TurnAroundRange.java
- /* Copyright 2002-2025 CS GROUP
- * Licensed to CS GROUP (CS) under one or more
- * contributor license agreements. See the NOTICE file distributed with
- * this work for additional information regarding copyright ownership.
- * CS licenses this file to You under the Apache License, Version 2.0
- * (the "License"); you may not use this file except in compliance with
- * the License. You may obtain a copy of the License at
- *
- * http://www.apache.org/licenses/LICENSE-2.0
- *
- * Unless required by applicable law or agreed to in writing, software
- * distributed under the License is distributed on an "AS IS" BASIS,
- * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- * See the License for the specific language governing permissions and
- * limitations under the License.
- */
- package org.orekit.estimation.measurements;
- import java.util.Arrays;
- import java.util.HashMap;
- import java.util.Map;
- import org.hipparchus.Field;
- import org.hipparchus.analysis.differentiation.Gradient;
- import org.hipparchus.analysis.differentiation.GradientField;
- import org.hipparchus.geometry.euclidean.threed.FieldVector3D;
- import org.hipparchus.geometry.euclidean.threed.Vector3D;
- import org.orekit.frames.FieldTransform;
- import org.orekit.frames.Transform;
- import org.orekit.propagation.SpacecraftState;
- import org.orekit.time.AbsoluteDate;
- import org.orekit.time.FieldAbsoluteDate;
- import org.orekit.utils.Constants;
- import org.orekit.utils.FieldPVCoordinates;
- import org.orekit.utils.PVCoordinates;
- import org.orekit.utils.ParameterDriver;
- import org.orekit.utils.TimeSpanMap.Span;
- import org.orekit.utils.TimeStampedFieldPVCoordinates;
- import org.orekit.utils.TimeStampedPVCoordinates;
- /** Class modeling a turn-around range measurement using a primary ground station and a secondary ground station.
- * <p>
- * The measurement is considered to be a signal:
- * - Emitted from the primary ground station
- * - Reflected on the spacecraft
- * - Reflected on the secondary ground station
- * - Reflected on the spacecraft again
- * - Received on the primary ground station
- * Its value is the elapsed time between emission and reception
- * divided by 2c were c is the speed of light.
- * The motion of the stations and the spacecraft
- * during the signal flight time are taken into account.
- * The date of the measurement corresponds to the
- * reception on ground of the reflected signal.
- * </p>
- * @author Thierry Ceolin
- * @author Luc Maisonobe
- * @author Maxime Journot
- *
- * @since 9.0
- */
- public class TurnAroundRange extends GroundReceiverMeasurement<TurnAroundRange> {
- /** Type of the measurement. */
- public static final String MEASUREMENT_TYPE = "TurnAroundRange";
- /** Secondary ground station reflecting the signal. */
- private final GroundStation secondaryStation;
- /** Simple constructor.
- * @param primaryStation ground station from which measurement is performed
- * @param secondaryStation ground station reflecting the signal
- * @param date date of the measurement
- * @param turnAroundRange observed value
- * @param sigma theoretical standard deviation
- * @param baseWeight base weight
- * @param satellite satellite related to this measurement
- * @since 9.3
- */
- public TurnAroundRange(final GroundStation primaryStation, final GroundStation secondaryStation,
- final AbsoluteDate date, final double turnAroundRange,
- final double sigma, final double baseWeight,
- final ObservableSatellite satellite) {
- super(primaryStation, true, date, turnAroundRange, sigma, baseWeight, satellite);
- // the secondary station clock is not used at all, we ignore the corresponding parameter driver
- addParameterDriver(secondaryStation.getEastOffsetDriver());
- addParameterDriver(secondaryStation.getNorthOffsetDriver());
- addParameterDriver(secondaryStation.getZenithOffsetDriver());
- addParameterDriver(secondaryStation.getPrimeMeridianOffsetDriver());
- addParameterDriver(secondaryStation.getPrimeMeridianDriftDriver());
- addParameterDriver(secondaryStation.getPolarOffsetXDriver());
- addParameterDriver(secondaryStation.getPolarDriftXDriver());
- addParameterDriver(secondaryStation.getPolarOffsetYDriver());
- addParameterDriver(secondaryStation.getPolarDriftYDriver());
- this.secondaryStation = secondaryStation;
- }
- /** Get the primary ground station from which measurement is performed.
- * @return primary ground station from which measurement is performed
- */
- public GroundStation getPrimaryStation() {
- return getStation();
- }
- /** Get the secondary ground station reflecting the signal.
- * @return secondary ground station reflecting the signal
- */
- public GroundStation getSecondaryStation() {
- return secondaryStation;
- }
- /** {@inheritDoc} */
- @Override
- protected EstimatedMeasurementBase<TurnAroundRange> theoreticalEvaluationWithoutDerivatives(final int iteration,
- final int evaluation,
- final SpacecraftState[] states) {
- final SpacecraftState state = states[0];
- // Time-stamped PV
- final TimeStampedPVCoordinates pva = state.getPVCoordinates();
- // The path of the signal is divided in two legs.
- // Leg1: Emission from primary station to satellite in primaryTauU seconds
- // + Reflection from satellite to secondary station in secondaryTauD seconds
- // Leg2: Reflection from secondary station to satellite in secondaryTauU seconds
- // + Reflection from satellite to primary station in primaryTaudD seconds
- // The measurement is considered to be time stamped at reception on ground
- // by the primary station. All times are therefore computed as backward offsets
- // with respect to this reception time.
- //
- // Two intermediate spacecraft states are defined:
- // - transitStateLeg2: State of the satellite when it bounced back the signal
- // from secondary station to primary station during the 2nd leg
- // - transitStateLeg1: State of the satellite when it bounced back the signal
- // from primary station to secondary station during the 1st leg
- // Compute propagation time for the 2nd leg of the signal path
- // --
- // Time difference between t (date of the measurement) and t' (date tagged in spacecraft state)
- // (if state has already been set up to pre-compensate propagation delay,
- // we will have delta = primaryTauD + secondaryTauU)
- final double delta = getDate().durationFrom(state.getDate());
- // transform between primary station topocentric frame (east-north-zenith) and inertial frame expressed as gradients
- final Transform primaryToInert =
- getStation().getOffsetToInertial(state.getFrame(), getDate(), false);
- final AbsoluteDate measurementDate = primaryToInert.getDate();
- // Primary station PV in inertial frame at measurement date
- final TimeStampedPVCoordinates primaryArrival =
- primaryToInert.transformPVCoordinates(new TimeStampedPVCoordinates(measurementDate,
- Vector3D.ZERO, Vector3D.ZERO, Vector3D.ZERO));
- // Compute propagation times
- final double primaryTauD = signalTimeOfFlightAdjustableEmitter(pva, primaryArrival.getPosition(), measurementDate,
- state.getFrame());
- // Elapsed time between state date t' and signal arrival to the transit state of the 2nd leg
- final double dtLeg2 = delta - primaryTauD;
- // Transit state where the satellite reflected the signal from secondary to primary station
- final SpacecraftState transitStateLeg2 = state.shiftedBy(dtLeg2);
- // Transit state pv of leg2 (re)computed with gradient
- final TimeStampedPVCoordinates transitStateLeg2PV = pva.shiftedBy(dtLeg2);
- // transform between secondary station topocentric frame (east-north-zenith) and inertial frame expressed as gradients
- // The components of secondary station's position in offset frame are the 3 last derivative parameters
- final AbsoluteDate approxReboundDate = measurementDate.shiftedBy(-delta);
- final Transform secondaryToInertApprox =
- secondaryStation.getOffsetToInertial(state.getFrame(), approxReboundDate, true);
- // Secondary station PV in inertial frame at approximate rebound date on secondary station
- final TimeStampedPVCoordinates QSecondaryApprox =
- secondaryToInertApprox.transformPVCoordinates(new TimeStampedPVCoordinates(approxReboundDate,
- Vector3D.ZERO, Vector3D.ZERO, Vector3D.ZERO));
- // Uplink time of flight from secondary station to transit state of leg2
- final double secondaryTauU = signalTimeOfFlightAdjustableEmitter(QSecondaryApprox,
- transitStateLeg2PV.getPosition(),
- transitStateLeg2PV.getDate(),
- state.getFrame());
- // Total time of flight for leg 2
- final double tauLeg2 = primaryTauD + secondaryTauU;
- // Compute propagation time for the 1st leg of the signal path
- // --
- // Absolute date of rebound of the signal to secondary station
- final AbsoluteDate reboundDate = measurementDate.shiftedBy(-tauLeg2);
- final Transform secondaryToInert = secondaryStation.getOffsetToInertial(state.getFrame(), reboundDate, true);
- // Secondary station PV in inertial frame at rebound date on secondary station
- final TimeStampedPVCoordinates secondaryRebound =
- secondaryToInert.transformPVCoordinates(new TimeStampedPVCoordinates(reboundDate,
- Vector3D.ZERO, Vector3D.ZERO, Vector3D.ZERO));
- // Downlink time of flight from transitStateLeg1 to secondary station at rebound date
- final double secondaryTauD = signalTimeOfFlightAdjustableEmitter(transitStateLeg2PV,
- secondaryRebound.getPosition(),
- reboundDate,
- state.getFrame());
- // Elapsed time between state date t' and signal arrival to the transit state of the 1st leg
- final double dtLeg1 = dtLeg2 - secondaryTauU - secondaryTauD;
- // Transit state pv of leg2 (re)computed
- final TimeStampedPVCoordinates transitStateLeg1PV = pva.shiftedBy(dtLeg1);
- // transform between primary station topocentric frame (east-north-zenith) and inertial frame
- final AbsoluteDate approxEmissionDate = measurementDate.shiftedBy(-2 * (secondaryTauU + primaryTauD));
- final Transform primaryToInertApprox = getStation().getOffsetToInertial(state.getFrame(), approxEmissionDate, true);
- // Primary station PV in inertial frame at approximate emission date
- final TimeStampedPVCoordinates QPrimaryApprox =
- primaryToInertApprox.transformPVCoordinates(new TimeStampedPVCoordinates(approxEmissionDate,
- Vector3D.ZERO, Vector3D.ZERO, Vector3D.ZERO));
- // Uplink time of flight from primary station to transit state of leg1
- final double primaryTauU = signalTimeOfFlightAdjustableEmitter(QPrimaryApprox,
- transitStateLeg1PV.getPosition(),
- transitStateLeg1PV.getDate(),
- state.getFrame());
- // Primary station PV in inertial frame at exact emission date
- final AbsoluteDate emissionDate = transitStateLeg1PV.getDate().shiftedBy(-primaryTauU);
- final TimeStampedPVCoordinates primaryDeparture =
- primaryToInertApprox.shiftedBy(emissionDate.durationFrom(primaryToInertApprox.getDate())).
- transformPVCoordinates(new TimeStampedPVCoordinates(emissionDate, PVCoordinates.ZERO));
- // Total time of flight for leg 1
- final double tauLeg1 = secondaryTauD + primaryTauU;
- // --
- // Evaluate the turn-around range value and its derivatives
- // --------------------------------------------------------
- // The state we use to define the estimated measurement is a middle ground between the two transit states
- // This is done to avoid calling "SpacecraftState.shiftedBy" function on long duration
- // Thus we define the state at the date t" = date of rebound of the signal at the secondary station
- // Or t" = t -primaryTauD -secondaryTauU
- // The iterative process in the estimation ensures that, after several iterations, the date stamped in the
- // state S in input of this function will be close to t"
- // Therefore we will shift state S by:
- // - +secondaryTauU to get transitStateLeg2
- // - -secondaryTauD to get transitStateLeg1
- final EstimatedMeasurementBase<TurnAroundRange> estimated =
- new EstimatedMeasurementBase<>(this, iteration, evaluation,
- new SpacecraftState[] {
- transitStateLeg2.shiftedBy(-secondaryTauU)
- },
- new TimeStampedPVCoordinates[] {
- primaryDeparture,
- transitStateLeg1PV,
- secondaryRebound,
- transitStateLeg2.getPVCoordinates(),
- primaryArrival
- });
- // Turn-around range value = Total time of flight for the 2 legs divided by 2 and multiplied by c
- final double cOver2 = 0.5 * Constants.SPEED_OF_LIGHT;
- final double turnAroundRange = (tauLeg2 + tauLeg1) * cOver2;
- estimated.setEstimatedValue(turnAroundRange);
- return estimated;
- }
- /** {@inheritDoc} */
- @Override
- protected EstimatedMeasurement<TurnAroundRange> theoreticalEvaluation(final int iteration, final int evaluation,
- final SpacecraftState[] states) {
- final SpacecraftState state = states[0];
- // Turn around range derivatives are computed with respect to:
- // - Spacecraft state in inertial frame
- // - Primary station parameters
- // - Secondary station parameters
- // --------------------------
- //
- // - 0..2 - Position of the spacecraft in inertial frame
- // - 3..5 - Velocity of the spacecraft in inertial frame
- // - 6..n - stations' parameters (clock offset, station offsets, pole, prime meridian...)
- int nbParams = 6;
- final Map<String, Integer> indices = new HashMap<>();
- for (ParameterDriver driver : getParametersDrivers()) {
- // we have to check for duplicate keys because primary and secondary station share
- // pole and prime meridian parameters names that must be considered
- // as one set only (they are combined together by the estimation engine)
- if (driver.isSelected()) {
- for (Span<String> span = driver.getNamesSpanMap().getFirstSpan(); span != null; span = span.next()) {
- if (!indices.containsKey(span.getData())) {
- indices.put(span.getData(), nbParams++);
- }
- }
- }
- }
- final Field<Gradient> field = GradientField.getField(nbParams);
- final FieldVector3D<Gradient> zero = FieldVector3D.getZero(field);
- // Place the gradient in a time-stamped PV
- final TimeStampedFieldPVCoordinates<Gradient> pvaDS = getCoordinates(state, 0, nbParams);
- // The path of the signal is divided in two legs.
- // Leg1: Emission from primary station to satellite in primaryTauU seconds
- // + Reflection from satellite to secondary station in secondaryTauD seconds
- // Leg2: Reflection from secondary station to satellite in secondaryTauU seconds
- // + Reflection from satellite to primary station in primaryTaudD seconds
- // The measurement is considered to be time stamped at reception on ground
- // by the primary station. All times are therefore computed as backward offsets
- // with respect to this reception time.
- //
- // Two intermediate spacecraft states are defined:
- // - transitStateLeg2: State of the satellite when it bounced back the signal
- // from secondary station to primary station during the 2nd leg
- // - transitStateLeg1: State of the satellite when it bounced back the signal
- // from primary station to secondary station during the 1st leg
- // Compute propagation time for the 2nd leg of the signal path
- // --
- // Time difference between t (date of the measurement) and t' (date tagged in spacecraft state)
- // (if state has already been set up to pre-compensate propagation delay,
- // we will have delta = primaryTauD + secondaryTauU)
- final double delta = getDate().durationFrom(state.getDate());
- // transform between primary station topocentric frame (east-north-zenith) and inertial frame expressed as gradients
- final FieldTransform<Gradient> primaryToInert =
- getStation().getOffsetToInertial(state.getFrame(), getDate(), nbParams, indices);
- final FieldAbsoluteDate<Gradient> measurementDateDS = primaryToInert.getFieldDate();
- // Primary station PV in inertial frame at measurement date
- final TimeStampedFieldPVCoordinates<Gradient> primaryArrival =
- primaryToInert.transformPVCoordinates(new TimeStampedFieldPVCoordinates<>(measurementDateDS,
- zero, zero, zero));
- // Compute propagation times
- final Gradient primaryTauD = signalTimeOfFlightAdjustableEmitter(pvaDS, primaryArrival.getPosition(),
- measurementDateDS, state.getFrame());
- // Elapsed time between state date t' and signal arrival to the transit state of the 2nd leg
- final Gradient dtLeg2 = primaryTauD.negate().add(delta);
- // Transit state where the satellite reflected the signal from secondary to primary station
- final SpacecraftState transitStateLeg2 = state.shiftedBy(dtLeg2.getValue());
- // Transit state pv of leg2 (re)computed with gradient
- final TimeStampedFieldPVCoordinates<Gradient> transitStateLeg2PV = pvaDS.shiftedBy(dtLeg2);
- // transform between secondary station topocentric frame (east-north-zenith) and inertial frame expressed as gradients
- // The components of secondary station's position in offset frame are the 3 last derivative parameters
- final FieldAbsoluteDate<Gradient> approxReboundDate = measurementDateDS.shiftedBy(-delta);
- final FieldTransform<Gradient> secondaryToInertApprox =
- secondaryStation.getOffsetToInertial(state.getFrame(), approxReboundDate, nbParams, indices);
- // Secondary station PV in inertial frame at approximate rebound date on secondary station
- final TimeStampedFieldPVCoordinates<Gradient> QSecondaryApprox =
- secondaryToInertApprox.transformPVCoordinates(new TimeStampedFieldPVCoordinates<>(approxReboundDate,
- zero, zero, zero));
- // Uplink time of flight from secondary station to transit state of leg2
- final Gradient secondaryTauU = signalTimeOfFlightAdjustableEmitter(QSecondaryApprox,
- transitStateLeg2PV.getPosition(),
- transitStateLeg2PV.getDate(),
- state.getFrame());
- // Total time of flight for leg 2
- final Gradient tauLeg2 = primaryTauD.add(secondaryTauU);
- // Compute propagation time for the 1st leg of the signal path
- // --
- // Absolute date of rebound of the signal to secondary station
- final FieldAbsoluteDate<Gradient> reboundDateDS = measurementDateDS.shiftedBy(tauLeg2.negate());
- final FieldTransform<Gradient> secondaryToInert =
- secondaryStation.getOffsetToInertial(state.getFrame(), reboundDateDS, nbParams, indices);
- // Secondary station PV in inertial frame at rebound date on secondary station
- final TimeStampedFieldPVCoordinates<Gradient> secondaryRebound =
- secondaryToInert.transformPVCoordinates(new TimeStampedFieldPVCoordinates<>(reboundDateDS,
- FieldPVCoordinates.getZero(field)));
- // Downlink time of flight from transitStateLeg1 to secondary station at rebound date
- final Gradient secondaryTauD = signalTimeOfFlightAdjustableEmitter(transitStateLeg2PV,
- secondaryRebound.getPosition(),
- reboundDateDS,
- state.getFrame());
- // Elapsed time between state date t' and signal arrival to the transit state of the 1st leg
- final Gradient dtLeg1 = dtLeg2.subtract(secondaryTauU).subtract(secondaryTauD);
- // Transit state pv of leg2 (re)computed with gradients
- final TimeStampedFieldPVCoordinates<Gradient> transitStateLeg1PV = pvaDS.shiftedBy(dtLeg1);
- // transform between primary station topocentric frame (east-north-zenith) and inertial frame expressed as gradients
- // The components of primary station's position in offset frame are the 3 third derivative parameters
- final FieldAbsoluteDate<Gradient> approxEmissionDate =
- measurementDateDS.shiftedBy(-2 * (secondaryTauU.getValue() + primaryTauD.getValue()));
- final FieldTransform<Gradient> primaryToInertApprox =
- getStation().getOffsetToInertial(state.getFrame(), approxEmissionDate, nbParams, indices);
- // Primary station PV in inertial frame at approximate emission date
- final TimeStampedFieldPVCoordinates<Gradient> QPrimaryApprox =
- primaryToInertApprox.transformPVCoordinates(new TimeStampedFieldPVCoordinates<>(approxEmissionDate,
- zero, zero, zero));
- // Uplink time of flight from primary station to transit state of leg1
- final Gradient primaryTauU = signalTimeOfFlightAdjustableEmitter(QPrimaryApprox,
- transitStateLeg1PV.getPosition(),
- transitStateLeg1PV.getDate(),
- state.getFrame());
- // Primary station PV in inertial frame at exact emission date
- final AbsoluteDate emissionDate = transitStateLeg1PV.getDate().toAbsoluteDate().shiftedBy(-primaryTauU.getValue());
- final TimeStampedPVCoordinates primaryDeparture =
- primaryToInertApprox.shiftedBy(emissionDate.durationFrom(primaryToInertApprox.getDate())).
- transformPVCoordinates(new TimeStampedPVCoordinates(emissionDate, PVCoordinates.ZERO)).
- toTimeStampedPVCoordinates();
- // Total time of flight for leg 1
- final Gradient tauLeg1 = secondaryTauD.add(primaryTauU);
- // --
- // Evaluate the turn-around range value and its derivatives
- // --------------------------------------------------------
- // The state we use to define the estimated measurement is a middle ground between the two transit states
- // This is done to avoid calling "SpacecraftState.shiftedBy" function on long duration
- // Thus we define the state at the date t" = date of rebound of the signal at the secondary station
- // Or t" = t -primaryTauD -secondaryTauU
- // The iterative process in the estimation ensures that, after several iterations, the date stamped in the
- // state S in input of this function will be close to t"
- // Therefore we will shift state S by:
- // - +secondaryTauU to get transitStateLeg2
- // - -secondaryTauD to get transitStateLeg1
- final EstimatedMeasurement<TurnAroundRange> estimated =
- new EstimatedMeasurement<>(this, iteration, evaluation,
- new SpacecraftState[] {
- transitStateLeg2.shiftedBy(-secondaryTauU.getValue())
- },
- new TimeStampedPVCoordinates[] {
- primaryDeparture,
- transitStateLeg1PV.toTimeStampedPVCoordinates(),
- secondaryRebound.toTimeStampedPVCoordinates(),
- transitStateLeg2.getPVCoordinates(),
- primaryArrival.toTimeStampedPVCoordinates()
- });
- // Turn-around range value = Total time of flight for the 2 legs divided by 2 and multiplied by c
- final double cOver2 = 0.5 * Constants.SPEED_OF_LIGHT;
- final Gradient turnAroundRange = (tauLeg2.add(tauLeg1)).multiply(cOver2);
- estimated.setEstimatedValue(turnAroundRange.getValue());
- // Turn-around range first order derivatives with respect to state
- final double[] derivatives = turnAroundRange.getGradient();
- estimated.setStateDerivatives(0, Arrays.copyOfRange(derivatives, 0, 6));
- // Set first order derivatives with respect to parameters
- for (final ParameterDriver driver : getParametersDrivers()) {
- for (Span<String> span = driver.getNamesSpanMap().getFirstSpan(); span != null; span = span.next()) {
- final Integer index = indices.get(span.getData());
- if (index != null) {
- estimated.setParameterDerivatives(driver, span.getStart(), derivatives[index]);
- }
- }
- }
- return estimated;
- }
- }