UnscentedKalmanEstimator.java
- /* Copyright 2002-2025 CS GROUP
- * Licensed to CS GROUP (CS) under one or more
- * contributor license agreements. See the NOTICE file distributed with
- * this work for additional information regarding copyright ownership.
- * CS licenses this file to You under the Apache License, Version 2.0
- * (the "License"); you may not use this file except in compliance with
- * the License. You may obtain a copy of the License at
- *
- * http://www.apache.org/licenses/LICENSE-2.0
- *
- * Unless required by applicable law or agreed to in writing, software
- * distributed under the License is distributed on an "AS IS" BASIS,
- * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- * See the License for the specific language governing permissions and
- * limitations under the License.
- */
- package org.orekit.estimation.sequential;
- import java.util.List;
- import org.hipparchus.filtering.kalman.KalmanFilter;
- import org.hipparchus.filtering.kalman.ProcessEstimate;
- import org.hipparchus.filtering.kalman.unscented.UnscentedKalmanFilter;
- import org.hipparchus.linear.MatrixDecomposer;
- import org.hipparchus.util.UnscentedTransformProvider;
- import org.orekit.estimation.measurements.ObservedMeasurement;
- import org.orekit.propagation.Propagator;
- import org.orekit.propagation.conversion.DSSTPropagatorBuilder;
- import org.orekit.propagation.conversion.PropagatorBuilder;
- import org.orekit.utils.ParameterDriver;
- import org.orekit.utils.ParameterDriversList;
- /**
- * Implementation of an Unscented Kalman filter to perform orbit determination.
- * <p>
- * The filter uses a {@link PropagatorBuilder} to initialize its reference trajectory.
- * </p>
- * <p>
- * The estimated parameters are driven by {@link ParameterDriver} objects. They are of 3 different types:<ol>
- * <li><b>Orbital parameters</b>:The position and velocity of the spacecraft, or, more generally, its orbit.<br>
- * These parameters are retrieved from the reference trajectory propagator builder when the filter is initialized.</li>
- * <li><b>Propagation parameters</b>: Some parameters modelling physical processes (SRP or drag coefficients etc...).<br>
- * They are also retrieved from the propagator builder during the initialization phase.</li>
- * <li><b>Measurements parameters</b>: Parameters related to measurements (station biases, positions etc...).<br>
- * They are passed down to the filter in its constructor.</li>
- * </ol>
- * <p>
- * The total number of estimated parameters is m, the size of the state vector.
- * </p>
- * <p>
- * The Kalman filter implementation used is provided by the underlying mathematical library Hipparchus.
- * </p>
- *
- * <p>An {@link UnscentedKalmanEstimator} object is built using the {@link UnscentedKalmanEstimatorBuilder#build() build}
- * method of a {@link UnscentedKalmanEstimatorBuilder}. The builder is generalized to accept any {@link PropagatorBuilder}.
- * Howerver, it is absolutely not recommended to use a {@link DSSTPropagatorBuilder}.
- * A specific {@link SemiAnalyticalUnscentedKalmanEstimatorBuilder semi-analytical unscented Kalman Filter} is implemented
- * and shall be used.
- * </p>
- *
- * @author Gaƫtan Pierre
- * @author Bryan Cazabonne
- * @since 11.3
- */
- public class UnscentedKalmanEstimator extends AbstractKalmanEstimator {
- /** Unscented Kalman filter process model. */
- private final UnscentedKalmanModel processModel;
- /** Filter. */
- private final UnscentedKalmanFilter<MeasurementDecorator> filter;
- /** Unscented Kalman filter estimator constructor (package private).
- * @param decomposer decomposer to use for the correction phase
- * @param propagatorBuilders propagators builders used to evaluate the orbit.
- * @param processNoiseMatricesProviders providers for process noise matrices
- * @param estimatedMeasurementParameters measurement parameters to estimate
- * @param measurementProcessNoiseMatrix provider for measurement process noise matrix
- * @param utProvider provider for the unscented transform.
- */
- UnscentedKalmanEstimator(final MatrixDecomposer decomposer,
- final List<PropagatorBuilder> propagatorBuilders,
- final List<CovarianceMatrixProvider> processNoiseMatricesProviders,
- final ParameterDriversList estimatedMeasurementParameters,
- final CovarianceMatrixProvider measurementProcessNoiseMatrix,
- final UnscentedTransformProvider utProvider) {
- super(decomposer, propagatorBuilders);
- // Build the process model and measurement model
- this.processModel = new UnscentedKalmanModel(propagatorBuilders, processNoiseMatricesProviders,
- estimatedMeasurementParameters, measurementProcessNoiseMatrix);
- this.filter = new UnscentedKalmanFilter<>(decomposer, processModel, processModel.getEstimate(), utProvider);
- }
- /** {@inheritDoc}. */
- @Override
- protected KalmanEstimation getKalmanEstimation() {
- return processModel;
- }
- /** {@inheritDoc}. */
- @Override
- protected KalmanFilter<MeasurementDecorator> getKalmanFilter() {
- return filter;
- }
- /** {@inheritDoc}. */
- @Override
- protected double[] getScale() {
- return processModel.getScale();
- }
- /** Process a single measurement.
- * <p>
- * Update the filter with the new measurement by calling the estimate method.
- * </p>
- * @param observedMeasurement the measurement to process
- * @return estimated propagator
- */
- public Propagator[] estimationStep(final ObservedMeasurement<?> observedMeasurement) {
- final ProcessEstimate estimate = filter.estimationStep(KalmanEstimatorUtil.decorate(observedMeasurement, getReferenceDate()));
- processModel.finalizeEstimation(observedMeasurement, estimate);
- if (getObserver() != null) {
- getObserver().evaluationPerformed(processModel);
- }
- return processModel.getEstimatedPropagators();
- }
- /** Process several measurements.
- * @param observedMeasurements the measurements to process in <em>chronologically sorted</em> order
- * @return estimated propagator
- */
- public Propagator[] processMeasurements(final Iterable<ObservedMeasurement<?>> observedMeasurements) {
- Propagator[] propagators = null;
- for (ObservedMeasurement<?> observedMeasurement : observedMeasurements) {
- propagators = estimationStep(observedMeasurement);
- }
- return propagators;
- }
- }