MeanSmaChangeImpulseProvider.java
/* Copyright 2022-2025 Romain Serra
* Licensed to CS GROUP (CS) under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* CS licenses this file to You under the Apache License, Version 2.0
* (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package org.orekit.control.heuristics;
import org.hipparchus.Field;
import org.hipparchus.analysis.differentiation.Derivative;
import org.hipparchus.analysis.differentiation.UnivariateDifferentiableFunction;
import org.hipparchus.analysis.solvers.NewtonRaphsonSolver;
import org.hipparchus.exception.MathIllegalArgumentException;
import org.hipparchus.geometry.euclidean.threed.FieldVector3D;
import org.hipparchus.geometry.euclidean.threed.Vector3D;
import org.orekit.orbits.FieldCartesianOrbit;
import org.orekit.orbits.Orbit;
import org.orekit.propagation.SpacecraftState;
import org.orekit.propagation.conversion.osc2mean.OsculatingToMeanConverter;
import org.orekit.time.FieldAbsoluteDate;
import org.orekit.utils.FieldPVCoordinates;
/**
* Class modelling impulsive maneuvers to set the mean semi-major axis to a given value.
* The impulse vector is tangential and computed in the same frame as the orbit.
* The resulting osculating eccentricity depends on the execution location. The instantaneous orbital plane is left unchanged.
* A constraint on the maximum magnitude can be optionally set.
* @see OsculatingSmaChangeImpulseProvider
* @see OsculatingToMeanConverter
* @author Romain Serra
* @since 14.0
*/
public class MeanSmaChangeImpulseProvider extends AbstractInPlaneImpulseProvider {
/** Target osculating semi-major axis. */
private final double targetSemiMajorAxis;
/** Mean orbit converter. */
private final OsculatingToMeanConverter osculatingToMeanConverter;
/**
* Constructor with default maximum magnitude set to positive infinity (unconstrained).
* @param targetSemiMajorAxis osculating value to achieve
* @param osculatingToMeanConverter mean orbit converter
*/
public MeanSmaChangeImpulseProvider(final double targetSemiMajorAxis, final OsculatingToMeanConverter osculatingToMeanConverter) {
this(Double.POSITIVE_INFINITY, targetSemiMajorAxis, osculatingToMeanConverter);
}
/**
* Constructor.
* @param maximumMagnitude maximum magnitude
* @param targetSemiMajorAxis osculating value to achieve
* @param osculatingToMeanConverter mean orbit converter
*/
public MeanSmaChangeImpulseProvider(final double maximumMagnitude, final double targetSemiMajorAxis,
final OsculatingToMeanConverter osculatingToMeanConverter) {
super(maximumMagnitude);
this.targetSemiMajorAxis = targetSemiMajorAxis;
this.osculatingToMeanConverter = osculatingToMeanConverter;
}
@Override
public Vector3D getUnconstrainedImpulse(final SpacecraftState state, final boolean isForward) {
final Orbit orbit = state.getOrbit();
final Vector3D velocity = state.getVelocity();
final OsculatingSmaChangeImpulseProvider osculatingSmaChangeImpulseProvider = new OsculatingSmaChangeImpulseProvider(getMaximumMagnitude(),
targetSemiMajorAxis);
final Vector3D osculatingImpulse = osculatingSmaChangeImpulseProvider.getUnconstrainedImpulse(state, isForward);
final Vector3D direction = velocity.normalize();
final NewtonRaphsonSolver solver = new NewtonRaphsonSolver();
final NewtonFunction function = new NewtonFunction(orbit, direction, osculatingToMeanConverter,
targetSemiMajorAxis);
final double guess = osculatingImpulse.add(velocity).getNorm2();
final double optimal = solver.solve(100, function, guess);
return direction.scalarMultiply(optimal).subtract(velocity);
}
/**
* Function for Newton-Raphson method.
*/
private static class NewtonFunction implements UnivariateDifferentiableFunction {
/** Reference orbit whose velocity is to be changed. */
private final Orbit templateOrbit;
/** Direction of velocity. */
private final Vector3D direction;
/** Mean orbit converter. */
private final OsculatingToMeanConverter converter;
/** Target mean semi-major axis. */
private final double targetMeanSma;
/**
* Constructor.
* @param templateOrbit template orbit
* @param direction direction of velocity
* @param converter osculating-to-mean converter
* @param targetMeanSma target semi-major axis
*/
NewtonFunction(final Orbit templateOrbit, final Vector3D direction, final OsculatingToMeanConverter converter,
final double targetMeanSma) {
this.templateOrbit = templateOrbit;
this.direction = direction;
this.converter = converter;
this.targetMeanSma = targetMeanSma;
}
@Override
public <T extends Derivative<T>> T value(final T t) throws MathIllegalArgumentException {
final Field<T> field = t.getField();
final FieldVector3D<T> velocity = new FieldVector3D<>(t, direction);
final FieldVector3D<T> position = new FieldVector3D<>(field, templateOrbit.getPosition());
final FieldCartesianOrbit<T> orbit = new FieldCartesianOrbit<>(new FieldPVCoordinates<>(position, velocity),
templateOrbit.getFrame(), new FieldAbsoluteDate<>(field, templateOrbit.getDate()),
field.getOne().newInstance(templateOrbit.getMu()));
return converter.convertToMean(orbit).getA().subtract(targetMeanSma);
}
}
}