AbstractLambdaMethod.java
- /* Copyright 2002-2025 CS GROUP
- * Licensed to CS GROUP (CS) under one or more
- * contributor license agreements. See the NOTICE file distributed with
- * this work for additional information regarding copyright ownership.
- * CS licenses this file to You under the Apache License, Version 2.0
- * (the "License"); you may not use this file except in compliance with
- * the License. You may obtain a copy of the License at
- *
- * http://www.apache.org/licenses/LICENSE-2.0
- *
- * Unless required by applicable law or agreed to in writing, software
- * distributed under the License is distributed on an "AS IS" BASIS,
- * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- * See the License for the specific language governing permissions and
- * limitations under the License.
- */
- package org.orekit.estimation.measurements.gnss;
- import java.util.Comparator;
- import java.util.SortedSet;
- import java.util.TreeSet;
- import org.hipparchus.linear.RealMatrix;
- import org.hipparchus.util.FastMath;
- /** Base class for decorrelation/reduction engine for LAMBDA type methods.
- * <p>
- * This class is based on both the 1996 paper <a href="https://www.researchgate.net/publication/2790708_The_LAMBDA_method_for_integer_ambiguity_estimation_implementation_aspects">
- * The LAMBDA method for integer ambiguity estimation: implementation aspects</a> by
- * Paul de Jonge and Christian Tiberius and on the 2005 paper <a
- * href="https://www.researchgate.net/publication/225518977_MLAMBDA_a_modified_LAMBDA_method_for_integer_least-squares_estimation">
- * A modified LAMBDA method for integer least-squares estimation</a> by X.-W Chang, X. Yang
- * and T. Zhou, Journal of Geodesy 79(9):552-565, DOI: 10.1007/s00190-005-0004-x
- * </p>
- * @author Luc Maisonobe
- * @since 10.0
- */
- public abstract class AbstractLambdaMethod implements IntegerLeastSquareSolver {
- /** Number of ambiguities. */
- private int n;
- /** Decorrelated ambiguities. */
- private double[] decorrelated;
- /** Lower triangular matrix with unit diagonal, in row order (unit diagonal not stored). */
- private double[] low;
- /** Diagonal matrix. */
- private double[] diag;
- /** Z⁻¹ transformation matrix, in row order. */
- private int[] zInverseTransformation;
- /** Maximum number of solutions seeked. */
- private int maxSolutions;
- /** Placeholder for solutions found. */
- private SortedSet<IntegerLeastSquareSolution> solutions;
- /** Comparator for integer least square solutions. */
- private Comparator<IntegerLeastSquareSolution> comparator;
- /** Constructor.
- * <p>
- * By default a {@link IntegerLeastSquareComparator} is used
- * to compare integer least square solutions
- * </p>
- */
- protected AbstractLambdaMethod() {
- this.comparator = new IntegerLeastSquareComparator();
- }
- /** {@inheritDoc} */
- @Override
- public IntegerLeastSquareSolution[] solveILS(final int nbSol, final double[] floatAmbiguities,
- final int[] indirection, final RealMatrix covariance) {
- // initialize the ILS problem search
- initializeProblem(floatAmbiguities, indirection, covariance, nbSol);
- // perform initial Lᵀ.D.L = Q decomposition of covariance
- ltdlDecomposition();
- // perform decorrelation/reduction of covariances
- reduction();
- // transform the Lᵀ.D.L = Q decomposition of covariance into
- // the L⁻¹.D⁻¹.L⁻ᵀ = Q⁻¹ decomposition of the inverse of covariance.
- inverseDecomposition();
- // perform discrete search of Integer Least Square problem
- discreteSearch();
- return recoverAmbiguities();
- }
- /** Set a custom comparator for integer least square solutions comparison.
- * <p>
- * Calling this method overrides any comparator that could have been set
- * beforehand. It also overrides the default {@link IntegerLeastSquareComparator}.
- * </p>
- * @param newCompartor new comparator to use
- * @since 11.0
- */
- public void setComparator(final Comparator<IntegerLeastSquareSolution> newCompartor) {
- this.comparator = newCompartor;
- }
- /** Initialize ILS problem.
- * @param floatAmbiguities float estimates of ambiguities
- * @param indirection indirection array to extract ambiguity covariances from global covariance matrix
- * @param globalCovariance global covariance matrix (includes ambiguities among other parameters)
- * @param nbSol number of solutions to search for
- */
- private void initializeProblem(final double[] floatAmbiguities, final int[] indirection,
- final RealMatrix globalCovariance, final int nbSol) {
- this.n = floatAmbiguities.length;
- this.decorrelated = floatAmbiguities.clone();
- this.low = new double[(n * (n - 1)) / 2];
- this.diag = new double[n];
- this.zInverseTransformation = new int[n * n];
- this.maxSolutions = nbSol;
- this.solutions = new TreeSet<>(comparator);
- // initialize decomposition matrices
- for (int i = 0; i < n; ++i) {
- for (int j = 0; j < i; ++j) {
- low[lIndex(i, j)] = globalCovariance.getEntry(indirection[i], indirection[j]);
- }
- diag[i] = globalCovariance.getEntry(indirection[i], indirection[i]);
- zInverseTransformation[zIndex(i, i)] = 1;
- }
- }
- /** Get a reference to the diagonal matrix of the decomposition.
- * <p>
- * BEWARE: the returned value is a reference to an internal array,
- * it is <em>only</em> intended for subclasses use (hence the
- * method is protected and not public).
- * </p>
- * @return reference to the diagonal matrix of the decomposition
- */
- protected double[] getDiagReference() {
- return diag;
- }
- /** Get a reference to the lower triangular matrix of the decomposition.
- * <p>
- * BEWARE: the returned value is a reference to an internal array,
- * it is <em>only</em> intended for subclasses use (hence the
- * method is protected and not public).
- * </p>
- * @return reference to the lower triangular matrix of the decomposition
- */
- protected double[] getLowReference() {
- return low;
- }
- /** Get the reference decorrelated ambiguities.
- * @return reference to the decorrelated ambiguities.
- **/
- protected double[] getDecorrelatedReference() {
- return decorrelated;
- }
- /** Get the maximum number of solutions seeked.
- * @return the maximum number of solutions seeked
- */
- protected int getMaxSolution() {
- return maxSolutions;
- }
- /** Add a new solution.
- * @param fixed solution array
- * @param squaredNorm squared distance to the corresponding float solution
- */
- protected void addSolution(final long[] fixed, final double squaredNorm) {
- solutions.add(new IntegerLeastSquareSolution(fixed, squaredNorm));
- }
- /** Remove spurious solution.
- */
- protected void removeSolution() {
- solutions.remove(solutions.last());
- }
- /** Get the number of solutions found.
- * @return the number of solutions found
- */
- protected int getSolutionsSize() {
- return solutions.size();
- }
- /**Get the maximum of distance among the solutions found.
- * getting last of solutions as they are sorted in SortesSet
- * @return greatest distance of the solutions
- * @since 10.2
- */
- protected double getMaxDistance() {
- return solutions.last().getSquaredDistance();
- }
- /** Get a reference to the Z inverse transformation matrix.
- * <p>
- * BEWARE: the returned value is a reference to an internal array,
- * it is <em>only</em> intended for subclasses use (hence the
- * method is protected and not public).
- * BEWARE: for the MODIFIED LAMBDA METHOD, the returned matrix Z is such that
- * Q = Z'L'DLZ where Q is the covariance matrix and ' refers to the transposition operation
- * @return array of integer corresponding to Z matrix
- * @since 10.2
- */
- protected int[] getZInverseTransformationReference() {
- return zInverseTransformation;
- }
- /** Get the size of the problem. In the ILS problem, the integer returned
- * is the size of the covariance matrix.
- * @return the size of the ILS problem
- * @since 10.2
- */
- protected int getSize() {
- return n;
- }
- /** Perform Lᵀ.D.L = Q decomposition of the covariance matrix.
- */
- protected abstract void ltdlDecomposition();
- /** Perform LAMBDA reduction.
- */
- protected abstract void reduction();
- /** Find the best solutions to the Integer Least Square problem.
- */
- protected abstract void discreteSearch();
- /** Inverse the decomposition.
- * <p>
- * This method transforms the Lᵀ.D.L = Q decomposition of covariance into
- * the L⁻¹.D⁻¹.L⁻ᵀ = Q⁻¹ decomposition of the inverse of covariance.
- * </p>
- */
- protected abstract void inverseDecomposition();
- /** Perform one integer Gauss transformation.
- * <p>
- * This method corresponds to algorithm 2.1 in X.-W Chang, X. Yang and T. Zhou paper.
- * </p>
- * @param row row index (counting from 0)
- * @param col column index (counting from 0)
- */
- protected void integerGaussTransformation(final int row, final int col) {
- final int mu = (int) FastMath.rint(low[lIndex(row, col)]);
- if (mu != 0) {
- // update low triangular matrix (post-multiplying L by Zᵢⱼ = I - μ eᵢ eⱼᵀ)
- low[lIndex(row, col)] -= mu;
- for (int i = row + 1; i < n; ++i) {
- low[lIndex(i, col)] -= mu * low[lIndex(i, row)];
- }
- // update Z⁻¹ transformation matrix
- for (int i = 0; i < n; ++i) {
- // pre-multiplying Z⁻¹ by Zᵢⱼ⁻¹ = I + μ eᵢ eⱼᵀ
- zInverseTransformation[zIndex(row, i)] += mu * zInverseTransformation[zIndex(col, i)];
- }
- // update decorrelated ambiguities estimates (pre-multiplying a by Zᵢⱼᵀ = I - μ eⱼ eᵢᵀ)
- decorrelated[col] -= mu * decorrelated[row];
- }
- }
- /** Perform one symmetric permutation involving rows/columns {@code k0} and {@code k0+1}.
- * <p>
- * This method corresponds to algorithm 2.2 in X.-W Chang, X. Yang and T. Zhou paper.
- * </p>
- * @param k0 diagonal index (counting from 0)
- * @param delta new value for diag[k0+1]
- */
- protected void permutation(final int k0, final double delta) {
- final int k1 = k0 + 1;
- final int k2 = k0 + 2;
- final int indexk1k0 = lIndex(k1, k0);
- final double lk1k0 = low[indexk1k0];
- final double eta = diag[k0] / delta;
- final double lambda = diag[k1] * lk1k0 / delta;
- // update diagonal
- diag[k0] = eta * diag[k1];
- diag[k1] = delta;
- // update low triangular matrix
- for (int j = 0; j < k0; ++j) {
- final int indexk0j = lIndex(k0, j);
- final int indexk1j = lIndex(k1, j);
- final double lk0j = low[indexk0j];
- final double lk1j = low[indexk1j];
- low[indexk0j] = lk1j - lk1k0 * lk0j;
- low[indexk1j] = lambda * lk1j + eta * lk0j;
- }
- low[indexk1k0] = lambda;
- for (int i = k2; i < n; ++i) {
- final int indexik0 = lIndex(i, k0);
- final int indexik1 = indexik0 + 1;
- final double tmp = low[indexik0];
- low[indexik0] = low[indexik1];
- low[indexik1] = tmp;
- }
- // update Z⁻¹ transformation matrix
- for (int i = 0; i < n; ++i) {
- final int indexk0i = zIndex(k0, i);
- final int indexk1i = indexk0i + n;
- final int tmp2 = zInverseTransformation[indexk0i];
- zInverseTransformation[indexk0i] = zInverseTransformation[indexk1i];
- zInverseTransformation[indexk1i] = tmp2;
- }
- // update decorrelated ambiguities
- final double tmp = decorrelated[k0];
- decorrelated[k0] = decorrelated[k1];
- decorrelated[k1] = tmp;
- }
- /** Recover ambiguities prior to the Z-transformation.
- * @return recovered ambiguities
- */
- protected IntegerLeastSquareSolution[] recoverAmbiguities() {
- final IntegerLeastSquareSolution[] recovered = new IntegerLeastSquareSolution[solutions.size()];
- int k = 0;
- final long[] a = new long[n];
- for (final IntegerLeastSquareSolution solution : solutions) {
- final long[] s = solution.getSolution();
- for (int i = 0; i < n; ++i) {
- // compute a = Z⁻ᵀ.s
- long ai = 0;
- int l = zIndex(0, i);
- for (int j = 0; j < n; ++j) {
- ai += zInverseTransformation[l] * s[j];
- l += n;
- }
- a[i] = ai;
- }
- recovered[k++] = new IntegerLeastSquareSolution(a, solution.getSquaredDistance());
- }
- return recovered;
- }
- /** Get the index of an entry in the lower triangular matrix.
- * @param row row index (counting from 0)
- * @param col column index (counting from 0)
- * @return index in the single dimension array
- */
- protected int lIndex(final int row, final int col) {
- return (row * (row - 1)) / 2 + col;
- }
- /** Get the index of an entry in the Z transformation matrix.
- * @param row row index (counting from 0)
- * @param col column index (counting from 0)
- * @return index in the single dimension array
- */
- protected int zIndex(final int row, final int col) {
- return row * n + col;
- }
- }