieldAbsoluteDate<T> date,
- final FieldPVCoordinates<T> pv) {
- // Get transform from input local orbital frame to inertial
- final FieldTransform<T> fromLOFToInertial = fromLOF.transformFromInertial(date, pv).getInverse();
- // Get transform from inertial to output local orbital frame
- final FieldTransform<T> inertialToLOFOut = this.transformFromInertial(date, pv);
- // Output composition of both transforms
- return new FieldTransform<>(date, fromLOFToInertial, inertialToLOFOut);
- }
- /**
- * Get the transform from an inertial frame defining position-velocity and the local orbital frame.
- *
- * @param date current date
- * @param pv position-velocity of the spacecraft in some inertial frame
- * @param <T> type of the fields elements
- *
- * @return transform from the frame where position-velocity are defined to local orbital frame
- *
- * @since 9.0
- */
- default <T extends CalculusFieldElement<T>> FieldTransform<T> transformFromInertial(final FieldAbsoluteDate<T> date,
- final FieldPVCoordinates<T> pv) {
- final Field<T> field = date.getField();
- if (isQuasiInertial()) {
- return new FieldTransform<>(date, pv.getPosition().negate(), rotationFromInertial(field, date, pv));
- } else if (pv.getAcceleration().equals(FieldVector3D.getZero(field))) {
- // we consider that the acceleration is not known
- // compute the translation part of the transform
- final FieldTransform<T> translation = new FieldTransform<>(date, pv.negate());
- // compute the rotation part of the transform
- final FieldRotation<T> r = rotationFromInertial(date.getField(), date, pv);
- final FieldVector3D<T> p = pv.getPosition();
- final FieldVector3D<T> momentum = pv.getMomentum();
- final FieldTransform<T> rotation = new FieldTransform<>(date, r,
- new FieldVector3D<>(p.getNormSq().reciprocal(), r.applyTo(momentum)));
- return new FieldTransform<>(date, translation, rotation);
- } else {
- // use automatic differentiation
- // create date with independent variable
- final FieldUnivariateDerivative2Field<T> fud2Field = FieldUnivariateDerivative2Field.getUnivariateDerivative2Field(field);
- final FieldAbsoluteDate<FieldUnivariateDerivative2<T>> fud2Date = date.toFUD2Field();
- // create PV with independent variable
- final FieldPVCoordinates<FieldUnivariateDerivative2<T>> fud2PV = pv.toUnivariateDerivative2PV();
- // compute rotation
- final FieldRotation<FieldUnivariateDerivative2<T>> fud2Rotation = rotationFromInertial(fud2Field, fud2Date,
- fud2PV);
- // turn into FieldTransform whilst adding the translation
- final FieldAngularCoordinates<T> fieldAngularCoordinates = new FieldAngularCoordinates<>(fud2Rotation);
- return new FieldTransform<>(date, new FieldTransform<>(date, pv.negate()),
- new FieldTransform<>(date, fieldAngularCoordinates));
- }
- }
- /**
- * Get the rotation from inertial frame to local orbital frame.
- * <p>
- * This rotation does not include any time derivatives. If first time derivatives (i.e. rotation rate) is needed as well,
- * the full {@link #transformFromInertial(FieldAbsoluteDate, FieldPVCoordinates)} method must be
- * called and the complete rotation transform must be extracted from it.
- * </p>
- *
- * @param field field to which the elements belong
- * @param date date of the rotation
- * @param pv position-velocity of the spacecraft in some inertial frame
- * @param <T> type of the field elements
- *
- * @return rotation from inertial frame to local orbital frame
- *
- * @since 9.0
- */
- <T extends CalculusFieldElement<T>> FieldRotation<T> rotationFromInertial(Field<T> field, FieldAbsoluteDate<T> date,
- FieldPVCoordinates<T> pv);
- /**
- * Get the rotation from input {@link LOF local orbital frame} to the instance.
- * <p>
- * This rotation does not include any time derivatives. If first time derivatives (i.e. rotation rate) is needed as well,
- * the full {@link #transformFromLOF(LOF, AbsoluteDate, PVCoordinates)} method must be called and
- * the complete rotation transform must be extracted from it.
- *
- * @param fromLOF input local orbital frame
- * @param date date of the rotation
- * @param pv position-velocity of the spacecraft in some inertial frame
- *
- * @return rotation from input local orbital frame to the instance
- *
- * @since 11.3
- */
- default Rotation rotationFromLOF(final LOF fromLOF, final AbsoluteDate date, final PVCoordinates pv) {
- // First compute the rotation from the input LOF to the pivot inertial
- final Rotation fromLOFToInertial = fromLOF.rotationFromInertial(date, pv).revert();
- // Then compute the rotation from the pivot inertial to the output LOF
- final Rotation inertialToThis = this.rotationFromInertial(date, pv);
- // Output composed rotation
- return fromLOFToInertial.compose(inertialToThis, RotationConvention.FRAME_TRANSFORM);
- }
- /**
- * Get the rotation from input {@link LOF local orbital frame} to the instance.
- *
- * @param fromLOF input local orbital frame
- * @param date date of the transform
- * @param pv position-velocity of the spacecraft in some inertial frame
- *
- * @return rotation from input local orbital frame to the instance
- *
- * @since 11.3
- */
- default Transform transformFromLOF(final LOF fromLOF, final AbsoluteDate date, final PVCoordinates pv) {
- // First compute the rotation from the input LOF to the pivot inertial
- final Transform fromLOFToInertial = fromLOF.transformFromInertial(date, pv).getInverse();
- // Then compute the rotation from the pivot inertial to the output LOF
- final Transform inertialToThis = this.transformFromInertial(date, pv);
- // Output composed rotation
- return new Transform(date, fromLOFToInertial, inertialToThis);
- }
- /**
- * Get the transform from an inertial frame defining position-velocity and the local orbital frame.
- *
- * @param date current date
- * @param pv position-velocity of the spacecraft in some inertial frame
- *
- * @return transform from the frame where position-velocity are defined to local orbital frame
- */
- default Transform transformFromInertial(final AbsoluteDate date, final PVCoordinates pv) {
- if (isQuasiInertial()) {
- return new Transform(date, pv.getPosition().negate(), rotationFromInertial(date, pv));
- } else if (pv.getAcceleration().equals(Vector3D.ZERO)) {
- // compute the rotation part of the transform assuming there is no known acceleration
- final Rotation r = rotationFromInertial(date, pv);
- final Vector3D p = pv.getPosition();
- final Vector3D momentum = pv.getMomentum();
- final AngularCoordinates angularCoordinates = new AngularCoordinates(r,
- new Vector3D(1.0 / p.getNormSq(), r.applyTo(momentum)));
- return new Transform(date, pv.negate(), angularCoordinates);
- } else {
- // use automatic differentiation
- // create date with independent variable
- final UnivariateDerivative2Field ud2Field = UnivariateDerivative2Field.getInstance();
- final UnivariateDerivative2 dt = new UnivariateDerivative2(0, 1, 0);
- final FieldAbsoluteDate<UnivariateDerivative2> ud2Date = new FieldAbsoluteDate<>(ud2Field, date).shiftedBy(dt);
- // create PV with independent variable
- final FieldPVCoordinates<UnivariateDerivative2> ud2PVCoordinates = pv.toUnivariateDerivative2PV();
- // compute Field rotation
- final FieldRotation<UnivariateDerivative2> ud2Rotation = rotationFromInertial(ud2Field, ud2Date,
- ud2PVCoordinates);
- // turn into Transform whilst adding translation
- final AngularCoordinates angularCoordinates = new AngularCoordinates(ud2Rotation);
- return new Transform(date, pv.negate(), angularCoordinates);
- }
- }
- /**
- * Get the rotation from inertial frame to local orbital frame.
- * <p>
- * This rotation does not include any time derivatives. If first time derivatives (i.e. rotation rate) is needed as well,
- * the full {@link #transformFromInertial(AbsoluteDate, PVCoordinates) transformFromInertial} method must be called and
- * the complete rotation transform must be extracted from it.
- *
- * @param date date of the rotation
- * @param pv position-velocity of the spacecraft in some inertial frame
- *
- * @return rotation from inertial frame to local orbital frame
- */
- Rotation rotationFromInertial(AbsoluteDate date, PVCoordinates pv);
- /** Get flag that indicates if current local orbital frame shall be treated as pseudo-inertial.
- * @return flag that indicates if current local orbital frame shall be treated as pseudo-inertial
- */
- default boolean isQuasiInertial() {
- return false;
- }
- /** Get name of the local orbital frame.
- * @return name of the local orbital frame
- */
- String getName();
- }