AbstractDragForceModel.java
- /* Copyright 2002-2025 CS GROUP
- * Licensed to CS GROUP (CS) under one or more
- * contributor license agreements. See the NOTICE file distributed with
- * this work for additional information regarding copyright ownership.
- * CS licenses this file to You under the Apache License, Version 2.0
- * (the "License"); you may not use this file except in compliance with
- * the License. You may obtain a copy of the License at
- *
- * http://www.apache.org/licenses/LICENSE-2.0
- *
- * Unless required by applicable law or agreed to in writing, software
- * distributed under the License is distributed on an "AS IS" BASIS,
- * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- * See the License for the specific language governing permissions and
- * limitations under the License.
- */
- package org.orekit.forces.drag;
- import org.hipparchus.CalculusFieldElement;
- import org.hipparchus.analysis.differentiation.DSFactory;
- import org.hipparchus.analysis.differentiation.DerivativeStructure;
- import org.hipparchus.analysis.differentiation.Gradient;
- import org.hipparchus.geometry.euclidean.threed.FieldVector3D;
- import org.hipparchus.geometry.euclidean.threed.Vector3D;
- import org.orekit.forces.ForceModel;
- import org.orekit.frames.Frame;
- import org.orekit.frames.StaticTransform;
- import org.orekit.models.earth.atmosphere.Atmosphere;
- import org.orekit.propagation.FieldSpacecraftState;
- import org.orekit.time.AbsoluteDate;
- import org.orekit.time.FieldAbsoluteDate;
- import org.orekit.utils.FieldPVCoordinates;
- import java.util.Arrays;
- /**
- * Base class for drag force models.
- * @see DragForce
- * @author Bryan Cazabonne
- * @since 10.2
- */
- public abstract class AbstractDragForceModel implements ForceModel {
- /** Atmospheric model. */
- private final Atmosphere atmosphere;
- /**
- * Flag to use (first-order) finite differences instead of automatic differentiation when computing density derivatives w.r.t. position.
- */
- private final boolean useFiniteDifferencesOnDensityWrtPosition;
- /**
- * Constructor with default value for finite differences flag.
- * @param atmosphere atmospheric model
- */
- protected AbstractDragForceModel(final Atmosphere atmosphere) {
- this(atmosphere, true);
- }
- /**
- * Constructor.
- * @param atmosphere atmospheric model
- * @param useFiniteDifferencesOnDensityWrtPosition flag to use finite differences to compute density derivatives w.r.t.
- * position (is less accurate but can be faster depending on model)
- * @since 12.1
- */
- protected AbstractDragForceModel(final Atmosphere atmosphere, final boolean useFiniteDifferencesOnDensityWrtPosition) {
- this.atmosphere = atmosphere;
- this.useFiniteDifferencesOnDensityWrtPosition = useFiniteDifferencesOnDensityWrtPosition;
- }
- /** Get the atmospheric model.
- * @return atmosphere model
- * @since 12.1
- */
- public Atmosphere getAtmosphere() {
- return atmosphere;
- }
- /** {@inheritDoc} */
- @Override
- public boolean dependsOnPositionOnly() {
- return false;
- }
- /** Check if a field state corresponds to derivatives with respect to state.
- * @param state state to check
- * @param <T> type of the field elements
- * @return true if state corresponds to derivatives with respect to state
- */
- protected <T extends CalculusFieldElement<T>> boolean isDSStateDerivative(final FieldSpacecraftState<T> state) {
- try {
- final DerivativeStructure dsMass = (DerivativeStructure) state.getMass();
- final int o = dsMass.getOrder();
- final int p = dsMass.getFreeParameters();
- // To be in the desired case:
- // Order must be 1 (first order derivatives only)
- // Number of parameters must be 6 (PV), 7 (PV + drag coefficient) or 8 (PV + drag coefficient + lift ratio)
- if (o != 1 || p != 6 && p != 7 && p != 8) {
- return false;
- }
- // Check that the first 6 parameters are position and velocity
- @SuppressWarnings("unchecked")
- final FieldPVCoordinates<DerivativeStructure> pv = (FieldPVCoordinates<DerivativeStructure>) state.getPVCoordinates();
- return isVariable(pv.getPosition().getX(), 0) &&
- isVariable(pv.getPosition().getY(), 1) &&
- isVariable(pv.getPosition().getZ(), 2) &&
- isVariable(pv.getVelocity().getX(), 3) &&
- isVariable(pv.getVelocity().getY(), 4) &&
- isVariable(pv.getVelocity().getZ(), 5);
- } catch (ClassCastException cce) {
- return false;
- }
- }
- /** Check if a field state corresponds to derivatives with respect to state.
- * @param state state to check
- * @param <T> type of the field elements
- * @return true if state corresponds to derivatives with respect to state
- */
- protected <T extends CalculusFieldElement<T>> boolean isGradientStateDerivative(final FieldSpacecraftState<T> state) {
- try {
- final Gradient gMass = (Gradient) state.getMass();
- final int p = gMass.getFreeParameters();
- // To be in the desired case:
- // Number of parameters must be 6 (PV), 7 (PV + drag coefficient) or 8 (PV + drag coefficient + lift ratio)
- if (p != 6 && p != 7 && p != 8) {
- return false;
- }
- // Check that the first 6 parameters are position and velocity
- @SuppressWarnings("unchecked")
- final FieldPVCoordinates<Gradient> pv = (FieldPVCoordinates<Gradient>) state.getPVCoordinates();
- return isVariable(pv.getPosition().getX(), 0) &&
- isVariable(pv.getPosition().getY(), 1) &&
- isVariable(pv.getPosition().getZ(), 2) &&
- isVariable(pv.getVelocity().getX(), 3) &&
- isVariable(pv.getVelocity().getY(), 4) &&
- isVariable(pv.getVelocity().getZ(), 5);
- } catch (ClassCastException cce) {
- return false;
- }
- }
- /**
- * Evaluate the Field density.
- * @param s spacecraft state
- * @return atmospheric density
- * @param <T> field type
- * @since 12.1
- */
- @SuppressWarnings("unchecked")
- protected <T extends CalculusFieldElement<T>> T getFieldDensity(final FieldSpacecraftState<T> s) {
- final FieldAbsoluteDate<T> date = s.getDate();
- final Frame frame = s.getFrame();
- final FieldVector3D<T> position = s.getPosition();
- if (isGradientStateDerivative(s)) {
- if (useFiniteDifferencesOnDensityWrtPosition) {
- return (T) this.getGradientDensityWrtStateUsingFiniteDifferences(date.toAbsoluteDate(), frame, (FieldVector3D<Gradient>) position);
- } else {
- return (T) this.getGradientDensityWrtState(date.toAbsoluteDate(), frame, (FieldVector3D<Gradient>) position);
- }
- } else if (isDSStateDerivative(s)) {
- if (useFiniteDifferencesOnDensityWrtPosition) {
- return (T) this.getDSDensityWrtStateUsingFiniteDifferences(date.toAbsoluteDate(), frame, (FieldVector3D<DerivativeStructure>) position);
- } else {
- return (T) this.getDSDensityWrtState(date.toAbsoluteDate(), frame, (FieldVector3D<DerivativeStructure>) position);
- }
- } else {
- return atmosphere.getDensity(date, position, frame);
- }
- }
- /** Check if a derivative represents a specified variable.
- * @param ds derivative to check
- * @param index index of the variable
- * @return true if the derivative represents a specified variable
- */
- protected boolean isVariable(final DerivativeStructure ds, final int index) {
- final double[] derivatives = ds.getAllDerivatives();
- boolean check = true;
- for (int i = 1; i < derivatives.length; ++i) {
- check &= derivatives[i] == ((index + 1 == i) ? 1.0 : 0.0);
- }
- return check;
- }
- /** Check if a derivative represents a specified variable.
- * @param g derivative to check
- * @param index index of the variable
- * @return true if the derivative represents a specified variable
- */
- protected boolean isVariable(final Gradient g, final int index) {
- final double[] derivatives = g.getGradient();
- boolean check = true;
- for (int i = 0; i < derivatives.length; ++i) {
- check &= derivatives[i] == ((index == i) ? 1.0 : 0.0);
- }
- return check;
- }
- /** Compute density and its derivatives.
- * Using finite differences for the derivatives.
- * And doing the actual computation only for the derivatives with respect to position (others are set to 0.).
- * <p>
- * From a theoretical point of view, this method computes the same values
- * as {@link Atmosphere#getDensity(FieldAbsoluteDate, FieldVector3D, Frame)} in the
- * specific case of {@link DerivativeStructure} with respect to state, so
- * it is less general. However, it can be faster depending the Field implementation.
- * </p>
- * <p>
- * The derivatives should be computed with respect to position. The input
- * parameters already take into account the free parameters (6, 7 or 8 depending
- * on derivation with respect to drag coefficient and lift ratio being considered or not)
- * and order (always 1). Free parameters at indices 0, 1 and 2 correspond to derivatives
- * with respect to position. Free parameters at indices 3, 4 and 5 correspond
- * to derivatives with respect to velocity (these derivatives will remain zero
- * as the atmospheric density does not depend on velocity). Free parameter
- * at indexes 6 and 7 (if present) corresponds to derivatives with respect to drag coefficient
- * and/or lift ratio (one of these or both).
- * This 2 last derivatives will remain zero as atmospheric density does not depend on them.
- * </p>
- * @param date current date
- * @param frame inertial reference frame for state (both orbit and attitude)
- * @param position position of spacecraft in inertial frame
- * @return the density and its derivatives
- */
- protected DerivativeStructure getDSDensityWrtStateUsingFiniteDifferences(final AbsoluteDate date,
- final Frame frame,
- final FieldVector3D<DerivativeStructure> position) {
- // Retrieve derivation properties for parameter T
- // It is implied here that T is a DerivativeStructure
- // With order 1 and 6, 7 or 8 free parameters
- // This is all checked before in method isStateDerivatives
- final DSFactory factory = position.getX().getFactory();
- // Build a DerivativeStructure using only derivatives with respect to position
- final DSFactory factory3 = new DSFactory(3, 1);
- final FieldVector3D<DerivativeStructure> position3 =
- new FieldVector3D<>(factory3.variable(0, position.getX().getReal()),
- factory3.variable(1, position.getY().getReal()),
- factory3.variable(2, position.getZ().getReal()));
- // Get atmosphere properties in atmosphere own frame
- final Frame atmFrame = atmosphere.getFrame();
- final StaticTransform toBody = frame.getStaticTransformTo(atmFrame, date);
- final FieldVector3D<DerivativeStructure> posBodyDS = toBody.transformPosition(position3);
- final Vector3D posBody = posBodyDS.toVector3D();
- // Estimate density model by finite differences and composition
- // Using a delta of 1m
- final double delta = 1.0;
- final double x = posBody.getX();
- final double y = posBody.getY();
- final double z = posBody.getZ();
- final double rho0 = atmosphere.getDensity(date, posBody, atmFrame);
- final double dRhodX = (atmosphere.getDensity(date, new Vector3D(x + delta, y, z), atmFrame) - rho0) / delta;
- final double dRhodY = (atmosphere.getDensity(date, new Vector3D(x, y + delta, z), atmFrame) - rho0) / delta;
- final double dRhodZ = (atmosphere.getDensity(date, new Vector3D(x, y, z + delta), atmFrame) - rho0) / delta;
- final double[] dXdQ = posBodyDS.getX().getAllDerivatives();
- final double[] dYdQ = posBodyDS.getY().getAllDerivatives();
- final double[] dZdQ = posBodyDS.getZ().getAllDerivatives();
- // Density with derivatives:
- // - The value and only the 3 first derivatives (those with respect to spacecraft position) are computed
- // - Others are set to 0.
- final int p = factory.getCompiler().getFreeParameters();
- final double[] rhoAll = new double[p + 1];
- rhoAll[0] = rho0;
- for (int i = 1; i < 4; ++i) {
- rhoAll[i] = dRhodX * dXdQ[i] + dRhodY * dYdQ[i] + dRhodZ * dZdQ[i];
- }
- return factory.build(rhoAll);
- }
- /** Compute density and its derivatives.
- * And doing the actual computation only for the derivatives with respect to position (others are set to 0.).
- * <p>
- * The derivatives should be computed with respect to position. The input
- * parameters already take into account the free parameters (6, 7 or 8 depending
- * on derivation with respect to drag coefficient and lift ratio being considered or not)
- * and order (always 1). Free parameters at indices 0, 1 and 2 correspond to derivatives
- * with respect to position. Free parameters at indices 3, 4 and 5 correspond
- * to derivatives with respect to velocity (these derivatives will remain zero
- * as the atmospheric density does not depend on velocity). Free parameter
- * at indexes 6 and 7 (if present) corresponds to derivatives with respect to drag coefficient
- * and/or lift ratio (one of these or both).
- * This 2 last derivatives will remain zero as atmospheric density does not depend on them.
- * </p>
- * @param date current date
- * @param frame inertial reference frame for state (both orbit and attitude)
- * @param position position of spacecraft in inertial frame
- * @return the density and its derivatives
- */
- protected DerivativeStructure getDSDensityWrtState(final AbsoluteDate date, final Frame frame,
- final FieldVector3D<DerivativeStructure> position) {
- // Retrieve derivation properties for parameter T
- // It is implied here that T is a DerivativeStructure
- // With order 1 and 6, 7 or 8 free parameters
- // This is all checked before in method isStateDerivatives
- final DSFactory factory = position.getX().getFactory();
- // Build a DerivativeStructure using only derivatives with respect to position
- final DSFactory factory3 = new DSFactory(3, 1);
- final FieldVector3D<DerivativeStructure> position3 =
- new FieldVector3D<>(factory3.variable(0, position.getX().getReal()),
- factory3.variable(1, position.getY().getReal()),
- factory3.variable(2, position.getZ().getReal()));
- // Get atmosphere properties in atmosphere own frame
- final Frame atmFrame = atmosphere.getFrame();
- final StaticTransform toBody = frame.getStaticTransformTo(atmFrame, date);
- final FieldVector3D<DerivativeStructure> posBodyDS = toBody.transformPosition(position3);
- final FieldAbsoluteDate<DerivativeStructure> fieldDate = new FieldAbsoluteDate<>(position3.getX().getField(), date);
- final DerivativeStructure density = atmosphere.getDensity(fieldDate, posBodyDS, atmFrame);
- // Density with derivatives:
- // - The value and only the 3 first derivatives (those with respect to spacecraft position) are computed
- // - Others are set to 0.
- final double[] derivatives = Arrays.copyOf(density.getAllDerivatives(), factory.getCompiler().getSize());
- return factory.build(derivatives);
- }
- /** Compute density and its derivatives.
- * Using finite differences for the derivatives.
- * And doing the actual computation only for the derivatives with respect to position (others are set to 0.).
- * <p>
- * From a theoretical point of view, this method computes the same values
- * as {@link Atmosphere#getDensity(FieldAbsoluteDate, FieldVector3D, Frame)} in the
- * specific case of {@link Gradient} with respect to state, so
- * it is less general. However, it can be faster depending the Field implementation.
- * </p>
- * <p>
- * The derivatives should be computed with respect to position. The input
- * parameters already take into account the free parameters (6, 7 or 8 depending
- * on derivation with respect to drag coefficient and lift ratio being considered or not)
- * and order (always 1). Free parameters at indices 0, 1 and 2 correspond to derivatives
- * with respect to position. Free parameters at indices 3, 4 and 5 correspond
- * to derivatives with respect to velocity (these derivatives will remain zero
- * as the atmospheric density does not depend on velocity). Free parameter
- * at indexes 6 and 7 (if present) corresponds to derivatives with respect to drag coefficient
- * and/or lift ratio (one of these or both).
- * This 2 last derivatives will remain zero as atmospheric density does not depend on them.
- * </p>
- * @param date current date
- * @param frame inertial reference frame for state (both orbit and attitude)
- * @param position position of spacecraft in inertial frame
- * @return the density and its derivatives
- */
- protected Gradient getGradientDensityWrtStateUsingFiniteDifferences(final AbsoluteDate date,
- final Frame frame,
- final FieldVector3D<Gradient> position) {
- // Build a Gradient using only derivatives with respect to position
- final FieldVector3D<Gradient> position3 =
- new FieldVector3D<>(Gradient.variable(3, 0, position.getX().getReal()),
- Gradient.variable(3, 1, position.getY().getReal()),
- Gradient.variable(3, 2, position.getZ().getReal()));
- // Get atmosphere properties in atmosphere own frame
- final Frame atmFrame = atmosphere.getFrame();
- final StaticTransform toBody = frame.getStaticTransformTo(atmFrame, date);
- final FieldVector3D<Gradient> posBodyDS = toBody.transformPosition(position3);
- final Vector3D posBody = posBodyDS.toVector3D();
- // Estimate density model by finite differences and composition
- // Using a delta of 1m
- final double delta = 1.0;
- final double x = posBody.getX();
- final double y = posBody.getY();
- final double z = posBody.getZ();
- final double rho0 = atmosphere.getDensity(date, posBody, atmFrame);
- final double dRhodX = (atmosphere.getDensity(date, new Vector3D(x + delta, y, z), atmFrame) - rho0) / delta;
- final double dRhodY = (atmosphere.getDensity(date, new Vector3D(x, y + delta, z), atmFrame) - rho0) / delta;
- final double dRhodZ = (atmosphere.getDensity(date, new Vector3D(x, y, z + delta), atmFrame) - rho0) / delta;
- final double[] dXdQ = posBodyDS.getX().getGradient();
- final double[] dYdQ = posBodyDS.getY().getGradient();
- final double[] dZdQ = posBodyDS.getZ().getGradient();
- // Density with derivatives:
- // - The value and only the 3 first derivatives (those with respect to spacecraft position) are computed
- // - Others are set to 0.
- final int p = position.getX().getFreeParameters();
- final double[] rhoAll = new double[p];
- for (int i = 0; i < 3; ++i) {
- rhoAll[i] = dRhodX * dXdQ[i] + dRhodY * dYdQ[i] + dRhodZ * dZdQ[i];
- }
- return new Gradient(rho0, rhoAll);
- }
- /** Compute density and its derivatives.
- * <p>
- * The derivatives should be computed with respect to position. The input
- * parameters already take into account the free parameters (6, 7 or 8 depending
- * on derivation with respect to drag coefficient and lift ratio being considered or not)
- * and order (always 1). Free parameters at indices 0, 1 and 2 correspond to derivatives
- * with respect to position. Free parameters at indices 3, 4 and 5 correspond
- * to derivatives with respect to velocity (these derivatives will remain zero
- * as the atmospheric density does not depend on velocity). Free parameter
- * at indexes 6 and 7 (if present) corresponds to derivatives with respect to drag coefficient
- * and/or lift ratio (one of these or both).
- * This 2 last derivatives will remain zero as atmospheric density does not depend on them.
- * </p>
- * @param date current date
- * @param frame inertial reference frame for state (both orbit and attitude)
- * @param position position of spacecraft in inertial frame
- * @return the density and its derivatives
- * @since 12.1
- */
- protected Gradient getGradientDensityWrtState(final AbsoluteDate date, final Frame frame,
- final FieldVector3D<Gradient> position) {
- // Build a Gradient using only derivatives with respect to position
- final int positionDimension = 3;
- final FieldVector3D<Gradient> position3 =
- new FieldVector3D<>(Gradient.variable(positionDimension, 0, position.getX().getReal()),
- Gradient.variable(positionDimension, 1, position.getY().getReal()),
- Gradient.variable(positionDimension, 2, position.getZ().getReal()));
- // Get atmosphere properties in atmosphere own frame
- final Frame atmFrame = atmosphere.getFrame();
- final StaticTransform toBody = frame.getStaticTransformTo(atmFrame, date);
- final FieldVector3D<Gradient> posBodyGradient = toBody.transformPosition(position3);
- final FieldAbsoluteDate<Gradient> fieldDate = new FieldAbsoluteDate<>(position3.getX().getField(), date);
- final Gradient density = atmosphere.getDensity(fieldDate, posBodyGradient, atmFrame);
- // Density with derivatives:
- // - The value and only the 3 first derivatives (those with respect to spacecraft position) are computed
- // - Others are set to 0.
- final double[] derivatives = Arrays.copyOf(density.getGradient(), position.getX().getFreeParameters());
- return new Gradient(density.getValue(), derivatives);
- }
- }