PointingPanel.java
- /* Copyright 2022-2025 Luc Maisonobe
- * Licensed to CS GROUP (CS) under one or more
- * contributor license agreements. See the NOTICE file distributed with
- * this work for additional information regarding copyright ownership.
- * CS licenses this file to You under the Apache License, Version 2.0
- * (the "License"); you may not use this file except in compliance with
- * the License. You may obtain a copy of the License at
- *
- * http://www.apache.org/licenses/LICENSE-2.0
- *
- * Unless required by applicable law or agreed to in writing, software
- * distributed under the License is distributed on an "AS IS" BASIS,
- * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- * See the License for the specific language governing permissions and
- * limitations under the License.
- */
- package org.orekit.forces;
- import org.hipparchus.CalculusFieldElement;
- import org.hipparchus.geometry.euclidean.threed.FieldVector3D;
- import org.hipparchus.geometry.euclidean.threed.Vector3D;
- import org.hipparchus.util.FastMath;
- import org.hipparchus.util.Precision;
- import org.orekit.propagation.FieldSpacecraftState;
- import org.orekit.propagation.SpacecraftState;
- import org.orekit.utils.ExtendedPositionProvider;
- /** Class representing one panel of a satellite, roughly pointing towards some target.
- * <p>
- * It is mainly used to represent a rotating solar array that points towards the Sun.
- * </p>
- * <p>
- * The panel rotation with respect to satellite body is the best pointing orientation
- * achievable when the rotation axix is fixed by body attitude. Target is therefore
- * always exactly in meridian plane defined by rotation axis and panel normal vector.
- * </p>
- * <p>
- * These panels are considered to be always {@link #isDoubleSided() double-sided}.
- * </p>
- *
- * @author Luc Maisonobe
- * @since 3.0
- */
- public class PointingPanel extends Panel {
- /** Rotation axis. */
- private final Vector3D rotationAxis;
- /** Target towards which the panel will point. */
- private final ExtendedPositionProvider target;
- /** Simple constructor.
- * <p>
- * As the sum of absorption coefficient, specular reflection coefficient and
- * diffuse reflection coefficient is exactly 1, only the first two coefficients
- * are needed here, the third one is deduced from the other ones.
- * </p>
- * <p>
- * The panel is considered to rotate about one axis in order to make its normal
- * point as close as possible to the target. It means the target will always be
- * in the plane defined by the rotation axis and the panel normal.
- * </p>
- * @param rotationAxis rotation axis of the panel
- * @param target target towards which the panel will point (the Sun for a solar array)
- * @param area panel area in m²
- * @param drag drag coefficient
- * @param liftRatio drag lift ratio (proportion between 0 and 1 of atmosphere modecules
- * that will experience specular reflection when hitting spacecraft instead
- * of experiencing diffuse reflection, hence producing lift)
- * @param absorption radiation pressure absorption coefficient (between 0 and 1)
- * @param reflection radiation pressure specular reflection coefficient (between 0 and 1)
- */
- public PointingPanel(final Vector3D rotationAxis, final ExtendedPositionProvider target,
- final double area,
- final double drag, final double liftRatio,
- final double absorption, final double reflection) {
- super(area, true, drag, liftRatio, absorption, reflection);
- this.rotationAxis = rotationAxis.normalize();
- this.target = target;
- }
- /** {@inheritDoc} */
- @Override
- public Vector3D getNormal(final SpacecraftState state) {
- // compute orientation for best pointing
- final Vector3D targetInert = target.getPosition(state.getDate(), state.getFrame()).
- subtract(state.getPosition()).normalize();
- final Vector3D targetSpacecraft = state.getAttitude().getRotation().applyTo(targetInert);
- final double d = Vector3D.dotProduct(targetSpacecraft, rotationAxis);
- final double f = 1 - d * d;
- if (f < Precision.EPSILON) {
- // extremely rare case: the target is along panel rotation axis
- // (there will not be much output power if it is a solar array…)
- // we set up an arbitrary normal
- return rotationAxis.orthogonal();
- }
- final double s = 1.0 / FastMath.sqrt(f);
- return new Vector3D(s, targetSpacecraft, -s * d, rotationAxis);
- }
- /** {@inheritDoc} */
- @Override
- public <T extends CalculusFieldElement<T>> FieldVector3D<T> getNormal(final FieldSpacecraftState<T> state) {
- // compute orientation for best pointing
- final FieldVector3D<T> targetInert = target.getPosition(state.getDate(), state.getFrame()).
- subtract(state.getPosition()).normalize();
- final FieldVector3D<T> targetSpacecraft = state.getAttitude().getRotation().applyTo(targetInert);
- final T d = FieldVector3D.dotProduct(targetSpacecraft, rotationAxis);
- final T f = d.multiply(d).subtract(1).negate();
- if (f.getReal() < Precision.EPSILON) {
- // extremely rare case: the target is along panel rotation axis
- // (there will not be much output power if it is a solar array…)
- // we set up an arbitrary normal
- return new FieldVector3D<>(f.getField(), rotationAxis.orthogonal());
- }
- final T s = f.sqrt().reciprocal();
- return new FieldVector3D<>(s, targetSpacecraft,
- s.multiply(d).negate(), new FieldVector3D<>(state.getDate().getField(), rotationAxis));
- }
- }