BistaticRangeRate.java
- /* Copyright 2002-2025 CS GROUP
- * Licensed to CS GROUP (CS) under one or more
- * contributor license agreements. See the NOTICE file distributed with
- * this work for additional information regarding copyright ownership.
- * CS licenses this file to You under the Apache License, Version 2.0
- * (the "License"); you may not use this file except in compliance with
- * the License. You may obtain a copy of the License at
- *
- * http://www.apache.org/licenses/LICENSE-2.0
- *
- * Unless required by applicable law or agreed to in writing, software
- * distributed under the License is distributed on an "AS IS" BASIS,
- * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- * See the License for the specific language governing permissions and
- * limitations under the License.
- */
- package org.orekit.estimation.measurements;
- import java.util.Arrays;
- import org.hipparchus.analysis.differentiation.Gradient;
- import org.hipparchus.geometry.euclidean.threed.FieldVector3D;
- import org.hipparchus.geometry.euclidean.threed.Vector3D;
- import org.orekit.frames.FieldTransform;
- import org.orekit.frames.Transform;
- import org.orekit.propagation.SpacecraftState;
- import org.orekit.time.AbsoluteDate;
- import org.orekit.time.FieldAbsoluteDate;
- import org.orekit.utils.ParameterDriver;
- import org.orekit.utils.TimeSpanMap.Span;
- import org.orekit.utils.TimeStampedFieldPVCoordinates;
- import org.orekit.utils.TimeStampedPVCoordinates;
- /** Class modeling a bistatic range rate measurement using
- * an emitter ground station and a receiver ground station.
- * <p>
- * The measurement is considered to be a signal:
- * <ul>
- * <li>Emitted from the emitter ground station</li>
- * <li>Reflected on the spacecraft</li>
- * <li>Received on the receiver ground station</li>
- * </ul>
- * The date of the measurement corresponds to the reception on ground of the reflected signal.
- * The quantity measured at the receiver is the bistatic radial velocity as the sum of the radial
- * velocities with respect to the two stations.
- * <p>
- * The motion of the stations and the spacecraft during the signal flight time are taken into account.
- * </p><p>
- * The Doppler measurement can be obtained by multiplying the velocity by (fe/c), where
- * fe is the emission frequency.
- * </p>
- *
- * @author Pascal Parraud
- * @since 11.2
- */
- public class BistaticRangeRate extends GroundReceiverMeasurement<BistaticRangeRate> {
- /** Type of the measurement. */
- public static final String MEASUREMENT_TYPE = "BistaticRangeRate";
- /** Emitter ground station. */
- private final GroundStation emitter;
- /** Simple constructor.
- * @param emitter emitter ground station
- * @param receiver receiver ground station
- * @param date date of the measurement
- * @param rangeRate observed value, m/s
- * @param sigma theoretical standard deviation
- * @param baseWeight base weight
- * @param satellite satellite related to this measurement
- */
- public BistaticRangeRate(final GroundStation emitter, final GroundStation receiver,
- final AbsoluteDate date, final double rangeRate, final double sigma,
- final double baseWeight, final ObservableSatellite satellite) {
- super(receiver, true, date, rangeRate, sigma, baseWeight, satellite);
- // add parameter drivers for the emitter, clock offset is not used
- addParameterDriver(emitter.getEastOffsetDriver());
- addParameterDriver(emitter.getNorthOffsetDriver());
- addParameterDriver(emitter.getZenithOffsetDriver());
- addParameterDriver(emitter.getPrimeMeridianOffsetDriver());
- addParameterDriver(emitter.getPrimeMeridianDriftDriver());
- addParameterDriver(emitter.getPolarOffsetXDriver());
- addParameterDriver(emitter.getPolarDriftXDriver());
- addParameterDriver(emitter.getPolarOffsetYDriver());
- addParameterDriver(emitter.getPolarDriftYDriver());
- this.emitter = emitter;
- }
- /** Get the emitter ground station.
- * @return emitter ground station
- */
- public GroundStation getEmitterStation() {
- return emitter;
- }
- /** Get the receiver ground station.
- * @return receiver ground station
- */
- public GroundStation getReceiverStation() {
- return getStation();
- }
- /** {@inheritDoc} */
- @Override
- protected EstimatedMeasurementBase<BistaticRangeRate> theoreticalEvaluationWithoutDerivatives(final int iteration,
- final int evaluation,
- final SpacecraftState[] states) {
- final GroundReceiverCommonParametersWithoutDerivatives common = computeCommonParametersWithout(states[0]);
- final TimeStampedPVCoordinates transitPV = common.getTransitPV();
- final AbsoluteDate transitDate = transitPV.getDate();
- // Approximate emitter location at transit time
- final Transform emitterToInertial =
- getEmitterStation().getOffsetToInertial(common.getState().getFrame(), transitDate, true);
- final TimeStampedPVCoordinates emitterApprox =
- emitterToInertial.transformPVCoordinates(new TimeStampedPVCoordinates(transitDate,
- Vector3D.ZERO, Vector3D.ZERO, Vector3D.ZERO));
- // Uplink time of flight from emitter station to transit state
- final double tauU = signalTimeOfFlightAdjustableEmitter(emitterApprox, transitPV.getPosition(), transitDate,
- common.getState().getFrame());
- // Secondary station PV in inertial frame at rebound date on secondary station
- final TimeStampedPVCoordinates emitterPV = emitterApprox.shiftedBy(-tauU);
- // Prepare the evaluation
- final EstimatedMeasurementBase<BistaticRangeRate> estimated =
- new EstimatedMeasurementBase<>(this,
- iteration, evaluation,
- new SpacecraftState[] {
- common.getTransitState()
- },
- new TimeStampedPVCoordinates[] {
- common.getStationDownlink(),
- transitPV,
- emitterPV
- });
- // Range-rate components
- final Vector3D receiverDirection = common.getStationDownlink().getPosition()
- .subtract(transitPV.getPosition()).normalize();
- final Vector3D emitterDirection = emitterPV.getPosition()
- .subtract(transitPV.getPosition()).normalize();
- final Vector3D receiverVelocity = common.getStationDownlink().getVelocity()
- .subtract(transitPV.getVelocity());
- final Vector3D emitterVelocity = emitterPV.getVelocity()
- .subtract(transitPV.getVelocity());
- // range rate
- final double rangeRate = Vector3D.dotProduct(receiverDirection, receiverVelocity) +
- Vector3D.dotProduct(emitterDirection, emitterVelocity);
- estimated.setEstimatedValue(rangeRate);
- return estimated;
- }
- /** {@inheritDoc} */
- @Override
- protected EstimatedMeasurement<BistaticRangeRate> theoreticalEvaluation(final int iteration,
- final int evaluation,
- final SpacecraftState[] states) {
- final SpacecraftState state = states[0];
- // Bistatic range-rate derivatives are computed with respect to spacecraft state in inertial frame
- // and station parameters
- // ----------------------
- //
- // Parameters:
- // - 0..2 - Position of the spacecraft in inertial frame
- // - 3..5 - Velocity of the spacecraft in inertial frame
- // - 6..n - measurements parameters (clock offset, station offsets, pole, prime meridian, sat clock offset...)
- final GroundReceiverCommonParametersWithDerivatives common = computeCommonParametersWithDerivatives(state);
- final int nbParams = common.getTauD().getFreeParameters();
- final TimeStampedFieldPVCoordinates<Gradient> transitPV = common.getTransitPV();
- final FieldAbsoluteDate<Gradient> transitDate = transitPV.getDate();
- // Approximate emitter location (at transit time)
- final FieldVector3D<Gradient> zero = FieldVector3D.getZero(common.getTauD().getField());
- final FieldTransform<Gradient> emitterToInertial =
- getEmitterStation().getOffsetToInertial(state.getFrame(), transitDate, nbParams, common.getIndices());
- final TimeStampedFieldPVCoordinates<Gradient> emitterApprox =
- emitterToInertial.transformPVCoordinates(new TimeStampedFieldPVCoordinates<>(transitDate,
- zero, zero, zero));
- // Uplink time of flight from emiiter to transit state
- final Gradient tauU = signalTimeOfFlightAdjustableEmitter(emitterApprox, transitPV.getPosition(), transitPV.getDate(),
- state.getFrame());
- // Emitter coordinates at transmit time
- final TimeStampedFieldPVCoordinates<Gradient> emitterPV = emitterApprox.shiftedBy(tauU.negate());
- // Prepare the evaluation
- final EstimatedMeasurement<BistaticRangeRate> estimated = new EstimatedMeasurement<>(this,
- iteration, evaluation,
- new SpacecraftState[] {
- common.getTransitState()
- },
- new TimeStampedPVCoordinates[] {
- common.getStationDownlink().toTimeStampedPVCoordinates(),
- common.getTransitPV().toTimeStampedPVCoordinates(),
- emitterPV.toTimeStampedPVCoordinates()
- });
- // Range-rate components
- final FieldVector3D<Gradient> receiverDirection = common.getStationDownlink().getPosition()
- .subtract(transitPV.getPosition()).normalize();
- final FieldVector3D<Gradient> emitterDirection = emitterPV.getPosition()
- .subtract(transitPV.getPosition()).normalize();
- final FieldVector3D<Gradient> receiverVelocity = common.getStationDownlink().getVelocity()
- .subtract(transitPV.getVelocity());
- final FieldVector3D<Gradient> emitterVelocity = emitterPV.getVelocity()
- .subtract(transitPV.getVelocity());
- // range rate
- final Gradient rangeRate = FieldVector3D.dotProduct(receiverDirection, receiverVelocity)
- .add(FieldVector3D.dotProduct(emitterDirection, emitterVelocity));
- estimated.setEstimatedValue(rangeRate.getValue());
- // Range first order derivatives with respect to state
- final double[] derivatives = rangeRate.getGradient();
- estimated.setStateDerivatives(0, Arrays.copyOfRange(derivatives, 0, 6));
- // Set first order derivatives with respect to parameters
- for (final ParameterDriver driver : getParametersDrivers()) {
- for (Span<String> span = driver.getNamesSpanMap().getFirstSpan(); span != null; span = span.next()) {
- final Integer index = common.getIndices().get(span.getData());
- if (index != null) {
- estimated.setParameterDerivatives(driver, span.getStart(), derivatives[index]);
- }
- }
- }
- return estimated;
- }
- }