NadirPointing.java
/* Copyright 2002-2024 CS GROUP
* Licensed to CS GROUP (CS) under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* CS licenses this file to You under the Apache License, Version 2.0
* (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package org.orekit.attitudes;
import java.util.ArrayList;
import java.util.List;
import org.hipparchus.CalculusFieldElement;
import org.hipparchus.Field;
import org.hipparchus.analysis.differentiation.FieldUnivariateDerivative2;
import org.hipparchus.analysis.differentiation.FieldUnivariateDerivative2Field;
import org.hipparchus.analysis.differentiation.UnivariateDerivative2;
import org.hipparchus.analysis.differentiation.UnivariateDerivative2Field;
import org.hipparchus.geometry.euclidean.threed.FieldVector3D;
import org.hipparchus.geometry.euclidean.threed.Vector3D;
import org.orekit.bodies.BodyShape;
import org.orekit.bodies.FieldGeodeticPoint;
import org.orekit.bodies.GeodeticPoint;
import org.orekit.frames.FieldStaticTransform;
import org.orekit.frames.FieldTransform;
import org.orekit.frames.Frame;
import org.orekit.frames.StaticTransform;
import org.orekit.frames.Transform;
import org.orekit.time.AbsoluteDate;
import org.orekit.time.FieldAbsoluteDate;
import org.orekit.time.FieldTimeInterpolator;
import org.orekit.time.TimeInterpolator;
import org.orekit.utils.CartesianDerivativesFilter;
import org.orekit.utils.FieldPVCoordinatesProvider;
import org.orekit.utils.FieldPVCoordinates;
import org.orekit.utils.PVCoordinatesProvider;
import org.orekit.utils.PVCoordinates;
import org.orekit.utils.TimeStampedFieldPVCoordinates;
import org.orekit.utils.TimeStampedFieldPVCoordinatesHermiteInterpolator;
import org.orekit.utils.TimeStampedPVCoordinates;
import org.orekit.utils.TimeStampedPVCoordinatesHermiteInterpolator;
/**
* This class handles nadir pointing attitude provider.
* <p>
* This class represents the attitude provider where the satellite z axis is
* pointing to the vertical of the ground point under satellite.</p>
* <p>
* The object <code>NadirPointing</code> is guaranteed to be immutable.
* </p>
* @see GroundPointing
* @author Véronique Pommier-Maurussane
*/
public class NadirPointing extends GroundPointing {
/** Body shape. */
private final BodyShape shape;
/** Creates new instance.
* @param inertialFrame frame in which orbital velocities are computed
* @param shape Body shape
* @since 7.1
*/
public NadirPointing(final Frame inertialFrame, final BodyShape shape) {
// Call constructor of superclass
super(inertialFrame, shape.getBodyFrame());
this.shape = shape;
}
/** {@inheritDoc} */
@Override
public TimeStampedPVCoordinates getTargetPV(final PVCoordinatesProvider pvProv,
final AbsoluteDate date, final Frame frame) {
final TimeStampedPVCoordinates pvCoordinatesInRef = pvProv.getPVCoordinates(date, frame);
if (pvCoordinatesInRef.getAcceleration().equals(Vector3D.ZERO)) {
// let us assume that there is no proper acceleration available, so need to use interpolation for derivatives
return getTargetPVViaInterpolation(pvProv, date, frame);
} else { // use automatic differentiation
// build time dependent transform
final UnivariateDerivative2Field ud2Field = UnivariateDerivative2Field.getInstance();
final UnivariateDerivative2 dt = new UnivariateDerivative2(0., 1., 0.);
final FieldAbsoluteDate<UnivariateDerivative2> ud2Date = new FieldAbsoluteDate<>(ud2Field, date).shiftedBy(dt);
final FieldStaticTransform<UnivariateDerivative2> refToBody = frame.getStaticTransformTo(shape.getBodyFrame(), ud2Date);
final FieldVector3D<UnivariateDerivative2> positionInRefFrame = pvCoordinatesInRef.toUnivariateDerivative2Vector();
final FieldVector3D<UnivariateDerivative2> positionInBodyFrame = refToBody.transformPosition(positionInRefFrame);
// satellite position in geodetic coordinates
final FieldGeodeticPoint<UnivariateDerivative2> gpSat = shape.transform(positionInBodyFrame, getBodyFrame(), ud2Date);
// nadir position in geodetic coordinates
final FieldGeodeticPoint<UnivariateDerivative2> gpNadir = new FieldGeodeticPoint<>(gpSat.getLatitude(),
gpSat.getLongitude(), ud2Field.getZero());
// nadir point position in body frame
final FieldVector3D<UnivariateDerivative2> positionNadirInBodyFrame = shape.transform(gpNadir);
// nadir point position in reference frame
final FieldStaticTransform<UnivariateDerivative2> bodyToRef = refToBody.getInverse();
final FieldVector3D<UnivariateDerivative2> positionNadirInRefFrame = bodyToRef.transformPosition(positionNadirInBodyFrame);
// put derivatives into proper object
final Vector3D velocity = new Vector3D(positionNadirInRefFrame.getX().getFirstDerivative(),
positionNadirInRefFrame.getY().getFirstDerivative(), positionNadirInRefFrame.getZ().getFirstDerivative());
final Vector3D acceleration = new Vector3D(positionNadirInRefFrame.getX().getSecondDerivative(),
positionNadirInRefFrame.getY().getSecondDerivative(), positionNadirInRefFrame.getZ().getSecondDerivative());
return new TimeStampedPVCoordinates(date, positionNadirInRefFrame.toVector3D(), velocity, acceleration);
}
}
/**
* Compute target position-velocity-acceleration vector via interpolation.
* @param pvProv PV provider
* @param date date
* @param frame frame
* @return target position-velocity-acceleration
*/
public TimeStampedPVCoordinates getTargetPVViaInterpolation(final PVCoordinatesProvider pvProv,
final AbsoluteDate date, final Frame frame) {
// transform from specified reference frame to body frame
final Transform refToBody = frame.getTransformTo(shape.getBodyFrame(), date);
// sample intersection points in current date neighborhood
final double h = 0.01;
final List<TimeStampedPVCoordinates> sample = new ArrayList<>();
sample.add(nadirRef(pvProv.getPVCoordinates(date.shiftedBy(-2 * h), frame), refToBody.staticShiftedBy(-2 * h)));
sample.add(nadirRef(pvProv.getPVCoordinates(date.shiftedBy(-h), frame), refToBody.staticShiftedBy(-h)));
sample.add(nadirRef(pvProv.getPVCoordinates(date, frame), refToBody));
sample.add(nadirRef(pvProv.getPVCoordinates(date.shiftedBy(+h), frame), refToBody.staticShiftedBy(+h)));
sample.add(nadirRef(pvProv.getPVCoordinates(date.shiftedBy(+2 * h), frame), refToBody.staticShiftedBy(+2 * h)));
// create interpolator
final TimeInterpolator<TimeStampedPVCoordinates> interpolator =
new TimeStampedPVCoordinatesHermiteInterpolator(sample.size(), CartesianDerivativesFilter.USE_P);
// use interpolation to compute properly the time-derivatives
return interpolator.interpolate(date, sample);
}
/** {@inheritDoc} */
@Override
protected Vector3D getTargetPosition(final PVCoordinatesProvider pvProv, final AbsoluteDate date, final Frame frame) {
// transform from specified reference frame to body frame
final Vector3D position = pvProv.getPosition(date, frame);
final PVCoordinates pVWithoutDerivatives = new PVCoordinates(position);
final StaticTransform refToBody = frame.getStaticTransformTo(shape.getBodyFrame(), date);
return nadirRef(new TimeStampedPVCoordinates(date, pVWithoutDerivatives), refToBody).getPosition();
}
/** {@inheritDoc} */
@Override
public <T extends CalculusFieldElement<T>> TimeStampedFieldPVCoordinates<T> getTargetPV(final FieldPVCoordinatesProvider<T> pvProv,
final FieldAbsoluteDate<T> date,
final Frame frame) {
final TimeStampedFieldPVCoordinates<T> pvCoordinatesInRef = pvProv.getPVCoordinates(date, frame);
final Field<T> field = date.getField();
if (pvCoordinatesInRef.getAcceleration().equals(FieldVector3D.getZero(field))) {
// let us assume that there is no proper acceleration available, so need to use interpolation for derivatives
return getTargetPVViaInterpolation(pvProv, date, frame);
} else { // use automatic differentiation
// build time dependent transform
final FieldUnivariateDerivative2Field<T> ud2Field = FieldUnivariateDerivative2Field.getUnivariateDerivative2Field(field);
final FieldAbsoluteDate<FieldUnivariateDerivative2<T>> ud2Date = date.toFUD2Field();
final FieldStaticTransform<FieldUnivariateDerivative2<T>> refToBody = frame.getStaticTransformTo(shape.getBodyFrame(), ud2Date);
final FieldVector3D<FieldUnivariateDerivative2<T>> positionInRefFrame = pvCoordinatesInRef.toUnivariateDerivative2Vector();
final FieldVector3D<FieldUnivariateDerivative2<T>> positionInBodyFrame = refToBody.transformPosition(positionInRefFrame);
// satellite position in geodetic coordinates
final FieldGeodeticPoint<FieldUnivariateDerivative2<T>> gpSat = shape.transform(positionInBodyFrame, getBodyFrame(), ud2Date);
// nadir position in geodetic coordinates
final FieldGeodeticPoint<FieldUnivariateDerivative2<T>> gpNadir = new FieldGeodeticPoint<>(gpSat.getLatitude(),
gpSat.getLongitude(), ud2Field.getZero());
// nadir point position in body frame
final FieldVector3D<FieldUnivariateDerivative2<T>> positionNadirInBodyFrame = shape.transform(gpNadir);
// nadir point position in reference frame
final FieldStaticTransform<FieldUnivariateDerivative2<T>> bodyToRef = refToBody.getInverse();
final FieldVector3D<FieldUnivariateDerivative2<T>> positionNadirInRefFrame = bodyToRef.transformPosition(positionNadirInBodyFrame);
// put derivatives into proper object
final FieldVector3D<T> position = new FieldVector3D<>(positionNadirInRefFrame.getX().getValue(),
positionNadirInRefFrame.getY().getValue(), positionNadirInRefFrame.getZ().getValue());
final FieldVector3D<T> velocity = new FieldVector3D<>(positionNadirInRefFrame.getX().getFirstDerivative(),
positionNadirInRefFrame.getY().getFirstDerivative(), positionNadirInRefFrame.getZ().getFirstDerivative());
final FieldVector3D<T> acceleration = new FieldVector3D<>(positionNadirInRefFrame.getX().getSecondDerivative(),
positionNadirInRefFrame.getY().getSecondDerivative(), positionNadirInRefFrame.getZ().getSecondDerivative());
return new TimeStampedFieldPVCoordinates<>(date, position, velocity, acceleration);
}
}
/**
* Compute target position-velocity-acceleration vector via interpolation (Field version).
* @param pvProv PV provider
* @param date date
* @param frame frame
* @param <T> field type
* @return target position-velocity-acceleration
*/
public <T extends CalculusFieldElement<T>> TimeStampedFieldPVCoordinates<T> getTargetPVViaInterpolation(final FieldPVCoordinatesProvider<T> pvProv,
final FieldAbsoluteDate<T> date, final Frame frame) {
// zero
final T zero = date.getField().getZero();
// transform from specified reference frame to body frame
final FieldTransform<T> refToBody = frame.getTransformTo(shape.getBodyFrame(), date);
// sample intersection points in current date neighborhood
final double h = 0.01;
final List<TimeStampedFieldPVCoordinates<T>> sample = new ArrayList<>();
sample.add(nadirRef(pvProv.getPVCoordinates(date.shiftedBy(-2 * h), frame), refToBody.staticShiftedBy(zero.newInstance(-2 * h))));
sample.add(nadirRef(pvProv.getPVCoordinates(date.shiftedBy(-h), frame), refToBody.staticShiftedBy(zero.newInstance(-h))));
sample.add(nadirRef(pvProv.getPVCoordinates(date, frame), refToBody));
sample.add(nadirRef(pvProv.getPVCoordinates(date.shiftedBy(+h), frame), refToBody.staticShiftedBy(zero.newInstance(+h))));
sample.add(nadirRef(pvProv.getPVCoordinates(date.shiftedBy(+2 * h), frame), refToBody.staticShiftedBy(zero.newInstance(+2 * h))));
// create interpolator
final FieldTimeInterpolator<TimeStampedFieldPVCoordinates<T>, T> interpolator =
new TimeStampedFieldPVCoordinatesHermiteInterpolator<>(sample.size(), CartesianDerivativesFilter.USE_P);
// use interpolation to compute properly the time-derivatives
return interpolator.interpolate(date, sample);
}
/** {@inheritDoc} */
@Override
protected <T extends CalculusFieldElement<T>> FieldVector3D<T> getTargetPosition(final FieldPVCoordinatesProvider<T> pvProv,
final FieldAbsoluteDate<T> date,
final Frame frame) {
// transform from specified reference frame to body frame
final FieldVector3D<T> position = pvProv.getPosition(date, frame);
final FieldPVCoordinates<T> pVWithoutDerivatives = new FieldPVCoordinates<>(position, FieldVector3D.getZero(date.getField()));
final FieldStaticTransform<T> refToBody = frame.getStaticTransformTo(shape.getBodyFrame(), date);
return nadirRef(new TimeStampedFieldPVCoordinates<>(date, pVWithoutDerivatives), refToBody).getPosition();
}
/** Compute ground point in nadir direction, in reference frame.
* @param scRef spacecraft coordinates in reference frame
* @param refToBody transform from reference frame to body frame
* @return intersection point in body frame (only the position is set!)
*/
private TimeStampedPVCoordinates nadirRef(final TimeStampedPVCoordinates scRef,
final StaticTransform refToBody) {
final Vector3D satInBodyFrame = refToBody.transformPosition(scRef.getPosition());
// satellite position in geodetic coordinates
final GeodeticPoint gpSat = shape.transform(satInBodyFrame, getBodyFrame(), scRef.getDate());
// nadir position in geodetic coordinates
final GeodeticPoint gpNadir = new GeodeticPoint(gpSat.getLatitude(), gpSat.getLongitude(), 0.0);
// nadir point position in body frame
final Vector3D pNadirBody = shape.transform(gpNadir);
// nadir point position in reference frame
final Vector3D pNadirRef = refToBody.getInverse().transformPosition(pNadirBody);
return new TimeStampedPVCoordinates(scRef.getDate(), pNadirRef, Vector3D.ZERO, Vector3D.ZERO);
}
/** Compute ground point in nadir direction, in reference frame.
* @param scRef spacecraft coordinates in reference frame
* @param refToBody transform from reference frame to body frame
* @param <T> type of the field elements
* @return intersection point in body frame (only the position is set!)
* @since 9.0
*/
private <T extends CalculusFieldElement<T>> TimeStampedFieldPVCoordinates<T> nadirRef(final TimeStampedFieldPVCoordinates<T> scRef,
final FieldStaticTransform<T> refToBody) {
final FieldVector3D<T> satInBodyFrame = refToBody.transformPosition(scRef.getPosition());
// satellite position in geodetic coordinates
final FieldGeodeticPoint<T> gpSat = shape.transform(satInBodyFrame, getBodyFrame(), scRef.getDate());
// nadir position in geodetic coordinates
final FieldGeodeticPoint<T> gpNadir = new FieldGeodeticPoint<>(gpSat.getLatitude(), gpSat.getLongitude(),
gpSat.getAltitude().getField().getZero());
// nadir point position in body frame
final FieldVector3D<T> pNadirBody = shape.transform(gpNadir);
// nadir point position in reference frame
final FieldVector3D<T> pNadirRef = refToBody.getInverse().transformPosition(pNadirBody);
final FieldVector3D<T> zero = FieldVector3D.getZero(gpSat.getAltitude().getField());
return new TimeStampedFieldPVCoordinates<>(scRef.getDate(), pNadirRef, zero, zero);
}
}