LambdaMethod.java
- /* Copyright 2002-2025 CS GROUP
- * Licensed to CS GROUP (CS) under one or more
- * contributor license agreements. See the NOTICE file distributed with
- * this work for additional information regarding copyright ownership.
- * CS licenses this file to You under the Apache License, Version 2.0
- * (the "License"); you may not use this file except in compliance with
- * the License. You may obtain a copy of the License at
- *
- * http://www.apache.org/licenses/LICENSE-2.0
- *
- * Unless required by applicable law or agreed to in writing, software
- * distributed under the License is distributed on an "AS IS" BASIS,
- * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- * See the License for the specific language governing permissions and
- * limitations under the License.
- */
- package org.orekit.estimation.measurements.gnss;
- import java.util.SortedSet;
- import java.util.TreeSet;
- import org.hipparchus.util.FastMath;
- /** Decorrelation/reduction engine for LAMBDA method.
- * <p>
- * This class implements PJG Teunissen Least Square Ambiguity Decorrelation
- * Adjustment (LAMBDA) method, as described in both the 1996 paper <a
- * href="https://www.researchgate.net/publication/2790708_The_LAMBDA_method_for_integer_ambiguity_estimation_implementation_aspects">
- * The LAMBDA method for integer ambiguity estimation: implementation aspects</a> by
- * Paul de Jonge and Christian Tiberius and on the 2005 paper <a
- * href="https://www.researchgate.net/publication/225518977_MLAMBDA_a_modified_LAMBDA_method_for_integer_least-squares_estimation">
- * A modified LAMBDA method for integer least-squares estimation</a> by X.-W Chang, X. Yang
- * and T. Zhou, Journal of Geodesy 79(9):552-565, DOI: 10.1007/s00190-005-0004-x
- * </p>
- * <p>
- * It slightly departs on the original LAMBDA method as it does implement
- * the following improvements proposed in the de Jonge and Tiberius 1996 paper
- * that vastly speed up the search:
- * </p>
- * <ul>
- * <li>alternate search starting from the middle and expanding outwards</li>
- * <li>automatic shrinking of ellipsoid during the search</li>
- * </ul>
- * @see AmbiguitySolver
- * @author Luc Maisonobe
- * @since 10.0
- */
- public class LambdaMethod extends AbstractLambdaMethod {
- /** Margin factor to apply to estimated search limit parameter. */
- private static final double CHI2_MARGIN_FACTOR = 1.1;
- /** Empty constructor.
- * <p>
- * This constructor is not strictly necessary, but it prevents spurious
- * javadoc warnings with JDK 18 and later.
- * </p>
- * @since 12.0
- */
- public LambdaMethod() {
- // nothing to do
- }
- /** {@inheritDoc} */
- @Override
- protected void ltdlDecomposition() {
- // get references to the diagonal and lower triangular parts
- final double[] diag = getDiagReference();
- final double[] low = getLowReference();
- // perform Lᵀ.D.L decomposition
- for (int k = diag.length - 1; k >= 0; --k) {
- final double inv = 1.0 / diag[k];
- for (int i = 0; i < k; ++i) {
- final double lki = low[lIndex(k, i)];
- for (int j = 0; j < i; ++j) {
- low[lIndex(i, j)] -= lki * low[lIndex(k, j)] * inv;
- }
- diag[i] -= lki * lki * inv;
- }
- for (int j = 0; j < k; ++j) {
- low[lIndex(k, j)] *= inv;
- }
- }
- }
- /** {@inheritDoc} */
- @Override
- protected void reduction() {
- // get references to the diagonal and lower triangular parts
- final double[] diag = getDiagReference();
- final double[] low = getLowReference();
- final int n = diag.length;
- int kSaved = n - 2;
- int k0 = kSaved;
- while (k0 >= 0) {
- final int k1 = k0 + 1;
- if (k0 <= kSaved) {
- for (int i = k0 + 1; i < n; ++i) {
- integerGaussTransformation(i, k0);
- }
- }
- final double lk1k0 = low[lIndex(k1, k0)];
- final double delta = diag[k0] + lk1k0 * lk1k0 * diag[k1];
- if (delta < diag[k1]) {
- permutation(k0, delta);
- kSaved = k0;
- k0 = n - 2;
- } else {
- k0--;
- }
- }
- }
- /** {@inheritDoc} */
- @Override
- protected void discreteSearch() {
- // get references to the diagonal part
- final double[] diag = getDiagReference();
- final int n = diag.length;
- // estimate search domain limit
- final long[] fixed = new long[n];
- final double[] offsets = new double[n];
- final double[] left = new double[n];
- final double[] right = new double[n];
- final int maxSolutions = getMaxSolution();
- final double[] decorrelated = getDecorrelatedReference();
- final AlternatingSampler[] samplers = new AlternatingSampler[n];
- // set up top level sampling for last ambiguity
- double chi2 = estimateChi2(fixed, offsets);
- right[n - 1] = chi2 / diag[n - 1];
- int index = n - 1;
- while (index < n) {
- if (index == -1) {
- // all ambiguities have been fixed
- final double squaredNorm = chi2 - diag[0] * (right[0] - left[0]);
- addSolution(fixed, squaredNorm);
- final int size = getSolutionsSize();
- if (size >= maxSolutions) {
- // shrink the ellipsoid
- chi2 = squaredNorm;
- right[n - 1] = chi2 / diag[n - 1];
- for (int i = n - 1; i > 0; --i) {
- samplers[i].setRadius(FastMath.sqrt(right[i]));
- right[i - 1] = diag[i] / diag[i - 1] * (right[i] - left[i]);
- }
- samplers[0].setRadius(FastMath.sqrt(right[0]));
- if (size > maxSolutions) {
- removeSolution();
- }
- }
- ++index;
- } else {
- if (samplers[index] == null) {
- // we start exploring a new ambiguity
- samplers[index] = new AlternatingSampler(conditionalEstimate(index, offsets), FastMath.sqrt(right[index]));
- } else {
- // continue exploring the same ambiguity
- samplers[index].generateNext();
- }
- if (samplers[index].inRange()) {
- fixed[index] = samplers[index].getCurrent();
- offsets[index] = fixed[index] - decorrelated[index];
- final double delta = fixed[index] - samplers[index].getMidPoint();
- left[index] = delta * delta;
- if (index > 0) {
- right[index - 1] = diag[index] / diag[index - 1] * (right[index] - left[index]);
- }
- // go down one level
- --index;
- } else {
- // we have completed exploration of this ambiguity range
- samplers[index] = null;
- // go up one level
- ++index;
- }
- }
- }
- }
- /** {@inheritDoc} */
- @Override
- protected void inverseDecomposition() {
- // get references to the diagonal and lower triangular parts
- final double[] diag = getDiagReference();
- final double[] low = getLowReference();
- final int n = diag.length;
- // we rely on the following equation, where a low triangular
- // matrix L of dimension n is split into sub-matrices of dimensions
- // k, l and m with k + l + m = n
- //
- // [ A | | ] [ A⁻¹ | | ] [ Iₖ | | ]
- // [ B | Iₗ | ] [ -BA⁻¹ | Iₗ | ] = [ | Iₗ | ]
- // [ C | D | E ] [ E⁻¹ (DB - C) A⁻¹ | -E⁻¹D | E⁻¹ ] [ | | Iₘ ]
- //
- // considering we have already computed A⁻¹ (i.e. inverted rows 0 to k-1
- // of L), and using l = 1 in the previous expression (i.e. the middle matrix
- // is only one row), we see that elements 0 to k-1 of row k are given by -BA⁻¹
- // and that element k is I₁ = 1. We can therefore invert L row by row and we
- // obtain an inverse matrix L⁻¹ which is a low triangular matrix with unit
- // diagonal. A⁻¹ is therefore also a low triangular matrix with unit diagonal.
- // This property is used in the loops below to speed up the computation of -BA⁻¹
- final double[] row = new double[n - 1];
- diag[0] = 1.0 / diag[0];
- for (int k = 1; k < n; ++k) {
- // compute row k of lower triangular part, by computing -BA⁻¹
- final int iK = lIndex(k, 0);
- System.arraycopy(low, iK, row, 0, k);
- for (int j = 0; j < k; ++j) {
- double sum = row[j];
- for (int l = j + 1; l < k; ++l) {
- sum += row[l] * low[lIndex(l, j)];
- }
- low[iK + j] = -sum;
- }
- // diagonal part
- diag[k] = 1.0 / diag[k];
- }
- }
- /** Compute a safe estimate of search limit parameter χ².
- * <p>
- * The estimate is based on section 4.11 in de Jonge and Tiberius 1996,
- * computing χ² such that it includes at least a few preset grid points
- * </p>
- * @param fixed placeholder for test fixed ambiguities
- * @param offsets placeholder for offsets between fixed ambiguities and float ambiguities
- * @return safe estimate of search limit parameter χ²
- */
- private double estimateChi2(final long[] fixed, final double[] offsets) {
- // get references to the diagonal part
- final double[] diag = getDiagReference();
- final int n = diag.length;
- // maximum number of solutions seeked
- final int maxSolutions = getMaxSolution();
- // get references to the decorrelated ambiguities
- final double[] decorrelated = getDecorrelatedReference();
- // initialize test points, assuming ambiguities have been fully decorrelated
- final AlternatingSampler[] samplers = new AlternatingSampler[n];
- for (int i = 0; i < n; ++i) {
- samplers[i] = new AlternatingSampler(decorrelated[i], 0.0);
- }
- final SortedSet<Double> squaredNorms = new TreeSet<>();
- // first test point at center
- for (int i = 0; i < n; ++i) {
- fixed[i] = samplers[i].getCurrent();
- }
- squaredNorms.add(squaredNorm(fixed, offsets));
- while (squaredNorms.size() < maxSolutions) {
- // add a series of grid points, each shifted from center along a different axis
- final int remaining = FastMath.min(n, maxSolutions - squaredNorms.size());
- for (int i = 0; i < remaining; ++i) {
- final long saved = fixed[i];
- samplers[i].generateNext();
- fixed[i] = samplers[i].getCurrent();
- squaredNorms.add(squaredNorm(fixed, offsets));
- fixed[i] = saved;
- }
- }
- // select a limit ensuring at least the needed number of grid points are in the search domain
- int count = 0;
- for (final double s : squaredNorms) {
- if (++count == maxSolutions) {
- return s * CHI2_MARGIN_FACTOR;
- }
- }
- // never reached
- return Double.NaN;
- }
- /** Compute squared norm of a set of fixed ambiguities.
- * @param fixed fixed ambiguities
- * @param offsets placeholder for offsets between fixed ambiguities and float ambiguities
- * @return squared norm of a set of fixed ambiguities
- */
- private double squaredNorm(final long[] fixed, final double[] offsets) {
- // get references to the lower triangular part and the decorrelated ambiguities
- final double[] diag = getDiagReference();
- final double[] decorrelated = getDecorrelatedReference();
- double n2 = 0;
- for (int i = diag.length - 1; i >= 0; --i) {
- offsets[i] = fixed[i] - decorrelated[i];
- final double delta = fixed[i] - conditionalEstimate(i, offsets);
- n2 += diag[i] * delta * delta;
- }
- return n2;
- }
- /** Compute conditional estimate of an ambiguity.
- * <p>
- * This corresponds to equation 4.4 in de Jonge and Tiberius 1996
- * </p>
- * @param i index of the ambiguity
- * @param offsets offsets between already fixed ambiguities and float ambiguities
- * @return conditional estimate of ambiguity â<sub>i|i+1...n</sub>
- */
- private double conditionalEstimate(final int i, final double[] offsets) {
- // get references to the diagonal and lower triangular parts
- final double[] diag = getDiagReference();
- final double[] low = getLowReference();
- // get references to the decorrelated ambiguities
- final double[] decorrelated = getDecorrelatedReference();
- double conditional = decorrelated[i];
- for (int j = i + 1; j < diag.length; ++j) {
- conditional -= low[lIndex(j, i)] * offsets[j];
- }
- return conditional;
- }
- }