RangeRate.java
- /* Copyright 2002-2025 CS GROUP
- * Licensed to CS GROUP (CS) under one or more
- * contributor license agreements. See the NOTICE file distributed with
- * this work for additional information regarding copyright ownership.
- * CS licenses this file to You under the Apache License, Version 2.0
- * (the "License"); you may not use this file except in compliance with
- * the License. You may obtain a copy of the License at
- *
- * http://www.apache.org/licenses/LICENSE-2.0
- *
- * Unless required by applicable law or agreed to in writing, software
- * distributed under the License is distributed on an "AS IS" BASIS,
- * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- * See the License for the specific language governing permissions and
- * limitations under the License.
- */
- package org.orekit.estimation.measurements;
- import java.util.Arrays;
- import java.util.Map;
- import org.hipparchus.analysis.differentiation.Gradient;
- import org.hipparchus.geometry.euclidean.threed.FieldVector3D;
- import org.hipparchus.geometry.euclidean.threed.Vector3D;
- import org.orekit.frames.FieldTransform;
- import org.orekit.frames.Transform;
- import org.orekit.propagation.SpacecraftState;
- import org.orekit.time.AbsoluteDate;
- import org.orekit.time.FieldAbsoluteDate;
- import org.orekit.utils.Constants;
- import org.orekit.utils.ParameterDriver;
- import org.orekit.utils.TimeSpanMap.Span;
- import org.orekit.utils.TimeStampedFieldPVCoordinates;
- import org.orekit.utils.TimeStampedPVCoordinates;
- /** Class modeling one-way or two-way range rate measurement between two vehicles.
- * One-way range rate (or Doppler) measurements generally apply to specific satellites
- * (e.g. GNSS, DORIS), where a signal is transmitted from a satellite to a
- * measuring station.
- * Two-way range rate measurements are applicable to any system. The signal is
- * transmitted to the (non-spinning) satellite and returned by a transponder
- * (or reflected back)to the same measuring station.
- * The Doppler measurement can be obtained by multiplying the velocity by (fe/c), where
- * fe is the emission frequency.
- *
- * @author Thierry Ceolin
- * @author Joris Olympio
- * @since 8.0
- */
- public class RangeRate extends GroundReceiverMeasurement<RangeRate> {
- /** Type of the measurement. */
- public static final String MEASUREMENT_TYPE = "RangeRate";
- /** Simple constructor.
- * @param station ground station from which measurement is performed
- * @param date date of the measurement
- * @param rangeRate observed value, m/s
- * @param sigma theoretical standard deviation
- * @param baseWeight base weight
- * @param twoway if true, this is a two-way measurement
- * @param satellite satellite related to this measurement
- * @since 9.3
- */
- public RangeRate(final GroundStation station, final AbsoluteDate date,
- final double rangeRate, final double sigma, final double baseWeight,
- final boolean twoway, final ObservableSatellite satellite) {
- super(station, twoway, date, rangeRate, sigma, baseWeight, satellite);
- }
- /** {@inheritDoc} */
- @Override
- protected EstimatedMeasurementBase<RangeRate> theoreticalEvaluationWithoutDerivatives(final int iteration,
- final int evaluation,
- final SpacecraftState[] states) {
- final GroundReceiverCommonParametersWithoutDerivatives common = computeCommonParametersWithout(states[0]);
- final TimeStampedPVCoordinates transitPV = common.getTransitPV();
- // one-way (downlink) range-rate
- final EstimatedMeasurementBase<RangeRate> evalOneWay1 =
- oneWayTheoreticalEvaluation(iteration, evaluation, true,
- common.getStationDownlink(),
- transitPV,
- common.getTransitState());
- final EstimatedMeasurementBase<RangeRate> estimated;
- if (isTwoWay()) {
- // one-way (uplink) light time correction
- final Transform offsetToInertialApproxUplink =
- getStation().getOffsetToInertial(common.getState().getFrame(),
- common.getStationDownlink().getDate().shiftedBy(-2 * common.getTauD()),
- false);
- final AbsoluteDate approxUplinkDate = offsetToInertialApproxUplink.getDate();
- final TimeStampedPVCoordinates stationApproxUplink =
- offsetToInertialApproxUplink.transformPVCoordinates(new TimeStampedPVCoordinates(approxUplinkDate,
- Vector3D.ZERO, Vector3D.ZERO, Vector3D.ZERO));
- final double tauU = signalTimeOfFlightAdjustableEmitter(stationApproxUplink, transitPV.getPosition(),
- transitPV.getDate(), common.getState().getFrame());
- final TimeStampedPVCoordinates stationUplink =
- stationApproxUplink.shiftedBy(transitPV.getDate().durationFrom(approxUplinkDate) - tauU);
- final EstimatedMeasurementBase<RangeRate> evalOneWay2 =
- oneWayTheoreticalEvaluation(iteration, evaluation, false,
- stationUplink, transitPV, common.getTransitState());
- // combine uplink and downlink values
- estimated = new EstimatedMeasurementBase<>(this, iteration, evaluation,
- evalOneWay1.getStates(),
- new TimeStampedPVCoordinates[] {
- evalOneWay2.getParticipants()[0],
- evalOneWay1.getParticipants()[0],
- evalOneWay1.getParticipants()[1]
- });
- estimated.setEstimatedValue(0.5 * (evalOneWay1.getEstimatedValue()[0] + evalOneWay2.getEstimatedValue()[0]));
- } else {
- estimated = evalOneWay1;
- }
- return estimated;
- }
- /** {@inheritDoc} */
- @Override
- protected EstimatedMeasurement<RangeRate> theoreticalEvaluation(final int iteration, final int evaluation,
- final SpacecraftState[] states) {
- final SpacecraftState state = states[0];
- // Range-rate derivatives are computed with respect to spacecraft state in inertial frame
- // and station position in station's offset frame
- // -------
- //
- // Parameters:
- // - 0..2 - Position of the spacecraft in inertial frame
- // - 3..5 - Velocity of the spacecraft in inertial frame
- // - 6..n - station parameters (clock offset, clock drift, station offsets, pole, prime meridian...)
- final GroundReceiverCommonParametersWithDerivatives common = computeCommonParametersWithDerivatives(state);
- final int nbParams = common.getTauD().getFreeParameters();
- final TimeStampedFieldPVCoordinates<Gradient> transitPV = common.getTransitPV();
- // one-way (downlink) range-rate
- final EstimatedMeasurement<RangeRate> evalOneWay1 =
- oneWayTheoreticalEvaluation(iteration, evaluation, true,
- common.getStationDownlink(), transitPV,
- common.getTransitState(), common.getIndices(), nbParams);
- final EstimatedMeasurement<RangeRate> estimated;
- if (isTwoWay()) {
- // one-way (uplink) light time correction
- final FieldTransform<Gradient> offsetToInertialApproxUplink =
- getStation().getOffsetToInertial(state.getFrame(),
- common.getStationDownlink().getDate().shiftedBy(common.getTauD().multiply(-2)),
- nbParams, common.getIndices());
- final FieldAbsoluteDate<Gradient> approxUplinkDateDS =
- offsetToInertialApproxUplink.getFieldDate();
- final FieldVector3D<Gradient> zero = FieldVector3D.getZero(common.getTauD().getField());
- final TimeStampedFieldPVCoordinates<Gradient> stationApproxUplink =
- offsetToInertialApproxUplink.transformPVCoordinates(new TimeStampedFieldPVCoordinates<>(approxUplinkDateDS,
- zero, zero, zero));
- final Gradient tauU = signalTimeOfFlightAdjustableEmitter(stationApproxUplink, transitPV.getPosition(), transitPV.getDate(),
- state.getFrame());
- final TimeStampedFieldPVCoordinates<Gradient> stationUplink =
- stationApproxUplink.shiftedBy(transitPV.getDate().durationFrom(approxUplinkDateDS).subtract(tauU));
- final EstimatedMeasurement<RangeRate> evalOneWay2 =
- oneWayTheoreticalEvaluation(iteration, evaluation, false,
- stationUplink, transitPV, common.getTransitState(),
- common.getIndices(), nbParams);
- // combine uplink and downlink values
- estimated = new EstimatedMeasurement<>(this, iteration, evaluation,
- evalOneWay1.getStates(),
- new TimeStampedPVCoordinates[] {
- evalOneWay2.getParticipants()[0],
- evalOneWay1.getParticipants()[0],
- evalOneWay1.getParticipants()[1]
- });
- estimated.setEstimatedValue(0.5 * (evalOneWay1.getEstimatedValue()[0] + evalOneWay2.getEstimatedValue()[0]));
- // combine uplink and downlink partial derivatives with respect to state
- final double[][] sd1 = evalOneWay1.getStateDerivatives(0);
- final double[][] sd2 = evalOneWay2.getStateDerivatives(0);
- final double[][] sd = new double[sd1.length][sd1[0].length];
- for (int i = 0; i < sd.length; ++i) {
- for (int j = 0; j < sd[0].length; ++j) {
- sd[i][j] = 0.5 * (sd1[i][j] + sd2[i][j]);
- }
- }
- estimated.setStateDerivatives(0, sd);
- // combine uplink and downlink partial derivatives with respect to parameters
- evalOneWay1.getDerivativesDrivers().forEach(driver -> {
- for (Span<String> span = driver.getNamesSpanMap().getFirstSpan(); span != null; span = span.next()) {
- final double[] pd1 = evalOneWay1.getParameterDerivatives(driver, span.getStart());
- final double[] pd2 = evalOneWay2.getParameterDerivatives(driver, span.getStart());
- final double[] pd = new double[pd1.length];
- for (int i = 0; i < pd.length; ++i) {
- pd[i] = 0.5 * (pd1[i] + pd2[i]);
- }
- estimated.setParameterDerivatives(driver, span.getStart(), pd);
- }
- });
- } else {
- estimated = evalOneWay1;
- }
- return estimated;
- }
- /** Evaluate measurement in one-way without derivatives.
- * @param iteration iteration number
- * @param evaluation evaluations counter
- * @param downlink indicator for downlink leg
- * @param stationPV station coordinates when signal is at station
- * @param transitPV spacecraft coordinates at onboard signal transit
- * @param transitState orbital state at onboard signal transit
- * @return theoretical value
- * @since 12.0
- */
- private EstimatedMeasurementBase<RangeRate> oneWayTheoreticalEvaluation(final int iteration, final int evaluation, final boolean downlink,
- final TimeStampedPVCoordinates stationPV,
- final TimeStampedPVCoordinates transitPV,
- final SpacecraftState transitState) {
- // prepare the evaluation
- final EstimatedMeasurementBase<RangeRate> estimated =
- new EstimatedMeasurementBase<>(this, iteration, evaluation,
- new SpacecraftState[] {
- transitState
- }, new TimeStampedPVCoordinates[] {
- downlink ? transitPV : stationPV,
- downlink ? stationPV : transitPV
- });
- // range rate value
- final Vector3D stationPosition = stationPV.getPosition();
- final Vector3D relativePosition = stationPosition.subtract(transitPV.getPosition());
- final Vector3D stationVelocity = stationPV.getVelocity();
- final Vector3D relativeVelocity = stationVelocity.subtract(transitPV.getVelocity());
- // radial direction
- final Vector3D lineOfSight = relativePosition.normalize();
- // line of sight velocity
- final double lineOfSightVelocity = Vector3D.dotProduct(relativeVelocity, lineOfSight);
- // range rate
- double rangeRate = lineOfSightVelocity;
- if (!isTwoWay()) {
- // clock drifts, taken in account only in case of one way
- final ObservableSatellite satellite = getSatellites().get(0);
- final double dtsDot = satellite.getClockDriftDriver().getValue(transitState.getDate());
- final double dtgDot = getStation().getClockDriftDriver().getValue(stationPV.getDate());
- final double clockDriftBiais = (dtgDot - dtsDot) * Constants.SPEED_OF_LIGHT;
- rangeRate = rangeRate + clockDriftBiais;
- }
- estimated.setEstimatedValue(rangeRate);
- return estimated;
- }
- /** Evaluate measurement in one-way.
- * @param iteration iteration number
- * @param evaluation evaluations counter
- * @param downlink indicator for downlink leg
- * @param stationPV station coordinates when signal is at station
- * @param transitPV spacecraft coordinates at onboard signal transit
- * @param transitState orbital state at onboard signal transit
- * @param indices indices of the estimated parameters in derivatives computations
- * @param nbParams the number of estimated parameters in derivative computations
- * @return theoretical value
- */
- private EstimatedMeasurement<RangeRate> oneWayTheoreticalEvaluation(final int iteration, final int evaluation, final boolean downlink,
- final TimeStampedFieldPVCoordinates<Gradient> stationPV,
- final TimeStampedFieldPVCoordinates<Gradient> transitPV,
- final SpacecraftState transitState,
- final Map<String, Integer> indices,
- final int nbParams) {
- // prepare the evaluation
- final EstimatedMeasurement<RangeRate> estimated =
- new EstimatedMeasurement<>(this, iteration, evaluation,
- new SpacecraftState[] {
- transitState
- }, new TimeStampedPVCoordinates[] {
- (downlink ? transitPV : stationPV).toTimeStampedPVCoordinates(),
- (downlink ? stationPV : transitPV).toTimeStampedPVCoordinates()
- });
- // range rate value
- final FieldVector3D<Gradient> stationPosition = stationPV.getPosition();
- final FieldVector3D<Gradient> relativePosition = stationPosition.subtract(transitPV.getPosition());
- final FieldVector3D<Gradient> stationVelocity = stationPV.getVelocity();
- final FieldVector3D<Gradient> relativeVelocity = stationVelocity.subtract(transitPV.getVelocity());
- // radial direction
- final FieldVector3D<Gradient> lineOfSight = relativePosition.normalize();
- // line of sight velocity
- final Gradient lineOfSightVelocity = FieldVector3D.dotProduct(relativeVelocity, lineOfSight);
- // range rate
- Gradient rangeRate = lineOfSightVelocity;
- if (!isTwoWay()) {
- // clock drifts, taken in account only in case of one way
- final ObservableSatellite satellite = getSatellites().get(0);
- final Gradient dtsDot = satellite.getClockDriftDriver().getValue(nbParams, indices, transitState.getDate());
- final Gradient dtgDot = getStation().getClockDriftDriver().getValue(nbParams, indices, stationPV.getDate().toAbsoluteDate());
- final Gradient clockDriftBiais = dtgDot.subtract(dtsDot).multiply(Constants.SPEED_OF_LIGHT);
- rangeRate = rangeRate.add(clockDriftBiais);
- }
- estimated.setEstimatedValue(rangeRate.getValue());
- // compute first order derivatives of (rr) with respect to spacecraft state Cartesian coordinates
- final double[] derivatives = rangeRate.getGradient();
- estimated.setStateDerivatives(0, Arrays.copyOfRange(derivatives, 0, 6));
- // Set first order derivatives with respect to parameters
- for (final ParameterDriver driver : getParametersDrivers()) {
- for (Span<String> span = driver.getNamesSpanMap().getFirstSpan(); span != null; span = span.next()) {
- final Integer index = indices.get(span.getData());
- if (index != null) {
- estimated.setParameterDerivatives(driver, span.getStart(), derivatives[index]);
- }
- }
- }
- return estimated;
- }
- }