OneWayGNSSPhase.java

/* Copyright 2002-2024 CS GROUP
 * Licensed to CS GROUP (CS) under one or more
 * contributor license agreements.  See the NOTICE file distributed with
 * this work for additional information regarding copyright ownership.
 * CS licenses this file to You under the Apache License, Version 2.0
 * (the "License"); you may not use this file except in compliance with
 * the License.  You may obtain a copy of the License at
 *
 *   http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */
package org.orekit.estimation.measurements.gnss;

import java.util.Arrays;

import org.hipparchus.analysis.differentiation.Gradient;
import org.orekit.estimation.measurements.EstimatedMeasurement;
import org.orekit.estimation.measurements.EstimatedMeasurementBase;
import org.orekit.estimation.measurements.ObservableSatellite;
import org.orekit.estimation.measurements.QuadraticClockModel;
import org.orekit.propagation.SpacecraftState;
import org.orekit.time.AbsoluteDate;
import org.orekit.utils.Constants;
import org.orekit.utils.PVCoordinatesProvider;
import org.orekit.utils.ParameterDriver;
import org.orekit.utils.TimeSpanMap.Span;
import org.orekit.utils.TimeStampedPVCoordinates;

/** One-way GNSS phase measurement.
 * <p>
 * This class can be used in precise orbit determination applications
 * for modeling a phase measurement between a GNSS satellite (emitter)
 * and a LEO satellite (receiver).
 * <p>
 * The one-way GNSS phase measurement assumes knowledge of the orbit and
 * the clock offset of the emitting GNSS satellite. For instance, it is
 * possible to use a SP3 file or a GNSS navigation message to recover
 * the satellite's orbit and clock.
 * <p>
 * This class is very similar to {@link InterSatellitesPhase} measurement
 * class. However, using the one-way GNSS phase measurement, the orbit and clock
 * of the emitting GNSS satellite are <b>NOT</b> estimated simultaneously with
 * LEO satellite coordinates.
 *
 * @author Bryan Cazabonne
 * @since 10.3
 */
public class OneWayGNSSPhase extends AbstractOneWayGNSSMeasurement<OneWayGNSSPhase> {

    /** Type of the measurement. */
    public static final String MEASUREMENT_TYPE = "OneWayGNSSPhase";

    /** Driver for ambiguity. */
    private final AmbiguityDriver ambiguityDriver;

    /** Wavelength of the phase observed value [m]. */
    private final double wavelength;

    /** Simple constructor.
     * @param remote provider for GNSS satellite which simply emits the signal
     * @param remoteName name of the remote
     * @param remoteClock clock offset of the GNSS satellite
     * @param date date of the measurement
     * @param phase observed value, in cycles
     * @param wavelength phase observed value wavelength, in meters
     * @param sigma theoretical standard deviation
     * @param baseWeight base weight
     * @param local satellite which receives the signal and perform the measurement
     * @param cache from which ambiguity drive should come
     * @since 12.1
     */
    public OneWayGNSSPhase(final PVCoordinatesProvider remote,
                           final String remoteName,
                           final QuadraticClockModel remoteClock,
                           final AbsoluteDate date,
                           final double phase, final double wavelength, final double sigma,
                           final double baseWeight, final ObservableSatellite local,
                           final AmbiguityCache cache) {
        // Call super constructor
        super(remote, remoteClock, date, phase, sigma, baseWeight, local);

        // Initialize phase ambiguity driver
        ambiguityDriver = cache.getAmbiguity(remoteName, local.getName(), wavelength);

        // The local satellite clock offset affects the measurement
        addParameterDriver(ambiguityDriver);
        addParameterDriver(local.getClockOffsetDriver());

        // Initialise fields
        this.wavelength = wavelength;
    }

    /** Get the wavelength.
     * @return wavelength (m)
     */
    public double getWavelength() {
        return wavelength;
    }

    /** Get the driver for phase ambiguity.
     * @return the driver for phase ambiguity
     */
    public AmbiguityDriver getAmbiguityDriver() {
        return ambiguityDriver;
    }

    /** {@inheritDoc} */
    @Override
    protected EstimatedMeasurementBase<OneWayGNSSPhase> theoreticalEvaluationWithoutDerivatives(final int iteration,
                                                                                                final int evaluation,
                                                                                                final SpacecraftState[] states) {

        final OnBoardCommonParametersWithoutDerivatives common = computeCommonParametersWithout(states, false);

        // prepare the evaluation
        final EstimatedMeasurementBase<OneWayGNSSPhase> estimatedPhase =
                        new EstimatedMeasurementBase<>(this, iteration, evaluation,
                                                       new SpacecraftState[] {
                                                           common.getState()
                                                       }, new TimeStampedPVCoordinates[] {
                                                           common.getRemotePV(),
                                                           common.getTransitPV()
                                                       });

        // Phase value
        final double   cOverLambda = Constants.SPEED_OF_LIGHT / wavelength;
        final double   ambiguity   = ambiguityDriver.getValue(common.getState().getDate());
        final double   phase       = (common.getTauD() + common.getLocalOffset() - common.getRemoteOffset()) * cOverLambda +
                                     ambiguity;

        // Set value of the estimated measurement
        estimatedPhase.setEstimatedValue(phase);

        // Return the estimated measurement
        return estimatedPhase;

    }

    /** {@inheritDoc} */
    @Override
    protected EstimatedMeasurement<OneWayGNSSPhase> theoreticalEvaluation(final int iteration,
                                                                          final int evaluation,
                                                                          final SpacecraftState[] states) {

        final OnBoardCommonParametersWithDerivatives common = computeCommonParametersWith(states, false);

        // prepare the evaluation
        final EstimatedMeasurement<OneWayGNSSPhase> estimatedPhase =
                        new EstimatedMeasurement<>(this, iteration, evaluation,
                                                   new SpacecraftState[] {
                                                       common.getState()
                                                   }, new TimeStampedPVCoordinates[] {
                                                     common.getRemotePV().toTimeStampedPVCoordinates(),
                                                     common.getTransitPV().toTimeStampedPVCoordinates()
                                                   });

        // Phase value
        final double   cOverLambda      = Constants.SPEED_OF_LIGHT / wavelength;
        final Gradient ambiguity        = ambiguityDriver.getValue(common.getTauD().getFreeParameters(), common.getIndices(),
                                                                   common.getState().getDate());
        final Gradient phase            = common.getTauD().add(common.getLocalOffset()).subtract(common.getRemoteOffset()).
                                          multiply(cOverLambda).
                                          add(ambiguity);
        final double[] phaseDerivatives = phase.getGradient();

        // Set value and state first order derivatives of the estimated measurement
        estimatedPhase.setEstimatedValue(phase.getValue());
        estimatedPhase.setStateDerivatives(0, Arrays.copyOfRange(phaseDerivatives, 0,  6));

        // Set first order derivatives with respect to parameters
        for (final ParameterDriver phaseMeasurementDriver : getParametersDrivers()) {
            for (Span<String> span = phaseMeasurementDriver.getNamesSpanMap().getFirstSpan(); span != null; span = span.next()) {

                final Integer index = common.getIndices().get(span.getData());
                if (index != null) {
                    estimatedPhase.setParameterDerivatives(phaseMeasurementDriver, span.getStart(), phaseDerivatives[index]);
                }
            }
        }

        // Return the estimated measurement
        return estimatedPhase;

    }

}