DynamicOutlierFilter.java
- /* Copyright 2002-2025 CS GROUP
- * Licensed to CS GROUP (CS) under one or more
- * contributor license agreements. See the NOTICE file distributed with
- * this work for additional information regarding copyright ownership.
- * CS licenses this file to You under the Apache License, Version 2.0
- * (the "License"); you may not use this file except in compliance with
- * the License. You may obtain a copy of the License at
- *
- * http://www.apache.org/licenses/LICENSE-2.0
- *
- * Unless required by applicable law or agreed to in writing, software
- * distributed under the License is distributed on an "AS IS" BASIS,
- * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- * See the License for the specific language governing permissions and
- * limitations under the License.
- */
- package org.orekit.estimation.measurements.modifiers;
- import org.hipparchus.exception.LocalizedCoreFormats;
- import org.hipparchus.exception.MathIllegalArgumentException;
- import org.hipparchus.util.FastMath;
- import org.orekit.estimation.measurements.EstimatedMeasurement;
- import org.orekit.estimation.measurements.EstimatedMeasurementBase;
- import org.orekit.estimation.measurements.ObservedMeasurement;
- /** Modifier that sets estimated measurement weight to 0 if residual is too far from expected domain.
- * The "dynamic" aspect comes from the fact that the value of sigma can be changed on demand.
- * This is mainly used when searching for outliers in Kalman filters' prediction phase.
- * The value of sigma is then set to the square root of the diagonal of the matrix (H.Ppred.Ht+R)
- * Note that in the case of the Kalman filter we use the "iteration" word to represent the number of
- * measurements processed by the filter so far.
- * @param <T> the type of the measurement
- * @author Luc Maisonobe
- * @since 9.2
- */
- public class DynamicOutlierFilter<T extends ObservedMeasurement<T>> extends OutlierFilter<T> {
- /** Current value of sigma. */
- private double[] sigma;
- /** Simple constructor.
- * @param warmup number of iterations before with filter is not applied
- * @param maxSigma detection limit for outlier
- */
- public DynamicOutlierFilter(final int warmup,
- final double maxSigma) {
- super(warmup, maxSigma);
- this.sigma = null;
- }
- /** Get the current value of sigma.
- * @return The current value of sigma
- */
- public double[] getSigma() {
- return sigma == null ? null : sigma.clone();
- }
- /** Set the current value of sigma.
- * @param sigma The value of sigma to set
- */
- public void setSigma(final double[] sigma) {
- this.sigma = sigma == null ? null : sigma.clone();
- }
- /** {@inheritDoc} */
- @Override
- public void modify(final EstimatedMeasurement<T> estimated) {
- modifyWithoutDerivatives(estimated);
- }
- /** {@inheritDoc} */
- @Override
- public void modifyWithoutDerivatives(final EstimatedMeasurementBase<T> estimated) {
- // Do not apply the filter if current iteration/measurement is lower than
- // warmup attribute or if the attribute sigma has not been initialized yet
- if (estimated.getIteration() > getWarmup() && sigma != null) {
- final double[] observed = estimated.getObservedMeasurement().getObservedValue();
- final double[] theoretical = estimated.getEstimatedValue();
- // Check that the dimension of sigma array is consistent with the measurement
- if (observed.length != sigma.length) {
- throw new MathIllegalArgumentException(LocalizedCoreFormats.DIMENSIONS_MISMATCH,
- sigma.length, getSigma().length);
- }
- // Check if observed value is not too far from estimation
- for (int i = 0; i < observed.length; ++i) {
- if (FastMath.abs(observed[i] - theoretical[i]) > getMaxSigma() * sigma[i]) {
- // observed value is too far, reject measurement
- estimated.setStatus(EstimatedMeasurement.Status.REJECTED);
- }
- }
- }
- }
- }