IntegerBootstrapping.java
- /* Copyright 2002-2025 CS GROUP
- * Licensed to CS GROUP (CS) under one or more
- * contributor license agreements. See the NOTICE file distributed with
- * this work for additional information regarding copyright ownership.
- * CS licenses this file to You under the Apache License, Version 2.0
- * (the "License"); you may not use this file except in compliance with
- * the License. You may obtain a copy of the License at
- *
- * http://www.apache.org/licenses/LICENSE-2.0
- *
- * Unless required by applicable law or agreed to in writing, software
- * distributed under the License is distributed on an "AS IS" BASIS,
- * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- * See the License for the specific language governing permissions and
- * limitations under the License.
- */
- package org.orekit.estimation.measurements.gnss;
- import org.hipparchus.linear.MatrixUtils;
- import org.hipparchus.linear.QRDecomposer;
- import org.hipparchus.linear.RealMatrix;
- import org.hipparchus.special.Erf;
- import org.hipparchus.util.FastMath;;
- /** Bootstrapping engine for ILS problem solving.
- * This method is base on the following paper: <a
- * href="https://www.researchgate.net/publication/225773077_Success_probability_of_integer_GPS_ambiguity_rounding_and_bootstrapping">
- * Success probability of integer GPs ambiguity rounding and bootstrapping</a> by P. J. G. Teunissen 1998 and
- * <a
- * href="https://repository.tudelft.nl/islandora/object/uuid%3A1a5b8a6e-c9d6-45e3-8e75-48db6d27a523">
- * Influence of ambiguity precision on the success rate of GNSS integer ambiguity bootstrapping</a> by
- * P. J. G. Teunissen 2006.
- * <p>
- * This method is really faster for integer ambiguity resolution than LAMBDA or MLAMBDA method but its success rate
- * is really smaller. The method extends LambdaMethod as it uses LDL' factorization and reduction methods from LAMBDA method.
- * The method is really different from LAMBDA as the solution found is not a least-square solution. It is a solution which asses
- * a probability of success of the solution found. The probability increase with the does with LDL' factorization and reduction
- * methods.
- * </p> <p>
- * If one want to use this method for integer ambiguity resolution, one just need to construct IntegerBootstrapping
- * only with a double which is the minimal probability of success one wants.
- * Then from it, one can call the solveILS method.
- * @author David Soulard
- * @since 10.2
- */
- public class IntegerBootstrapping extends LambdaMethod {
- /** Minimum probability for acceptance. */
- private double minProb;
- /** Upperbound of the probability. */
- private boolean boostrapUse;
- /** Integer ambiguity solution from bootstrap method. */
- private long[] a_B;
- /** Probability of success of the solution found.*/
- private double p_aB;
- /** Constructor for the bootstrapping ambiguity estimator.
- * @param prob minimum probability acceptance for the bootstrap
- */
- public IntegerBootstrapping(final double prob) {
- this.minProb = prob;
- }
- /**
- * Compute the solution by the bootstrap method from equation (13) in
- * P.J.G. Teunissen November 2006. The solution is a solution in the
- * distorted space from LdL' and Z transformation.
- */
- @Override
- protected void discreteSearch() {
- //If the probability success upper bound is greater than the min probability, bootstrapUse = true, false otherwise
- this.boostrapUse = upperBoundProbabilitySuccess() > this.minProb;
- //Getter of the diagonal part and lower part of the covariance matrix
- final double[] diag = getDiagReference();
- final double[] low = getLowReference();
- final int n = diag.length;
- if (boostrapUse) {
- final RealMatrix I = MatrixUtils.createRealIdentityMatrix(n);
- a_B = new long[n];
- final RealMatrix L = getSymmetricMatrixFromLowPart(low);
- final RealMatrix invL_I = new QRDecomposer(1.0e-10).
- decompose(L).getInverse().subtract(I);
- final double[] decorrelated = getDecorrelatedReference();
- a_B[0] = (long) FastMath.rint(decorrelated[0]);
- for (int i = 1; i < a_B.length; i++) {
- double a_b = 0;
- for (int j = 0; j < i; j++) {
- a_b += invL_I.getEntry(i, j) * a_B[j];
- }
- a_B[i] = (long) FastMath.rint(decorrelated[i] + a_b);
- }
- // Compute the probability of correct integer estimation
- p_aB = bootstrappedSuccessRate(diag, a_B);
- if (p_aB > minProb) {
- this.boostrapUse = true;
- } else {
- this.boostrapUse = false;
- }
- }
- }
- /** {@inheritDoc} */
- @Override
- protected IntegerLeastSquareSolution[] recoverAmbiguities() {
- if (boostrapUse) {
- // get references to the diagonal and lower triangular parts
- final double[] diag = getDiagReference();
- final int n = diag.length;
- final int[] zInverseTransformation = getZInverseTransformationReference();
- final long[] a = new long[n];
- for (int i = 0; i < n; ++i) {
- // compute a = Z⁻ᵀ.s
- long ai = 0;
- int l = zIndex(0, i);
- for (int j = 0; j < n; ++j) {
- ai += zInverseTransformation[l] * a_B[j];
- l += n;
- }
- a[i] = ai;
- }
- a_B = a;
- final IntegerLeastSquareSolution sol = new IntegerLeastSquareSolution(a_B, p_aB);
- return new IntegerLeastSquareSolution[] {sol};
- }
- else {
- // Return an empty array
- return new IntegerLeastSquareSolution[0];
- }
- }
- /** Return the matrix symmetric from its low triangular part (1 on the diagonal).
- * @param l lower triangular part of the matrix
- * @return matrix
- */
- private RealMatrix getSymmetricMatrixFromLowPart(final double[] l) {
- final double[] diag = getDiagReference();
- final int n = diag.length;
- final RealMatrix L = MatrixUtils.createRealMatrix(n, n);
- for (int i = 0; i < n; i++) {
- for (int j = 0; j < i; j++) {
- L.setEntry(i, j, l[lIndex(i, j)]);
- }
- L.setEntry(i, i, 1.0);
- }
- return L;
- }
- /**Compute the success rate of a bootstraped ILS problem solution.
- * @param D diagonal of the covaraicne matrix
- * @param aB bootstrapped solution
- * @return probability of success
- */
- private double bootstrappedSuccessRate(final double[] D, final long[] aB) {
- double p = 2.0 * phi(1 / (2.0 * D[0]) - 1.0);
- for (int i = 1; i < D.length; i++) {
- p = p * (2.0 * phi(1.0 / (2.0 * D[i])) - 1.0);
- }
- return p;
- }
- /** Compute at point x the the value of phi function.
- * Where phi = 1/2 *(1 + Erf(x/sqrt(2))
- * @param x value at which we compute phi function
- * @return value of phi(x)
- */
- private double phi(final double x) {
- return 0.5 * (1.0 + Erf.erf(x / FastMath.sqrt(2.0)));
- }
- /** Compute the upper bound probability of the ILS problem.
- * @return upper bound probability of the ILS problem
- */
- private double upperBoundProbabilitySuccess() {
- //covariance matrix determinant
- double det = 1;
- final double[] diag = getDiagReference();
- final int n = diag.length;
- for (double d: diag) {
- det *= d;
- }
- //ADOP: Ambiguity Dilution of Precision
- final double adop = FastMath.pow(det, 1.0 / ((double) 2.0 * n));
- return FastMath.pow(2.0 * phi(1.0 / (2.0 * adop)) - 1.0, n);
- }
- }