TurnAroundRangeIonosphericDelayModifier.java
/* Copyright 2002-2019 CS Systèmes d'Information
* Licensed to CS Systèmes d'Information (CS) under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* CS licenses this file to You under the Apache License, Version 2.0
* (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package org.orekit.estimation.measurements.modifiers;
import java.util.Arrays;
import java.util.Collections;
import java.util.List;
import org.hipparchus.geometry.euclidean.threed.Vector3D;
import org.orekit.estimation.measurements.EstimatedMeasurement;
import org.orekit.estimation.measurements.EstimationModifier;
import org.orekit.estimation.measurements.GroundStation;
import org.orekit.estimation.measurements.TurnAroundRange;
import org.orekit.models.earth.IonosphericModel;
import org.orekit.orbits.OrbitType;
import org.orekit.orbits.PositionAngle;
import org.orekit.propagation.Propagator;
import org.orekit.propagation.SpacecraftState;
import org.orekit.utils.Differentiation;
import org.orekit.utils.ParameterDriver;
import org.orekit.utils.ParameterFunction;
import org.orekit.utils.StateFunction;
/** Class modifying theoretical TurnAroundRange measurement with ionospheric delay.
* The effect of ionospheric correction on the TurnAroundRange is directly computed
* through the computation of the ionospheric delay.
*
* The ionospheric delay depends on the frequency of the signal (GNSS, VLBI, ...).
* For optical measurements (e.g. SLR), the ray is not affected by ionosphere charged particles.
*
* @author Maxime Journot
* @since 9.0
*/
public class TurnAroundRangeIonosphericDelayModifier implements EstimationModifier<TurnAroundRange> {
/** Ionospheric delay model. */
private final IonosphericModel ionoModel;
/** Constructor.
*
* @param model Ionospheric delay model appropriate for the current TurnAroundRange measurement method.
*/
public TurnAroundRangeIonosphericDelayModifier(final IonosphericModel model) {
ionoModel = model;
}
/** Compute the measurement error due to ionosphere.
* @param station station
* @param state spacecraft state
* @return the measurement error due to ionosphere
*/
private double rangeErrorIonosphericModel(final GroundStation station,
final SpacecraftState state) {
// State position
final Vector3D position = state.getPVCoordinates().getPosition();
// Elevation of the satellite seen from the station
final double elevation = station.getBaseFrame().getElevation(position,
state.getFrame(),
state.getDate());
// Only consider measures above the horizon
if (elevation > 0) {
// Compute azimuth
final double azimuth = station.getBaseFrame().getAzimuth(position,
state.getFrame(),
state.getDate());
// Delay in meters
final double delay = ionoModel.pathDelay(state.getDate(),
station.getBaseFrame().getPoint(),
elevation, azimuth);
return delay;
}
return 0;
}
/** Compute the Jacobian of the delay term wrt state.
*
* @param station station
* @param refstate reference spacecraft state
*
* @return Jacobian of the delay wrt state
*/
private double[][] rangeErrorJacobianState(final GroundStation station,
final SpacecraftState refstate) {
final double[][] finiteDifferencesJacobian =
Differentiation.differentiate(new StateFunction() {
public double[] value(final SpacecraftState state) {
// evaluate target's elevation with a changed target position
final double value = rangeErrorIonosphericModel(station, state);
return new double[] {
value
};
}
}, 1, Propagator.DEFAULT_LAW, OrbitType.CARTESIAN,
PositionAngle.TRUE, 15.0, 3).value(refstate);
return finiteDifferencesJacobian;
}
/** Compute the derivative of the delay term wrt parameters.
*
* @param station ground station
* @param driver driver for the station offset parameter
* @param state spacecraft state
* @return derivative of the delay wrt station offset parameter
*/
private double rangeErrorParameterDerivative(final GroundStation station,
final ParameterDriver driver,
final SpacecraftState state) {
final ParameterFunction rangeError = new ParameterFunction() {
/** {@inheritDoc} */
@Override
public double value(final ParameterDriver parameterDriver) {
return rangeErrorIonosphericModel(station, state);
}
};
final ParameterFunction rangeErrorDerivative =
Differentiation.differentiate(rangeError, 3, 10.0 * driver.getScale());
return rangeErrorDerivative.value(driver);
}
/** {@inheritDoc} */
@Override
public List<ParameterDriver> getParametersDrivers() {
return Collections.emptyList();
}
@Override
public void modify(final EstimatedMeasurement<TurnAroundRange> estimated) {
final TurnAroundRange measurement = estimated.getObservedMeasurement();
final GroundStation masterStation = measurement.getMasterStation();
final GroundStation slaveStation = measurement.getSlaveStation();
final SpacecraftState state = estimated.getStates()[0];
final double[] oldValue = estimated.getEstimatedValue();
// Update estimated value taking into account the ionospheric delay.
// The ionospheric delay is directly added to the TurnAroundRange.
final double masterDelay = rangeErrorIonosphericModel(masterStation, state);
final double slaveDelay = rangeErrorIonosphericModel(slaveStation, state);
final double[] newValue = oldValue.clone();
newValue[0] = newValue[0] + masterDelay + slaveDelay;
estimated.setEstimatedValue(newValue);
// Update estimated derivatives with Jacobian of the measure wrt state
final double[][] masterDjac = rangeErrorJacobianState(masterStation, state);
final double[][] slaveDjac = rangeErrorJacobianState(slaveStation, state);
final double[][] stateDerivatives = estimated.getStateDerivatives(0);
for (int irow = 0; irow < stateDerivatives.length; ++irow) {
for (int jcol = 0; jcol < stateDerivatives[0].length; ++jcol) {
stateDerivatives[irow][jcol] += masterDjac[irow][jcol] + slaveDjac[irow][jcol];
}
}
estimated.setStateDerivatives(0, stateDerivatives);
// Update derivatives with respect to master station position
for (final ParameterDriver driver : Arrays.asList(masterStation.getClockOffsetDriver(),
masterStation.getEastOffsetDriver(),
masterStation.getNorthOffsetDriver(),
masterStation.getZenithOffsetDriver())) {
if (driver.isSelected()) {
double parameterDerivative = estimated.getParameterDerivatives(driver)[0];
parameterDerivative += rangeErrorParameterDerivative(masterStation, driver, state);
estimated.setParameterDerivatives(driver, parameterDerivative);
}
}
// Update derivatives with respect to slave station position
for (final ParameterDriver driver : Arrays.asList(slaveStation.getEastOffsetDriver(),
slaveStation.getNorthOffsetDriver(),
slaveStation.getZenithOffsetDriver())) {
if (driver.isSelected()) {
double parameterDerivative = estimated.getParameterDerivatives(driver)[0];
parameterDerivative += rangeErrorParameterDerivative(slaveStation, driver, state);
estimated.setParameterDerivatives(driver, parameterDerivative);
}
}
}
}