CIRFProvider.java

  1. /* Copyright 2002-2025 CS GROUP
  2.  * Licensed to CS GROUP (CS) under one or more
  3.  * contributor license agreements.  See the NOTICE file distributed with
  4.  * this work for additional information regarding copyright ownership.
  5.  * CS licenses this file to You under the Apache License, Version 2.0
  6.  * (the "License"); you may not use this file except in compliance with
  7.  * the License.  You may obtain a copy of the License at
  8.  *
  9.  *   http://www.apache.org/licenses/LICENSE-2.0
  10.  *
  11.  * Unless required by applicable law or agreed to in writing, software
  12.  * distributed under the License is distributed on an "AS IS" BASIS,
  13.  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  14.  * See the License for the specific language governing permissions and
  15.  * limitations under the License.
  16.  */
  17. package org.orekit.frames;

  18. import org.hipparchus.CalculusFieldElement;
  19. import org.hipparchus.geometry.euclidean.threed.FieldRotation;
  20. import org.hipparchus.geometry.euclidean.threed.FieldVector3D;
  21. import org.hipparchus.geometry.euclidean.threed.Rotation;
  22. import org.hipparchus.geometry.euclidean.threed.Vector3D;
  23. import org.hipparchus.util.FastMath;
  24. import org.hipparchus.util.FieldSinCos;
  25. import org.hipparchus.util.SinCos;
  26. import org.orekit.time.AbsoluteDate;
  27. import org.orekit.time.FieldAbsoluteDate;
  28. import org.orekit.time.TimeVectorFunction;

  29. /** Celestial Intermediate Reference Frame.
  30.  * <p>This provider includes precession effects according to either the IAU 2006 precession
  31.  * (also known as Nicole Capitaines's P03 precession theory) and IAU 2000A_R06 nutation
  32.  * for IERS 2010 conventions or the IAU 2000A precession-nutation model for IERS 2003
  33.  * conventions. These models replaced the older IAU-76 precession (Lieske) and IAU-80
  34.  * theory of nutation (Wahr) which were used in the classical equinox-based paradigm.
  35.  * It <strong>must</strong> be used with the Earth Rotation Angle (REA) defined by
  36.  * Capitaine's model and <strong>not</strong> IAU-82 sidereal
  37.  * time which is consistent with the older models only.</p>
  38.  * <p>Its parent frame is the GCRF frame.
  39.  */
  40. class CIRFProvider implements EOPBasedTransformProvider {

  41.     /** Function computing CIP/CIO components. */
  42.     private final transient TimeVectorFunction xysPxy2Function;

  43.     /** EOP history. */
  44.     private final EOPHistory eopHistory;

  45.     /** Simple constructor.
  46.      * @param eopHistory EOP history
  47.      * @see Frame
  48.      */
  49.     CIRFProvider(final EOPHistory eopHistory) {

  50.         // load the nutation model
  51.         xysPxy2Function = eopHistory.getConventions()
  52.                 .getXYSpXY2Function(eopHistory.getTimeScales());

  53.         // store correction to the model
  54.         this.eopHistory = eopHistory;

  55.     }

  56.     /** {@inheritDoc} */
  57.     @Override
  58.     public EOPHistory getEOPHistory() {
  59.         return eopHistory;
  60.     }

  61.     /** {@inheritDoc} */
  62.     @Override
  63.     public CIRFProvider getNonInterpolatingProvider() {
  64.         return new CIRFProvider(eopHistory.getEOPHistoryWithoutCachedTidalCorrection());
  65.     }

  66.     /** {@inheritDoc} */
  67.     @Override
  68.     public Transform getTransform(final AbsoluteDate date) {

  69.         final double[] xys  = xysPxy2Function.value(date);
  70.         final double[] dxdy = eopHistory.getNonRotatinOriginNutationCorrection(date);

  71.         // position of the Celestial Intermediate Pole (CIP)
  72.         final double xCurrent = xys[0] + dxdy[0];
  73.         final double yCurrent = xys[1] + dxdy[1];

  74.         // position of the Celestial Intermediate Origin (CIO)
  75.         final double sCurrent = xys[2] - xCurrent * yCurrent / 2;

  76.         // set up the bias, precession and nutation rotation
  77.         final double x2Py2  = xCurrent * xCurrent + yCurrent * yCurrent;
  78.         final double zP1    = 1 + FastMath.sqrt(1 - x2Py2);
  79.         final double r      = FastMath.sqrt(x2Py2);
  80.         final double sPe2   = 0.5 * (sCurrent + FastMath.atan2(yCurrent, xCurrent));
  81.         final SinCos sc     = FastMath.sinCos(sPe2);
  82.         final double xPr    = xCurrent + r;
  83.         final double xPrCos = xPr * sc.cos();
  84.         final double xPrSin = xPr * sc.sin();
  85.         final double yCos   = yCurrent * sc.cos();
  86.         final double ySin   = yCurrent * sc.sin();
  87.         final Rotation bpn  = new Rotation(zP1 * (xPrCos + ySin), -r * (yCos + xPrSin),
  88.                                            r * (xPrCos - ySin), zP1 * (yCos - xPrSin),
  89.                                            true);

  90.         return new Transform(date, bpn, Vector3D.ZERO);

  91.     }

  92.     /** {@inheritDoc} */
  93.     @Override
  94.     public <T extends CalculusFieldElement<T>> FieldTransform<T> getTransform(final FieldAbsoluteDate<T> date) {

  95.         final T[] xys  = xysPxy2Function.value(date);
  96.         final T[] dxdy = eopHistory.getNonRotatinOriginNutationCorrection(date);

  97.         // position of the Celestial Intermediate Pole (CIP)
  98.         final T xCurrent = xys[0].add(dxdy[0]);
  99.         final T yCurrent = xys[1].add(dxdy[1]);

  100.         // position of the Celestial Intermediate Origin (CIO)
  101.         final T sCurrent = xys[2].subtract(xCurrent.multiply(yCurrent).multiply(0.5));

  102.         // set up the bias, precession and nutation rotation
  103.         final T x2Py2           = xCurrent.multiply(xCurrent).add(yCurrent.multiply(yCurrent));
  104.         final T zP1             = x2Py2.subtract(1).negate().sqrt().add(1);
  105.         final T r               = x2Py2.sqrt();
  106.         final T sPe2            = sCurrent.add(yCurrent.atan2(xCurrent)).multiply(0.5);
  107.         final FieldSinCos<T> sc = FastMath.sinCos(sPe2);
  108.         final T xPr             = xCurrent.add(r);
  109.         final T xPrCos          = xPr.multiply(sc.cos());
  110.         final T xPrSin          = xPr.multiply(sc.sin());
  111.         final T yCos            = yCurrent.multiply(sc.cos());
  112.         final T ySin            = yCurrent.multiply(sc.sin());
  113.         final FieldRotation<T> bpn  = new FieldRotation<>(zP1.multiply(xPrCos.add(ySin)),
  114.                                                           r.multiply(yCos.add(xPrSin)).negate(),
  115.                                                           r.multiply(xPrCos.subtract(ySin)),
  116.                                                           zP1.multiply(yCos.subtract(xPrSin)),
  117.                                                           true);

  118.         return new FieldTransform<>(date, bpn, FieldVector3D.getZero(date.getField()));

  119.     }

  120. }