Class BoxAndSolarArraySpacecraft
- java.lang.Object
-
- org.orekit.forces.BoxAndSolarArraySpacecraft
-
- All Implemented Interfaces:
DragSensitive
,RadiationSensitive
public class BoxAndSolarArraySpacecraft extends Object implements RadiationSensitive, DragSensitive
Class representing the features of a classical satellite with a convex body shape and rotating flat solar arrays.The body can be either a simple parallelepipedic box aligned with spacecraft axes or a set of facets defined by their area and normal vector. This should handle accurately most spacecraft shapes.
The solar array rotation with respect to satellite body can be either the best lighting orientation (i.e. Sun exactly in solar array meridian plane defined by solar array rotation axis and solar array normal vector) or a rotation evolving linearly according to a start position and an angular rate (which can be set to 0 for non-rotating panels, which may occur in special modes or during contingencies).
The lift component of the drag force can be optionally considered. It should probably only be used for reentry computation, with much denser atmosphere than in regular orbit propagation. The lift component is computed using a ratio of molecules that experience specular reflection instead of diffuse reflection (absorption followed by outgassing at negligible velocity). Without lift (i.e. when the lift ratio is set to 0), drag force is along atmosphere relative velocity. With lift (i.e. when the lift ratio is set to any value between 0 and 1), the drag force depends on both relative velocity direction and facets normal orientation. For a single panel, if the relative velocity is head-on (i.e. aligned with the panel normal), the force will be in the same direction with and without lift, but the magnitude with lift ratio set to 1.0 will be twice the magnitude with lift ratio set to 0.0 (because atmosphere molecules bounces backward at same velocity in case of specular reflection).
This model does not take cast shadow between body and solar array into account.
- Author:
- Luc Maisonobe, Pascal Parraud
-
-
Nested Class Summary
Nested Classes Modifier and Type Class Description static class
BoxAndSolarArraySpacecraft.Facet
Class representing a single facet of a convex spacecraft body.
-
Field Summary
-
Fields inherited from interface org.orekit.forces.drag.DragSensitive
DRAG_COEFFICIENT, LIFT_RATIO
-
Fields inherited from interface org.orekit.forces.radiation.RadiationSensitive
ABSORPTION_COEFFICIENT, REFLECTION_COEFFICIENT
-
-
Constructor Summary
Constructors Constructor Description BoxAndSolarArraySpacecraft(double xLength, double yLength, double zLength, PVCoordinatesProvider sun, double solarArrayArea, org.hipparchus.geometry.euclidean.threed.Vector3D solarArrayAxis, double dragCoeff, double absorptionCoeff, double reflectionCoeff)
Build a spacecraft model with best lighting of solar array.BoxAndSolarArraySpacecraft(double xLength, double yLength, double zLength, PVCoordinatesProvider sun, double solarArrayArea, org.hipparchus.geometry.euclidean.threed.Vector3D solarArrayAxis, double dragCoeff, double liftRatio, double absorptionCoeff, double reflectionCoeff)
Build a spacecraft model with best lighting of solar array.BoxAndSolarArraySpacecraft(double xLength, double yLength, double zLength, PVCoordinatesProvider sun, double solarArrayArea, org.hipparchus.geometry.euclidean.threed.Vector3D solarArrayAxis, AbsoluteDate referenceDate, org.hipparchus.geometry.euclidean.threed.Vector3D referenceNormal, double rotationRate, double dragCoeff, double absorptionCoeff, double reflectionCoeff)
Build a spacecraft model with linear rotation of solar array.BoxAndSolarArraySpacecraft(double xLength, double yLength, double zLength, PVCoordinatesProvider sun, double solarArrayArea, org.hipparchus.geometry.euclidean.threed.Vector3D solarArrayAxis, AbsoluteDate referenceDate, org.hipparchus.geometry.euclidean.threed.Vector3D referenceNormal, double rotationRate, double dragCoeff, double liftRatio, double absorptionCoeff, double reflectionCoeff)
Build a spacecraft model with linear rotation of solar array.BoxAndSolarArraySpacecraft(BoxAndSolarArraySpacecraft.Facet[] facets, PVCoordinatesProvider sun, double solarArrayArea, org.hipparchus.geometry.euclidean.threed.Vector3D solarArrayAxis, double dragCoeff, double absorptionCoeff, double reflectionCoeff)
Build a spacecraft model with best lighting of solar array.BoxAndSolarArraySpacecraft(BoxAndSolarArraySpacecraft.Facet[] facets, PVCoordinatesProvider sun, double solarArrayArea, org.hipparchus.geometry.euclidean.threed.Vector3D solarArrayAxis, double dragCoeff, double liftRatio, double absorptionCoeff, double reflectionCoeff)
Build a spacecraft model with best lighting of solar array.BoxAndSolarArraySpacecraft(BoxAndSolarArraySpacecraft.Facet[] facets, PVCoordinatesProvider sun, double solarArrayArea, org.hipparchus.geometry.euclidean.threed.Vector3D solarArrayAxis, AbsoluteDate referenceDate, org.hipparchus.geometry.euclidean.threed.Vector3D referenceNormal, double rotationRate, double dragCoeff, double absorptionCoeff, double reflectionCoeff)
Build a spacecraft model with linear rotation of solar array.BoxAndSolarArraySpacecraft(BoxAndSolarArraySpacecraft.Facet[] facets, PVCoordinatesProvider sun, double solarArrayArea, org.hipparchus.geometry.euclidean.threed.Vector3D solarArrayAxis, AbsoluteDate referenceDate, org.hipparchus.geometry.euclidean.threed.Vector3D referenceNormal, double rotationRate, double dragCoeff, double liftRatio, double absorptionCoeff, double reflectionCoeff)
Build a spacecraft model with linear rotation of solar array.
-
Method Summary
All Methods Instance Methods Concrete Methods Modifier and Type Method Description org.hipparchus.geometry.euclidean.threed.Vector3D
dragAcceleration(AbsoluteDate date, Frame frame, org.hipparchus.geometry.euclidean.threed.Vector3D position, org.hipparchus.geometry.euclidean.threed.Rotation rotation, double mass, double density, org.hipparchus.geometry.euclidean.threed.Vector3D relativeVelocity, double[] parameters)
Compute the acceleration due to drag.org.hipparchus.geometry.euclidean.threed.FieldVector3D<org.hipparchus.analysis.differentiation.DerivativeStructure>
dragAcceleration(AbsoluteDate date, Frame frame, org.hipparchus.geometry.euclidean.threed.Vector3D position, org.hipparchus.geometry.euclidean.threed.Rotation rotation, double mass, double density, org.hipparchus.geometry.euclidean.threed.Vector3D relativeVelocity, double[] parameters, String paramName)
Compute acceleration due to drag, with parameters derivatives.<T extends org.hipparchus.RealFieldElement<T>>
org.hipparchus.geometry.euclidean.threed.FieldVector3D<T>dragAcceleration(FieldAbsoluteDate<T> date, Frame frame, org.hipparchus.geometry.euclidean.threed.FieldVector3D<T> position, org.hipparchus.geometry.euclidean.threed.FieldRotation<T> rotation, T mass, T density, org.hipparchus.geometry.euclidean.threed.FieldVector3D<T> relativeVelocity, T[] parameters)
Compute the acceleration due to drag.ParameterDriver[]
getDragParametersDrivers()
Get the drivers for supported parameters.org.hipparchus.geometry.euclidean.threed.FieldVector3D<org.hipparchus.analysis.differentiation.DerivativeStructure>
getNormal(AbsoluteDate date, Frame frame, org.hipparchus.geometry.euclidean.threed.FieldVector3D<org.hipparchus.analysis.differentiation.DerivativeStructure> position, org.hipparchus.geometry.euclidean.threed.FieldRotation<org.hipparchus.analysis.differentiation.DerivativeStructure> rotation)
Get solar array normal in spacecraft frame.org.hipparchus.geometry.euclidean.threed.Vector3D
getNormal(AbsoluteDate date, Frame frame, org.hipparchus.geometry.euclidean.threed.Vector3D position, org.hipparchus.geometry.euclidean.threed.Rotation rotation)
Get solar array normal in spacecraft frame.<T extends org.hipparchus.RealFieldElement<T>>
org.hipparchus.geometry.euclidean.threed.FieldVector3D<T>getNormal(FieldAbsoluteDate<T> date, Frame frame, org.hipparchus.geometry.euclidean.threed.FieldVector3D<T> position, org.hipparchus.geometry.euclidean.threed.FieldRotation<T> rotation)
Get solar array normal in spacecraft frame.ParameterDriver[]
getRadiationParametersDrivers()
Get the drivers for supported parameters.org.hipparchus.geometry.euclidean.threed.Vector3D
radiationPressureAcceleration(AbsoluteDate date, Frame frame, org.hipparchus.geometry.euclidean.threed.Vector3D position, org.hipparchus.geometry.euclidean.threed.Rotation rotation, double mass, org.hipparchus.geometry.euclidean.threed.Vector3D flux, double[] parameters)
Compute the acceleration due to radiation pressure.org.hipparchus.geometry.euclidean.threed.FieldVector3D<org.hipparchus.analysis.differentiation.DerivativeStructure>
radiationPressureAcceleration(AbsoluteDate date, Frame frame, org.hipparchus.geometry.euclidean.threed.Vector3D position, org.hipparchus.geometry.euclidean.threed.Rotation rotation, double mass, org.hipparchus.geometry.euclidean.threed.Vector3D flux, double[] parameters, String paramName)
Compute the acceleration due to radiation pressure, with parameters derivatives.<T extends org.hipparchus.RealFieldElement<T>>
org.hipparchus.geometry.euclidean.threed.FieldVector3D<T>radiationPressureAcceleration(FieldAbsoluteDate<T> date, Frame frame, org.hipparchus.geometry.euclidean.threed.FieldVector3D<T> position, org.hipparchus.geometry.euclidean.threed.FieldRotation<T> rotation, T mass, org.hipparchus.geometry.euclidean.threed.FieldVector3D<T> flux, T[] parameters)
Compute the acceleration due to radiation pressure.
-
-
-
Constructor Detail
-
BoxAndSolarArraySpacecraft
public BoxAndSolarArraySpacecraft(double xLength, double yLength, double zLength, PVCoordinatesProvider sun, double solarArrayArea, org.hipparchus.geometry.euclidean.threed.Vector3D solarArrayAxis, double dragCoeff, double absorptionCoeff, double reflectionCoeff)
Build a spacecraft model with best lighting of solar array.This constructor builds an instance that completely ignores lift in atmospheric drag (the value of lift coefficient is set to zero, and there are no
drivers
to change it).Solar arrays orientation will be such that at each time the Sun direction will always be in the solar array meridian plane defined by solar array rotation axis and solar array normal vector.
- Parameters:
xLength
- length of the body along its X axis (m)yLength
- length of the body along its Y axis (m)zLength
- length of the body along its Z axis (m)sun
- sun modelsolarArrayArea
- area of the solar array (m²)solarArrayAxis
- solar array rotation axis in satellite framedragCoeff
- drag coefficient (used only for drag)absorptionCoeff
- absorption coefficient between 0.0 an 1.0 (used only for radiation pressure)reflectionCoeff
- specular reflection coefficient between 0.0 an 1.0 (used only for radiation pressure)
-
BoxAndSolarArraySpacecraft
public BoxAndSolarArraySpacecraft(double xLength, double yLength, double zLength, PVCoordinatesProvider sun, double solarArrayArea, org.hipparchus.geometry.euclidean.threed.Vector3D solarArrayAxis, double dragCoeff, double liftRatio, double absorptionCoeff, double reflectionCoeff)
Build a spacecraft model with best lighting of solar array.Solar arrays orientation will be such that at each time the Sun direction will always be in the solar array meridian plane defined by solar array rotation axis and solar array normal vector.
- Parameters:
xLength
- length of the body along its X axis (m)yLength
- length of the body along its Y axis (m)zLength
- length of the body along its Z axis (m)sun
- sun modelsolarArrayArea
- area of the solar array (m²)solarArrayAxis
- solar array rotation axis in satellite framedragCoeff
- drag coefficient (used only for drag)liftRatio
- lift ratio (proportion between 0 and 1 of atmosphere modecules that will experience specular reflection when hitting spacecraft instead of experiencing diffuse reflection, hence producing lift)absorptionCoeff
- absorption coefficient between 0.0 an 1.0 (used only for radiation pressure)reflectionCoeff
- specular reflection coefficient between 0.0 an 1.0 (used only for radiation pressure)- Since:
- 9.0
-
BoxAndSolarArraySpacecraft
public BoxAndSolarArraySpacecraft(BoxAndSolarArraySpacecraft.Facet[] facets, PVCoordinatesProvider sun, double solarArrayArea, org.hipparchus.geometry.euclidean.threed.Vector3D solarArrayAxis, double dragCoeff, double absorptionCoeff, double reflectionCoeff)
Build a spacecraft model with best lighting of solar array.The spacecraft body is described by an array of surface vectors. Each facet of the body is described by a vector normal to the facet (pointing outward of the spacecraft) and whose norm is the surface area in m².
Solar arrays orientation will be such that at each time the Sun direction will always be in the solar array meridian plane defined by solar array rotation axis and solar array normal vector.
- Parameters:
facets
- body facets (only the facets with strictly positive area will be stored)sun
- sun modelsolarArrayArea
- area of the solar array (m²)solarArrayAxis
- solar array rotation axis in satellite framedragCoeff
- drag coefficient (used only for drag)absorptionCoeff
- absorption coefficient between 0.0 an 1.0 (used only for radiation pressure)reflectionCoeff
- specular reflection coefficient between 0.0 an 1.0 (used only for radiation pressure)
-
BoxAndSolarArraySpacecraft
public BoxAndSolarArraySpacecraft(BoxAndSolarArraySpacecraft.Facet[] facets, PVCoordinatesProvider sun, double solarArrayArea, org.hipparchus.geometry.euclidean.threed.Vector3D solarArrayAxis, double dragCoeff, double liftRatio, double absorptionCoeff, double reflectionCoeff)
Build a spacecraft model with best lighting of solar array.The spacecraft body is described by an array of surface vectors. Each facet of the body is described by a vector normal to the facet (pointing outward of the spacecraft) and whose norm is the surface area in m².
Solar arrays orientation will be such that at each time the Sun direction will always be in the solar array meridian plane defined by solar array rotation axis and solar array normal vector.
- Parameters:
facets
- body facets (only the facets with strictly positive area will be stored)sun
- sun modelsolarArrayArea
- area of the solar array (m²)solarArrayAxis
- solar array rotation axis in satellite framedragCoeff
- drag coefficient (used only for drag)liftRatio
- lift ratio (proportion between 0 and 1 of atmosphere modecules that will experience specular reflection when hitting spacecraft instead of experiencing diffuse reflection, hence producing lift)absorptionCoeff
- absorption coefficient between 0.0 an 1.0 (used only for radiation pressure)reflectionCoeff
- specular reflection coefficient between 0.0 an 1.0 (used only for radiation pressure)- Since:
- 9.0
-
BoxAndSolarArraySpacecraft
public BoxAndSolarArraySpacecraft(double xLength, double yLength, double zLength, PVCoordinatesProvider sun, double solarArrayArea, org.hipparchus.geometry.euclidean.threed.Vector3D solarArrayAxis, AbsoluteDate referenceDate, org.hipparchus.geometry.euclidean.threed.Vector3D referenceNormal, double rotationRate, double dragCoeff, double absorptionCoeff, double reflectionCoeff)
Build a spacecraft model with linear rotation of solar array.Solar arrays orientation will be a regular rotation from the reference orientation at reference date and using a constant rotation rate.
- Parameters:
xLength
- length of the body along its X axis (m)yLength
- length of the body along its Y axis (m)zLength
- length of the body along its Z axis (m)sun
- sun modelsolarArrayArea
- area of the solar array (m²)solarArrayAxis
- solar array rotation axis in satellite framereferenceDate
- reference date for the solar array rotationreferenceNormal
- direction of the solar array normal at reference date in spacecraft framerotationRate
- rotation rate of the solar array, may be 0 (rad/s)dragCoeff
- drag coefficient (used only for drag)absorptionCoeff
- absorption coefficient between 0.0 an 1.0 (used only for radiation pressure)reflectionCoeff
- specular reflection coefficient between 0.0 an 1.0 (used only for radiation pressure)
-
BoxAndSolarArraySpacecraft
public BoxAndSolarArraySpacecraft(double xLength, double yLength, double zLength, PVCoordinatesProvider sun, double solarArrayArea, org.hipparchus.geometry.euclidean.threed.Vector3D solarArrayAxis, AbsoluteDate referenceDate, org.hipparchus.geometry.euclidean.threed.Vector3D referenceNormal, double rotationRate, double dragCoeff, double liftRatio, double absorptionCoeff, double reflectionCoeff)
Build a spacecraft model with linear rotation of solar array.Solar arrays orientation will be a regular rotation from the reference orientation at reference date and using a constant rotation rate.
- Parameters:
xLength
- length of the body along its X axis (m)yLength
- length of the body along its Y axis (m)zLength
- length of the body along its Z axis (m)sun
- sun modelsolarArrayArea
- area of the solar array (m²)solarArrayAxis
- solar array rotation axis in satellite framereferenceDate
- reference date for the solar array rotationreferenceNormal
- direction of the solar array normal at reference date in spacecraft framerotationRate
- rotation rate of the solar array, may be 0 (rad/s)dragCoeff
- drag coefficient (used only for drag)liftRatio
- lift ratio (proportion between 0 and 1 of atmosphere modecules that will experience specular reflection when hitting spacecraft instead of experiencing diffuse reflection, hence producing lift)absorptionCoeff
- absorption coefficient between 0.0 an 1.0 (used only for radiation pressure)reflectionCoeff
- specular reflection coefficient between 0.0 an 1.0 (used only for radiation pressure)- Since:
- 9.0
-
BoxAndSolarArraySpacecraft
public BoxAndSolarArraySpacecraft(BoxAndSolarArraySpacecraft.Facet[] facets, PVCoordinatesProvider sun, double solarArrayArea, org.hipparchus.geometry.euclidean.threed.Vector3D solarArrayAxis, AbsoluteDate referenceDate, org.hipparchus.geometry.euclidean.threed.Vector3D referenceNormal, double rotationRate, double dragCoeff, double absorptionCoeff, double reflectionCoeff)
Build a spacecraft model with linear rotation of solar array.The spacecraft body is described by an array of surface vectors. Each facet of the body is described by a vector normal to the facet (pointing outward of the spacecraft) and whose norm is the surface area in m².
Solar arrays orientation will be a regular rotation from the reference orientation at reference date and using a constant rotation rate.
- Parameters:
facets
- body facets (only the facets with strictly positive area will be stored)sun
- sun modelsolarArrayArea
- area of the solar array (m²)solarArrayAxis
- solar array rotation axis in satellite framereferenceDate
- reference date for the solar array rotationreferenceNormal
- direction of the solar array normal at reference date in spacecraft framerotationRate
- rotation rate of the solar array, may be 0 (rad/s)dragCoeff
- drag coefficient (used only for drag)absorptionCoeff
- absorption coefficient between 0.0 an 1.0 (used only for radiation pressure)reflectionCoeff
- specular reflection coefficient between 0.0 an 1.0 (used only for radiation pressure)
-
BoxAndSolarArraySpacecraft
public BoxAndSolarArraySpacecraft(BoxAndSolarArraySpacecraft.Facet[] facets, PVCoordinatesProvider sun, double solarArrayArea, org.hipparchus.geometry.euclidean.threed.Vector3D solarArrayAxis, AbsoluteDate referenceDate, org.hipparchus.geometry.euclidean.threed.Vector3D referenceNormal, double rotationRate, double dragCoeff, double liftRatio, double absorptionCoeff, double reflectionCoeff)
Build a spacecraft model with linear rotation of solar array.The spacecraft body is described by an array of surface vectors. Each facet of the body is described by a vector normal to the facet (pointing outward of the spacecraft) and whose norm is the surface area in m².
Solar arrays orientation will be a regular rotation from the reference orientation at reference date and using a constant rotation rate.
- Parameters:
facets
- body facets (only the facets with strictly positive area will be stored)sun
- sun modelsolarArrayArea
- area of the solar array (m²)solarArrayAxis
- solar array rotation axis in satellite framereferenceDate
- reference date for the solar array rotationreferenceNormal
- direction of the solar array normal at reference date in spacecraft framerotationRate
- rotation rate of the solar array, may be 0 (rad/s)dragCoeff
- drag coefficient (used only for drag)liftRatio
- lift ratio (proportion between 0 and 1 of atmosphere modecules that will experience specular reflection when hitting spacecraft instead of experiencing diffuse reflection, hence producing lift)absorptionCoeff
- absorption coefficient between 0.0 an 1.0 (used only for radiation pressure)reflectionCoeff
- specular reflection coefficient between 0.0 an 1.0 (used only for radiation pressure)- Since:
- 9.0
-
-
Method Detail
-
getDragParametersDrivers
public ParameterDriver[] getDragParametersDrivers()
Get the drivers for supported parameters.- Specified by:
getDragParametersDrivers
in interfaceDragSensitive
- Returns:
- parameters drivers
-
getRadiationParametersDrivers
public ParameterDriver[] getRadiationParametersDrivers()
Get the drivers for supported parameters.- Specified by:
getRadiationParametersDrivers
in interfaceRadiationSensitive
- Returns:
- parameters drivers
-
getNormal
public org.hipparchus.geometry.euclidean.threed.Vector3D getNormal(AbsoluteDate date, Frame frame, org.hipparchus.geometry.euclidean.threed.Vector3D position, org.hipparchus.geometry.euclidean.threed.Rotation rotation)
Get solar array normal in spacecraft frame.- Parameters:
date
- current dateframe
- inertial reference frame for state (both orbit and attitude)position
- position of spacecraft in reference framerotation
- orientation (attitude) of the spacecraft with respect to reference frame- Returns:
- solar array normal in spacecraft frame
-
getNormal
public <T extends org.hipparchus.RealFieldElement<T>> org.hipparchus.geometry.euclidean.threed.FieldVector3D<T> getNormal(FieldAbsoluteDate<T> date, Frame frame, org.hipparchus.geometry.euclidean.threed.FieldVector3D<T> position, org.hipparchus.geometry.euclidean.threed.FieldRotation<T> rotation)
Get solar array normal in spacecraft frame.- Type Parameters:
T
- type of the field elements- Parameters:
date
- current dateframe
- inertial reference frame for state (both orbit and attitude)position
- position of spacecraft in reference framerotation
- orientation (attitude) of the spacecraft with respect to reference frame- Returns:
- solar array normal in spacecraft frame
-
getNormal
public org.hipparchus.geometry.euclidean.threed.FieldVector3D<org.hipparchus.analysis.differentiation.DerivativeStructure> getNormal(AbsoluteDate date, Frame frame, org.hipparchus.geometry.euclidean.threed.FieldVector3D<org.hipparchus.analysis.differentiation.DerivativeStructure> position, org.hipparchus.geometry.euclidean.threed.FieldRotation<org.hipparchus.analysis.differentiation.DerivativeStructure> rotation)
Get solar array normal in spacecraft frame.- Parameters:
date
- current dateframe
- inertial reference frame for state (both orbit and attitude)position
- position of spacecraft in reference framerotation
- orientation (attitude) of the spacecraft with respect to reference frame- Returns:
- solar array normal in spacecraft frame
-
dragAcceleration
public org.hipparchus.geometry.euclidean.threed.Vector3D dragAcceleration(AbsoluteDate date, Frame frame, org.hipparchus.geometry.euclidean.threed.Vector3D position, org.hipparchus.geometry.euclidean.threed.Rotation rotation, double mass, double density, org.hipparchus.geometry.euclidean.threed.Vector3D relativeVelocity, double[] parameters)
Compute the acceleration due to drag.The computation includes all spacecraft specific characteristics like shape, area and coefficients.
- Specified by:
dragAcceleration
in interfaceDragSensitive
- Parameters:
date
- current dateframe
- inertial reference frame for state (both orbit and attitude)position
- position of spacecraft in reference framerotation
- orientation (attitude) of the spacecraft with respect to reference framemass
- current massdensity
- atmospheric density at spacecraft positionrelativeVelocity
- relative velocity of atmosphere with respect to spacecraft, in the same inertial frame as spacecraft orbit (m/s)parameters
- values of the force model parameters- Returns:
- spacecraft acceleration in the same inertial frame as spacecraft orbit (m/s²)
-
dragAcceleration
public org.hipparchus.geometry.euclidean.threed.FieldVector3D<org.hipparchus.analysis.differentiation.DerivativeStructure> dragAcceleration(AbsoluteDate date, Frame frame, org.hipparchus.geometry.euclidean.threed.Vector3D position, org.hipparchus.geometry.euclidean.threed.Rotation rotation, double mass, double density, org.hipparchus.geometry.euclidean.threed.Vector3D relativeVelocity, double[] parameters, String paramName)
Compute acceleration due to drag, with parameters derivatives.- Specified by:
dragAcceleration
in interfaceDragSensitive
- Parameters:
date
- current dateframe
- inertial reference frame for state (both orbit and attitude)position
- position of spacecraft in reference framerotation
- orientation (attitude) of the spacecraft with respect to reference framemass
- current massdensity
- atmospheric density at spacecraft positionrelativeVelocity
- relative velocity of atmosphere with respect to spacecraft, in the same inertial frame as spacecraft orbit (m/s)parameters
- values of the force model parametersparamName
- name of the parameter with respect to which derivatives are required- Returns:
- spacecraft acceleration in the same inertial frame as spacecraft orbit (m/s²)
-
radiationPressureAcceleration
public org.hipparchus.geometry.euclidean.threed.Vector3D radiationPressureAcceleration(AbsoluteDate date, Frame frame, org.hipparchus.geometry.euclidean.threed.Vector3D position, org.hipparchus.geometry.euclidean.threed.Rotation rotation, double mass, org.hipparchus.geometry.euclidean.threed.Vector3D flux, double[] parameters)
Compute the acceleration due to radiation pressure.- Specified by:
radiationPressureAcceleration
in interfaceRadiationSensitive
- Parameters:
date
- current dateframe
- inertial reference frame for state (both orbit and attitude)position
- position of spacecraft in reference framerotation
- orientation (attitude) of the spacecraft with respect to reference framemass
- current massflux
- radiation flux in the same inertial frame as spacecraft orbitparameters
- values of the force model parameters- Returns:
- spacecraft acceleration in the same inertial frame as spacecraft orbit (m/s²)
-
radiationPressureAcceleration
public org.hipparchus.geometry.euclidean.threed.FieldVector3D<org.hipparchus.analysis.differentiation.DerivativeStructure> radiationPressureAcceleration(AbsoluteDate date, Frame frame, org.hipparchus.geometry.euclidean.threed.Vector3D position, org.hipparchus.geometry.euclidean.threed.Rotation rotation, double mass, org.hipparchus.geometry.euclidean.threed.Vector3D flux, double[] parameters, String paramName)
Compute the acceleration due to radiation pressure, with parameters derivatives.- Specified by:
radiationPressureAcceleration
in interfaceRadiationSensitive
- Parameters:
date
- current dateframe
- inertial reference frame for state (both orbit and attitude)position
- position of spacecraft in reference framerotation
- orientation (attitude) of the spacecraft with respect to reference framemass
- current massflux
- radiation flux in the same inertial frame as spacecraft orbitparameters
- values of the force model parametersparamName
- name of the parameter with respect to which derivatives are required- Returns:
- spacecraft acceleration in the same inertial frame as spacecraft orbit (m/s²)
-
dragAcceleration
public <T extends org.hipparchus.RealFieldElement<T>> org.hipparchus.geometry.euclidean.threed.FieldVector3D<T> dragAcceleration(FieldAbsoluteDate<T> date, Frame frame, org.hipparchus.geometry.euclidean.threed.FieldVector3D<T> position, org.hipparchus.geometry.euclidean.threed.FieldRotation<T> rotation, T mass, T density, org.hipparchus.geometry.euclidean.threed.FieldVector3D<T> relativeVelocity, T[] parameters)
Compute the acceleration due to drag.The computation includes all spacecraft specific characteristics like shape, area and coefficients.
- Specified by:
dragAcceleration
in interfaceDragSensitive
- Type Parameters:
T
- instance of a RealFieldElement- Parameters:
date
- current dateframe
- inertial reference frame for state (both orbit and attitude)position
- position of spacecraft in reference framerotation
- orientation (attitude) of the spacecraft with respect to reference framemass
- current massdensity
- atmospheric density at spacecraft positionrelativeVelocity
- relative velocity of atmosphere with respect to spacecraft, in the same inertial frame as spacecraft orbit (m/s)parameters
- values of the force model parameters- Returns:
- spacecraft acceleration in the same inertial frame as spacecraft orbit (m/s²)
-
radiationPressureAcceleration
public <T extends org.hipparchus.RealFieldElement<T>> org.hipparchus.geometry.euclidean.threed.FieldVector3D<T> radiationPressureAcceleration(FieldAbsoluteDate<T> date, Frame frame, org.hipparchus.geometry.euclidean.threed.FieldVector3D<T> position, org.hipparchus.geometry.euclidean.threed.FieldRotation<T> rotation, T mass, org.hipparchus.geometry.euclidean.threed.FieldVector3D<T> flux, T[] parameters)
Compute the acceleration due to radiation pressure.- Specified by:
radiationPressureAcceleration
in interfaceRadiationSensitive
- Type Parameters:
T
- extends RealFieldElement- Parameters:
date
- current dateframe
- inertial reference frame for state (both orbit and attitude)position
- position of spacecraft in reference framerotation
- orientation (attitude) of the spacecraft with respect to reference framemass
- current massflux
- radiation flux in the same inertial frame as spacecraft orbitparameters
- values of the force model parameters- Returns:
- spacecraft acceleration in the same inertial frame as spacecraft orbit (m/s²)
-
-