KinematicTransform.java
- /* Copyright 2022-2025 Romain Serra
- * Licensed to CS GROUP (CS) under one or more
- * contributor license agreements. See the NOTICE file distributed with
- * this work for additional information regarding copyright ownership.
- * CS licenses this file to You under the Apache License, Version 2.0
- * (the "License"); you may not use this file except in compliance with
- * the License. You may obtain a copy of the License at
- *
- * http://www.apache.org/licenses/LICENSE-2.0
- *
- * Unless required by applicable law or agreed to in writing, software
- * distributed under the License is distributed on an "AS IS" BASIS,
- * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- * See the License for the specific language governing permissions and
- * limitations under the License.
- */
- package org.orekit.frames;
- import org.hipparchus.geometry.euclidean.threed.Vector3D;
- import org.hipparchus.geometry.euclidean.threed.Rotation;
- import org.orekit.time.AbsoluteDate;
- import org.orekit.utils.PVCoordinates;
- import org.orekit.utils.TimeStampedPVCoordinates;
- import java.util.Arrays;
- /**
- * A transform that only includes translation and rotation as well as their respective rates.
- * It is kinematic in the sense that it cannot transform an acceleration vector.
- *
- * @author Romain Serra
- * @see StaticTransform
- * @see Transform
- * @since 12.1
- */
- public interface KinematicTransform extends StaticTransform {
- /**
- * Get the identity kinematic transform.
- *
- * @return identity transform.
- */
- static KinematicTransform getIdentity() {
- return Transform.IDENTITY;
- }
- /** Compute a composite velocity.
- * @param first first applied transform
- * @param second second applied transform
- * @return velocity part of the composite transform
- */
- static Vector3D compositeVelocity(final KinematicTransform first, final KinematicTransform second) {
- final Vector3D v1 = first.getVelocity();
- final Rotation r1 = first.getRotation();
- final Vector3D o1 = first.getRotationRate();
- final Vector3D p2 = second.getTranslation();
- final Vector3D v2 = second.getVelocity();
- final Vector3D crossP = Vector3D.crossProduct(o1, p2);
- return v1.add(r1.applyInverseTo(v2.add(crossP)));
- }
- /** Compute a composite rotation rate.
- * @param first first applied transform
- * @param second second applied transform
- * @return rotation rate part of the composite transform
- */
- static Vector3D compositeRotationRate(final KinematicTransform first, final KinematicTransform second) {
- final Vector3D o1 = first.getRotationRate();
- final Rotation r2 = second.getRotation();
- final Vector3D o2 = second.getRotationRate();
- return o2.add(r2.applyTo(o1));
- }
- /** Transform {@link PVCoordinates}, without the acceleration vector.
- * @param pv the position-velocity couple to transform.
- * @return transformed position-velocity
- */
- default PVCoordinates transformOnlyPV(final PVCoordinates pv) {
- final Vector3D transformedP = transformPosition(pv.getPosition());
- final Vector3D crossP = Vector3D.crossProduct(getRotationRate(), transformedP);
- final Vector3D transformedV = getRotation().applyTo(pv.getVelocity().add(getVelocity())).subtract(crossP);
- return new PVCoordinates(transformedP, transformedV);
- }
- /** Transform {@link TimeStampedPVCoordinates}, without the acceleration vector.
- * <p>
- * In order to allow the user more flexibility, this method does <em>not</em> check for
- * consistency between the transform {@link #getDate() date} and the time-stamped
- * position-velocity {@link TimeStampedPVCoordinates#getDate() date}. The returned
- * value will always have the same {@link TimeStampedPVCoordinates#getDate() date} as
- * the input argument, regardless of the instance {@link #getDate() date}.
- * </p>
- * @param pv the position-velocity couple to transform.
- * @return transformed position-velocity
- */
- default TimeStampedPVCoordinates transformOnlyPV(final TimeStampedPVCoordinates pv) {
- final Vector3D transformedP = transformPosition(pv.getPosition());
- final Vector3D crossP = Vector3D.crossProduct(getRotationRate(), transformedP);
- final Vector3D transformedV = getRotation().applyTo(pv.getVelocity().add(getVelocity())).subtract(crossP);
- return new TimeStampedPVCoordinates(pv.getDate(), transformedP, transformedV);
- }
- /** Compute the Jacobian of the {@link #transformOnlyPV(PVCoordinates)} (PVCoordinates)}
- * method of the transform.
- * <p>
- * Element {@code jacobian[i][j]} is the derivative of Cartesian coordinate i
- * of the transformed {@link PVCoordinates} with respect to Cartesian coordinate j
- * of the input {@link PVCoordinates} in method {@link #transformOnlyPV(PVCoordinates)}.
- * </p>
- * <p>
- * This definition implies that if we define position-velocity coordinates
- * <pre>
- * PV₁ = transform.transformPVCoordinates(PV₀), then
- * </pre>
- * <p> their differentials dPV₁ and dPV₀ will obey the following relation
- * where J is the matrix computed by this method:
- * <pre>
- * dPV₁ = J × dPV₀
- * </pre>
- *
- * @return Jacobian matrix
- */
- default double[][] getPVJacobian() {
- final double[][] jacobian = new double[6][6];
- // elementary matrix for rotation
- final double[][] mData = getRotation().getMatrix();
- // dP1/dP0
- System.arraycopy(mData[0], 0, jacobian[0], 0, 3);
- System.arraycopy(mData[1], 0, jacobian[1], 0, 3);
- System.arraycopy(mData[2], 0, jacobian[2], 0, 3);
- // dP1/dV0
- Arrays.fill(jacobian[0], 3, 6, 0.0);
- Arrays.fill(jacobian[1], 3, 6, 0.0);
- Arrays.fill(jacobian[2], 3, 6, 0.0);
- // dV1/dP0
- final Vector3D o = getRotationRate();
- final double ox = o.getX();
- final double oy = o.getY();
- final double oz = o.getZ();
- for (int i = 0; i < 3; ++i) {
- jacobian[3][i] = -(oy * mData[2][i] - oz * mData[1][i]);
- jacobian[4][i] = -(oz * mData[0][i] - ox * mData[2][i]);
- jacobian[5][i] = -(ox * mData[1][i] - oy * mData[0][i]);
- }
- // dV1/dV0
- System.arraycopy(mData[0], 0, jacobian[3], 3, 3);
- System.arraycopy(mData[1], 0, jacobian[4], 3, 3);
- System.arraycopy(mData[2], 0, jacobian[5], 3, 3);
- return jacobian;
- }
- /** Get the first time derivative of the translation.
- * @return first time derivative of the translation
- * @see #getTranslation()
- */
- Vector3D getVelocity();
- /** Get the first time derivative of the rotation.
- * <p>The norm represents the angular rate.</p>
- * @return First time derivative of the rotation
- * @see #getRotation()
- */
- Vector3D getRotationRate();
- /**
- * Get the inverse transform of the instance.
- *
- * @return inverse transform of the instance
- */
- KinematicTransform getInverse();
- /**
- * Build a transform by combining two existing ones.
- * <p>
- * Note that the dates of the two existing transformed are <em>ignored</em>,
- * and the combined transform date is set to the date supplied in this
- * constructor without any attempt to shift the raw transforms. This is a
- * design choice allowing user full control of the combination.
- * </p>
- *
- * @param date date of the transform
- * @param first first transform applied
- * @param second second transform applied
- * @return the newly created kinematic transform that has the same effect as
- * applying {@code first}, then {@code second}.
- * @see #of(AbsoluteDate, PVCoordinates, Rotation, Vector3D)
- */
- static KinematicTransform compose(final AbsoluteDate date,
- final KinematicTransform first,
- final KinematicTransform second) {
- final Vector3D composedTranslation = StaticTransform.compositeTranslation(first, second);
- final Vector3D composedTranslationRate = KinematicTransform.compositeVelocity(first, second);
- return of(date, new PVCoordinates(composedTranslation, composedTranslationRate),
- StaticTransform.compositeRotation(first, second),
- KinematicTransform.compositeRotationRate(first, second));
- }
- /**
- * Create a new kinematic transform from a rotation and zero, constant translation.
- *
- * @param date of translation.
- * @param rotation to apply after the translation. That is after translating
- * applying this rotation produces positions expressed in
- * the new frame.
- * @param rotationRate rate of rotation
- * @return the newly created kinematic transform.
- * @see #of(AbsoluteDate, PVCoordinates, Rotation, Vector3D)
- */
- static KinematicTransform of(final AbsoluteDate date,
- final Rotation rotation,
- final Vector3D rotationRate) {
- return of(date, PVCoordinates.ZERO, rotation, rotationRate);
- }
- /**
- * Create a new kinematic transform from a translation and its rate.
- *
- * @param date of translation.
- * @param pvCoordinates translation (with rate) to apply, expressed in the old frame. That is, the
- * opposite of the coordinates of the new origin in the
- * old frame.
- * @return the newly created kinematic transform.
- * @see #of(AbsoluteDate, PVCoordinates, Rotation, Vector3D)
- */
- static KinematicTransform of(final AbsoluteDate date,
- final PVCoordinates pvCoordinates) {
- return of(date, pvCoordinates, Rotation.IDENTITY, Vector3D.ZERO);
- }
- /**
- * Create a new kinematic transform from a translation and rotation.
- *
- * @param date of translation.
- * @param pvCoordinates translation (with rate) to apply, expressed in the old frame. That is, the
- * opposite of the coordinates of the new origin in the
- * old frame.
- * @param rotation to apply after the translation. That is after
- * translating applying this rotation produces positions
- * expressed in the new frame.
- * @param rotationRate rate of rotation
- * @return the newly created kinematic transform.
- * @see #compose(AbsoluteDate, KinematicTransform, KinematicTransform)
- * @see #of(AbsoluteDate, PVCoordinates, Rotation, Vector3D)
- * @see #of(AbsoluteDate, PVCoordinates, Rotation, Vector3D)
- */
- static KinematicTransform of(final AbsoluteDate date, final PVCoordinates pvCoordinates,
- final Rotation rotation, final Vector3D rotationRate) {
- return new KinematicTransform() {
- @Override
- public KinematicTransform getInverse() {
- final Rotation r = getRotation();
- final Vector3D rp = r.applyTo(getTranslation());
- final Vector3D pInv = rp.negate();
- final Vector3D crossP = Vector3D.crossProduct(getRotationRate(), rp);
- final Vector3D vInv = crossP.subtract(getRotation().applyTo(getVelocity()));
- final Rotation rInv = r.revert();
- return KinematicTransform.of(getDate(), new PVCoordinates(pInv, vInv),
- rInv, rInv.applyTo(getRotationRate()).negate());
- }
- @Override
- public AbsoluteDate getDate() {
- return date;
- }
- @Override
- public Vector3D getTranslation() {
- return pvCoordinates.getPosition();
- }
- @Override
- public Rotation getRotation() {
- return rotation;
- }
- @Override
- public Vector3D getVelocity() {
- return pvCoordinates.getVelocity();
- }
- @Override
- public Vector3D getRotationRate() {
- return rotationRate;
- }
- };
- }
- }