AngularCoordinates.java

  1. /* Copyright 2002-2018 CS Systèmes d'Information
  2.  * Licensed to CS Systèmes d'Information (CS) under one or more
  3.  * contributor license agreements.  See the NOTICE file distributed with
  4.  * this work for additional information regarding copyright ownership.
  5.  * CS licenses this file to You under the Apache License, Version 2.0
  6.  * (the "License"); you may not use this file except in compliance with
  7.  * the License.  You may obtain a copy of the License at
  8.  *
  9.  *   http://www.apache.org/licenses/LICENSE-2.0
  10.  *
  11.  * Unless required by applicable law or agreed to in writing, software
  12.  * distributed under the License is distributed on an "AS IS" BASIS,
  13.  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  14.  * See the License for the specific language governing permissions and
  15.  * limitations under the License.
  16.  */
  17. package org.orekit.utils;

  18. import java.io.Serializable;

  19. import org.hipparchus.RealFieldElement;
  20. import org.hipparchus.analysis.differentiation.DSFactory;
  21. import org.hipparchus.analysis.differentiation.DerivativeStructure;
  22. import org.hipparchus.exception.LocalizedCoreFormats;
  23. import org.hipparchus.exception.MathIllegalArgumentException;
  24. import org.hipparchus.exception.MathRuntimeException;
  25. import org.hipparchus.geometry.euclidean.threed.FieldRotation;
  26. import org.hipparchus.geometry.euclidean.threed.FieldVector3D;
  27. import org.hipparchus.geometry.euclidean.threed.Rotation;
  28. import org.hipparchus.geometry.euclidean.threed.RotationConvention;
  29. import org.hipparchus.geometry.euclidean.threed.Vector3D;
  30. import org.hipparchus.linear.DecompositionSolver;
  31. import org.hipparchus.linear.MatrixUtils;
  32. import org.hipparchus.linear.QRDecomposition;
  33. import org.hipparchus.linear.RealMatrix;
  34. import org.hipparchus.linear.RealVector;
  35. import org.hipparchus.util.FastMath;
  36. import org.hipparchus.util.MathArrays;
  37. import org.orekit.errors.OrekitException;
  38. import org.orekit.errors.OrekitMessages;
  39. import org.orekit.time.TimeShiftable;

  40. /** Simple container for rotation/rotation rate/rotation acceleration triplets.
  41.  * <p>
  42.  * The state can be slightly shifted to close dates. This shift is based on
  43.  * an approximate solution of the fixed acceleration motion. It is <em>not</em>
  44.  * intended as a replacement for proper attitude propagation but should be
  45.  * sufficient for either small time shifts or coarse accuracy.
  46.  * </p>
  47.  * <p>
  48.  * This class is the angular counterpart to {@link PVCoordinates}.
  49.  * </p>
  50.  * <p>Instances of this class are guaranteed to be immutable.</p>
  51.  * @author Luc Maisonobe
  52.  */
  53. public class AngularCoordinates implements TimeShiftable<AngularCoordinates>, Serializable {

  54.     /** Fixed orientation parallel with reference frame
  55.      * (identity rotation, zero rotation rate and acceleration).
  56.      */
  57.     public static final AngularCoordinates IDENTITY =
  58.             new AngularCoordinates(Rotation.IDENTITY, Vector3D.ZERO, Vector3D.ZERO);

  59.     /** Serializable UID. */
  60.     private static final long serialVersionUID = 20140414L;

  61.     /** Rotation. */
  62.     private final Rotation rotation;

  63.     /** Rotation rate. */
  64.     private final Vector3D rotationRate;

  65.     /** Rotation acceleration. */
  66.     private final Vector3D rotationAcceleration;

  67.     /** Simple constructor.
  68.      * <p> Sets the Coordinates to default : Identity, Ω = (0 0 0), dΩ/dt = (0 0 0).</p>
  69.      */
  70.     public AngularCoordinates() {
  71.         this(Rotation.IDENTITY, Vector3D.ZERO, Vector3D.ZERO);
  72.     }

  73.     /** Builds a rotation/rotation rate pair.
  74.      * @param rotation rotation
  75.      * @param rotationRate rotation rate Ω (rad/s)
  76.      */
  77.     public AngularCoordinates(final Rotation rotation, final Vector3D rotationRate) {
  78.         this(rotation, rotationRate, Vector3D.ZERO);
  79.     }

  80.     /** Builds a rotation/rotation rate/rotation acceleration triplet.
  81.      * @param rotation rotation
  82.      * @param rotationRate rotation rate Ω (rad/s)
  83.      * @param rotationAcceleration rotation acceleration dΩ/dt (rad²/s²)
  84.      */
  85.     public AngularCoordinates(final Rotation rotation,
  86.                               final Vector3D rotationRate, final Vector3D rotationAcceleration) {
  87.         this.rotation             = rotation;
  88.         this.rotationRate         = rotationRate;
  89.         this.rotationAcceleration = rotationAcceleration;
  90.     }

  91.     /** Build the rotation that transforms a pair of pv coordinates into another one.

  92.      * <p><em>WARNING</em>! This method requires much more stringent assumptions on
  93.      * its parameters than the similar {@link Rotation#Rotation(Vector3D, Vector3D,
  94.      * Vector3D, Vector3D) constructor} from the {@link Rotation Rotation} class.
  95.      * As far as the Rotation constructor is concerned, the {@code v₂} vector from
  96.      * the second pair can be slightly misaligned. The Rotation constructor will
  97.      * compensate for this misalignment and create a rotation that ensure {@code
  98.      * v₁ = r(u₁)} and {@code v₂ ∈ plane (r(u₁), r(u₂))}. <em>THIS IS NOT
  99.      * TRUE ANYMORE IN THIS CLASS</em>! As derivatives are involved and must be
  100.      * preserved, this constructor works <em>only</em> if the two pairs are fully
  101.      * consistent, i.e. if a rotation exists that fulfill all the requirements: {@code
  102.      * v₁ = r(u₁)}, {@code v₂ = r(u₂)}, {@code dv₁/dt = dr(u₁)/dt}, {@code dv₂/dt
  103.      * = dr(u₂)/dt}, {@code d²v₁/dt² = d²r(u₁)/dt²}, {@code d²v₂/dt² = d²r(u₂)/dt²}.</p>
  104.      * @param u1 first vector of the origin pair
  105.      * @param u2 second vector of the origin pair
  106.      * @param v1 desired image of u1 by the rotation
  107.      * @param v2 desired image of u2 by the rotation
  108.      * @param tolerance relative tolerance factor used to check singularities
  109.      * @exception OrekitException if the vectors are inconsistent for the
  110.      * rotation to be found (null, aligned, ...)
  111.      */
  112.     public AngularCoordinates(final PVCoordinates u1, final PVCoordinates u2,
  113.                               final PVCoordinates v1, final PVCoordinates v2,
  114.                               final double tolerance)
  115.         throws OrekitException {

  116.         try {
  117.             // find the initial fixed rotation
  118.             rotation = new Rotation(u1.getPosition(), u2.getPosition(),
  119.                                     v1.getPosition(), v2.getPosition());

  120.             // find rotation rate Ω such that
  121.             //  Ω ⨯ v₁ = r(dot(u₁)) - dot(v₁)
  122.             //  Ω ⨯ v₂ = r(dot(u₂)) - dot(v₂)
  123.             final Vector3D ru1Dot = rotation.applyTo(u1.getVelocity());
  124.             final Vector3D ru2Dot = rotation.applyTo(u2.getVelocity());
  125.             rotationRate = inverseCrossProducts(v1.getPosition(), ru1Dot.subtract(v1.getVelocity()),
  126.                                                 v2.getPosition(), ru2Dot.subtract(v2.getVelocity()),
  127.                                                 tolerance);

  128.             // find rotation acceleration dot(Ω) such that
  129.             // dot(Ω) ⨯ v₁ = r(dotdot(u₁)) - 2 Ω ⨯ dot(v₁) - Ω ⨯  (Ω ⨯ v₁) - dotdot(v₁)
  130.             // dot(Ω) ⨯ v₂ = r(dotdot(u₂)) - 2 Ω ⨯ dot(v₂) - Ω ⨯  (Ω ⨯ v₂) - dotdot(v₂)
  131.             final Vector3D ru1DotDot = rotation.applyTo(u1.getAcceleration());
  132.             final Vector3D oDotv1    = Vector3D.crossProduct(rotationRate, v1.getVelocity());
  133.             final Vector3D oov1      = Vector3D.crossProduct(rotationRate, Vector3D.crossProduct(rotationRate, v1.getPosition()));
  134.             final Vector3D c1        = new Vector3D(1, ru1DotDot, -2, oDotv1, -1, oov1, -1, v1.getAcceleration());
  135.             final Vector3D ru2DotDot = rotation.applyTo(u2.getAcceleration());
  136.             final Vector3D oDotv2    = Vector3D.crossProduct(rotationRate, v2.getVelocity());
  137.             final Vector3D oov2      = Vector3D.crossProduct(rotationRate, Vector3D.crossProduct(rotationRate, v2.getPosition()));
  138.             final Vector3D c2        = new Vector3D(1, ru2DotDot, -2, oDotv2, -1, oov2, -1, v2.getAcceleration());
  139.             rotationAcceleration     = inverseCrossProducts(v1.getPosition(), c1, v2.getPosition(), c2, tolerance);

  140.         } catch (MathRuntimeException mrte) {
  141.             throw new OrekitException(mrte);
  142.         }

  143.     }

  144.     /** Build one of the rotations that transform one pv coordinates into another one.

  145.      * <p>Except for a possible scale factor, if the instance were
  146.      * applied to the vector u it will produce the vector v. There is an
  147.      * infinite number of such rotations, this constructor choose the
  148.      * one with the smallest associated angle (i.e. the one whose axis
  149.      * is orthogonal to the (u, v) plane). If u and v are collinear, an
  150.      * arbitrary rotation axis is chosen.</p>

  151.      * @param u origin vector
  152.      * @param v desired image of u by the rotation
  153.      * @exception OrekitException if the vectors components cannot be converted to
  154.      * {@link DerivativeStructure} with proper order
  155.      */
  156.     public AngularCoordinates(final PVCoordinates u, final PVCoordinates v) throws OrekitException {
  157.         this(new FieldRotation<>(u.toDerivativeStructureVector(2),
  158.                                  v.toDerivativeStructureVector(2)));
  159.     }

  160.     /** Builds a AngularCoordinates from  a {@link FieldRotation}&lt;{@link DerivativeStructure}&gt;.
  161.      * <p>
  162.      * The rotation components must have time as their only derivation parameter and
  163.      * have consistent derivation orders.
  164.      * </p>
  165.      * @param r rotation with time-derivatives embedded within the coordinates
  166.      */
  167.     public AngularCoordinates(final FieldRotation<DerivativeStructure> r) {

  168.         final double q0       = r.getQ0().getReal();
  169.         final double q1       = r.getQ1().getReal();
  170.         final double q2       = r.getQ2().getReal();
  171.         final double q3       = r.getQ3().getReal();

  172.         rotation     = new Rotation(q0, q1, q2, q3, false);
  173.         if (r.getQ0().getOrder() >= 1) {
  174.             final double q0Dot    = r.getQ0().getPartialDerivative(1);
  175.             final double q1Dot    = r.getQ1().getPartialDerivative(1);
  176.             final double q2Dot    = r.getQ2().getPartialDerivative(1);
  177.             final double q3Dot    = r.getQ3().getPartialDerivative(1);
  178.             rotationRate =
  179.                     new Vector3D(2 * MathArrays.linearCombination(-q1, q0Dot,  q0, q1Dot,  q3, q2Dot, -q2, q3Dot),
  180.                                  2 * MathArrays.linearCombination(-q2, q0Dot, -q3, q1Dot,  q0, q2Dot,  q1, q3Dot),
  181.                                  2 * MathArrays.linearCombination(-q3, q0Dot,  q2, q1Dot, -q1, q2Dot,  q0, q3Dot));
  182.             if (r.getQ0().getOrder() >= 2) {
  183.                 final double q0DotDot = r.getQ0().getPartialDerivative(2);
  184.                 final double q1DotDot = r.getQ1().getPartialDerivative(2);
  185.                 final double q2DotDot = r.getQ2().getPartialDerivative(2);
  186.                 final double q3DotDot = r.getQ3().getPartialDerivative(2);
  187.                 rotationAcceleration =
  188.                         new Vector3D(2 * MathArrays.linearCombination(-q1, q0DotDot,  q0, q1DotDot,  q3, q2DotDot, -q2, q3DotDot),
  189.                                      2 * MathArrays.linearCombination(-q2, q0DotDot, -q3, q1DotDot,  q0, q2DotDot,  q1, q3DotDot),
  190.                                      2 * MathArrays.linearCombination(-q3, q0DotDot,  q2, q1DotDot, -q1, q2DotDot,  q0, q3DotDot));
  191.             } else {
  192.                 rotationAcceleration = Vector3D.ZERO;
  193.             }
  194.         } else {
  195.             rotationRate         = Vector3D.ZERO;
  196.             rotationAcceleration = Vector3D.ZERO;
  197.         }

  198.     }

  199.     /** Find a vector from two known cross products.
  200.      * <p>
  201.      * We want to find Ω such that: Ω ⨯ v₁ = c₁ and Ω ⨯ v₂ = c₂
  202.      * </p>
  203.      * <p>
  204.      * The first equation (Ω ⨯ v₁ = c₁) will always be fulfilled exactly,
  205.      * and the second one will be fulfilled if possible.
  206.      * </p>
  207.      * @param v1 vector forming the first known cross product
  208.      * @param c1 know vector for cross product Ω ⨯ v₁
  209.      * @param v2 vector forming the second known cross product
  210.      * @param c2 know vector for cross product Ω ⨯ v₂
  211.      * @param tolerance relative tolerance factor used to check singularities
  212.      * @return vector Ω such that: Ω ⨯ v₁ = c₁ and Ω ⨯ v₂ = c₂
  213.      * @exception MathIllegalArgumentException if vectors are inconsistent and
  214.      * no solution can be found
  215.      */
  216.     private static Vector3D inverseCrossProducts(final Vector3D v1, final Vector3D c1,
  217.                                                  final Vector3D v2, final Vector3D c2,
  218.                                                  final double tolerance)
  219.         throws MathIllegalArgumentException {

  220.         final double v12 = v1.getNormSq();
  221.         final double v1n = FastMath.sqrt(v12);
  222.         final double v22 = v2.getNormSq();
  223.         final double v2n = FastMath.sqrt(v22);
  224.         final double threshold = tolerance * FastMath.max(v1n, v2n);

  225.         Vector3D omega;

  226.         try {
  227.             // create the over-determined linear system representing the two cross products
  228.             final RealMatrix m = MatrixUtils.createRealMatrix(6, 3);
  229.             m.setEntry(0, 1,  v1.getZ());
  230.             m.setEntry(0, 2, -v1.getY());
  231.             m.setEntry(1, 0, -v1.getZ());
  232.             m.setEntry(1, 2,  v1.getX());
  233.             m.setEntry(2, 0,  v1.getY());
  234.             m.setEntry(2, 1, -v1.getX());
  235.             m.setEntry(3, 1,  v2.getZ());
  236.             m.setEntry(3, 2, -v2.getY());
  237.             m.setEntry(4, 0, -v2.getZ());
  238.             m.setEntry(4, 2,  v2.getX());
  239.             m.setEntry(5, 0,  v2.getY());
  240.             m.setEntry(5, 1, -v2.getX());

  241.             final RealVector rhs = MatrixUtils.createRealVector(new double[] {
  242.                 c1.getX(), c1.getY(), c1.getZ(),
  243.                 c2.getX(), c2.getY(), c2.getZ()
  244.             });

  245.             // find the best solution we can
  246.             final DecompositionSolver solver = new QRDecomposition(m, threshold).getSolver();
  247.             final RealVector v = solver.solve(rhs);
  248.             omega = new Vector3D(v.getEntry(0), v.getEntry(1), v.getEntry(2));

  249.         } catch (MathIllegalArgumentException miae) {
  250.             if (miae.getSpecifier() == LocalizedCoreFormats.SINGULAR_MATRIX) {

  251.                 // handle some special cases for which we can compute a solution
  252.                 final double c12 = c1.getNormSq();
  253.                 final double c1n = FastMath.sqrt(c12);
  254.                 final double c22 = c2.getNormSq();
  255.                 final double c2n = FastMath.sqrt(c22);

  256.                 if (c1n <= threshold && c2n <= threshold) {
  257.                     // simple special case, velocities are cancelled
  258.                     return Vector3D.ZERO;
  259.                 } else if (v1n <= threshold && c1n >= threshold) {
  260.                     // this is inconsistent, if v₁ is zero, c₁ must be 0 too
  261.                     throw new MathIllegalArgumentException(LocalizedCoreFormats.NUMBER_TOO_LARGE, c1n, 0, true);
  262.                 } else if (v2n <= threshold && c2n >= threshold) {
  263.                     // this is inconsistent, if v₂ is zero, c₂ must be 0 too
  264.                     throw new MathIllegalArgumentException(LocalizedCoreFormats.NUMBER_TOO_LARGE, c2n, 0, true);
  265.                 } else if (Vector3D.crossProduct(v1, v2).getNorm() <= threshold && v12 > threshold) {
  266.                     // simple special case, v₂ is redundant with v₁, we just ignore it
  267.                     // use the simplest Ω: orthogonal to both v₁ and c₁
  268.                     omega = new Vector3D(1.0 / v12, Vector3D.crossProduct(v1, c1));
  269.                 } else {
  270.                     throw miae;
  271.                 }
  272.             } else {
  273.                 throw miae;
  274.             }

  275.         }

  276.         // check results
  277.         final double d1 = Vector3D.distance(Vector3D.crossProduct(omega, v1), c1);
  278.         if (d1 > threshold) {
  279.             throw new MathIllegalArgumentException(LocalizedCoreFormats.NUMBER_TOO_LARGE, d1, 0, true);
  280.         }

  281.         final double d2 = Vector3D.distance(Vector3D.crossProduct(omega, v2), c2);
  282.         if (d2 > threshold) {
  283.             throw new MathIllegalArgumentException(LocalizedCoreFormats.NUMBER_TOO_LARGE, d2, 0, true);
  284.         }

  285.         return omega;

  286.     }

  287.     /** Transform the instance to a {@link FieldRotation}&lt;{@link DerivativeStructure}&gt;.
  288.      * <p>
  289.      * The {@link DerivativeStructure} coordinates correspond to time-derivatives up
  290.      * to the user-specified order.
  291.      * </p>
  292.      * @param order derivation order for the vector components
  293.      * @return rotation with time-derivatives embedded within the coordinates
  294.      * @exception OrekitException if the user specified order is too large
  295.      */
  296.     public FieldRotation<DerivativeStructure> toDerivativeStructureRotation(final int order)
  297.         throws OrekitException {

  298.         // quaternion components
  299.         final double q0 = rotation.getQ0();
  300.         final double q1 = rotation.getQ1();
  301.         final double q2 = rotation.getQ2();
  302.         final double q3 = rotation.getQ3();

  303.         // first time-derivatives of the quaternion
  304.         final double oX    = rotationRate.getX();
  305.         final double oY    = rotationRate.getY();
  306.         final double oZ    = rotationRate.getZ();
  307.         final double q0Dot = 0.5 * MathArrays.linearCombination(-q1, oX, -q2, oY, -q3, oZ);
  308.         final double q1Dot = 0.5 * MathArrays.linearCombination( q0, oX, -q3, oY,  q2, oZ);
  309.         final double q2Dot = 0.5 * MathArrays.linearCombination( q3, oX,  q0, oY, -q1, oZ);
  310.         final double q3Dot = 0.5 * MathArrays.linearCombination(-q2, oX,  q1, oY,  q0, oZ);

  311.         // second time-derivatives of the quaternion
  312.         final double oXDot = rotationAcceleration.getX();
  313.         final double oYDot = rotationAcceleration.getY();
  314.         final double oZDot = rotationAcceleration.getZ();
  315.         final double q0DotDot = -0.5 * MathArrays.linearCombination(new double[] {
  316.             q1, q2,  q3, q1Dot, q2Dot,  q3Dot
  317.         }, new double[] {
  318.             oXDot, oYDot, oZDot, oX, oY, oZ
  319.         });
  320.         final double q1DotDot =  0.5 * MathArrays.linearCombination(new double[] {
  321.             q0, q2, -q3, q0Dot, q2Dot, -q3Dot
  322.         }, new double[] {
  323.             oXDot, oZDot, oYDot, oX, oZ, oY
  324.         });
  325.         final double q2DotDot =  0.5 * MathArrays.linearCombination(new double[] {
  326.             q0, q3, -q1, q0Dot, q3Dot, -q1Dot
  327.         }, new double[] {
  328.             oYDot, oXDot, oZDot, oY, oX, oZ
  329.         });
  330.         final double q3DotDot =  0.5 * MathArrays.linearCombination(new double[] {
  331.             q0, q1, -q2, q0Dot, q1Dot, -q2Dot
  332.         }, new double[] {
  333.             oZDot, oYDot, oXDot, oZ, oY, oX
  334.         });

  335.         final DSFactory factory;
  336.         final DerivativeStructure q0DS;
  337.         final DerivativeStructure q1DS;
  338.         final DerivativeStructure q2DS;
  339.         final DerivativeStructure q3DS;
  340.         switch(order) {
  341.             case 0 :
  342.                 factory = new DSFactory(1, order);
  343.                 q0DS = factory.build(q0);
  344.                 q1DS = factory.build(q1);
  345.                 q2DS = factory.build(q2);
  346.                 q3DS = factory.build(q3);
  347.                 break;
  348.             case 1 :
  349.                 factory = new DSFactory(1, order);
  350.                 q0DS = factory.build(q0, q0Dot);
  351.                 q1DS = factory.build(q1, q1Dot);
  352.                 q2DS = factory.build(q2, q2Dot);
  353.                 q3DS = factory.build(q3, q3Dot);
  354.                 break;
  355.             case 2 :
  356.                 factory = new DSFactory(1, order);
  357.                 q0DS = factory.build(q0, q0Dot, q0DotDot);
  358.                 q1DS = factory.build(q1, q1Dot, q1DotDot);
  359.                 q2DS = factory.build(q2, q2Dot, q2DotDot);
  360.                 q3DS = factory.build(q3, q3Dot, q3DotDot);
  361.                 break;
  362.             default :
  363.                 throw new OrekitException(OrekitMessages.OUT_OF_RANGE_DERIVATION_ORDER, order);
  364.         }

  365.         return new FieldRotation<>(q0DS, q1DS, q2DS, q3DS, false);

  366.     }

  367.     /** Estimate rotation rate between two orientations.
  368.      * <p>Estimation is based on a simple fixed rate rotation
  369.      * during the time interval between the two orientations.</p>
  370.      * @param start start orientation
  371.      * @param end end orientation
  372.      * @param dt time elapsed between the dates of the two orientations
  373.      * @return rotation rate allowing to go from start to end orientations
  374.      */
  375.     public static Vector3D estimateRate(final Rotation start, final Rotation end, final double dt) {
  376.         final Rotation evolution = start.compose(end.revert(), RotationConvention.VECTOR_OPERATOR);
  377.         return new Vector3D(evolution.getAngle() / dt, evolution.getAxis(RotationConvention.VECTOR_OPERATOR));
  378.     }

  379.     /** Revert a rotation/rotation rate/ rotation acceleration triplet.
  380.      * Build a triplet which reverse the effect of another triplet.
  381.      * @return a new triplet whose effect is the reverse of the effect
  382.      * of the instance
  383.      */
  384.     public AngularCoordinates revert() {
  385.         return new AngularCoordinates(rotation.revert(),
  386.                                       rotation.applyInverseTo(rotationRate).negate(),
  387.                                       rotation.applyInverseTo(rotationAcceleration).negate());
  388.     }

  389.     /** Get a time-shifted state.
  390.      * <p>
  391.      * The state can be slightly shifted to close dates. This shift is based on
  392.      * an approximate solution of the fixed acceleration motion. It is <em>not</em>
  393.      * intended as a replacement for proper attitude propagation but should be
  394.      * sufficient for either small time shifts or coarse accuracy.
  395.      * </p>
  396.      * @param dt time shift in seconds
  397.      * @return a new state, shifted with respect to the instance (which is immutable)
  398.      */
  399.     public AngularCoordinates shiftedBy(final double dt) {

  400.         // the shiftedBy method is based on a local approximation.
  401.         // It considers separately the contribution of the constant
  402.         // rotation, the linear contribution or the rate and the
  403.         // quadratic contribution of the acceleration. The rate
  404.         // and acceleration contributions are small rotations as long
  405.         // as the time shift is small, which is the crux of the algorithm.
  406.         // Small rotations are almost commutative, so we append these small
  407.         // contributions one after the other, as if they really occurred
  408.         // successively, despite this is not what really happens.

  409.         // compute the linear contribution first, ignoring acceleration
  410.         // BEWARE: there is really a minus sign here, because if
  411.         // the target frame rotates in one direction, the vectors in the origin
  412.         // frame seem to rotate in the opposite direction
  413.         final double rate = rotationRate.getNorm();
  414.         final Rotation rateContribution = (rate == 0.0) ?
  415.                                           Rotation.IDENTITY :
  416.                                           new Rotation(rotationRate, rate * dt, RotationConvention.FRAME_TRANSFORM);

  417.         // append rotation and rate contribution
  418.         final AngularCoordinates linearPart =
  419.                 new AngularCoordinates(rateContribution.compose(rotation, RotationConvention.VECTOR_OPERATOR), rotationRate);

  420.         final double acc  = rotationAcceleration.getNorm();
  421.         if (acc == 0.0) {
  422.             // no acceleration, the linear part is sufficient
  423.             return linearPart;
  424.         }

  425.         // compute the quadratic contribution, ignoring initial rotation and rotation rate
  426.         // BEWARE: there is really a minus sign here, because if
  427.         // the target frame rotates in one direction, the vectors in the origin
  428.         // frame seem to rotate in the opposite direction
  429.         final AngularCoordinates quadraticContribution =
  430.                 new AngularCoordinates(new Rotation(rotationAcceleration,
  431.                                                     0.5 * acc * dt * dt,
  432.                                                     RotationConvention.FRAME_TRANSFORM),
  433.                                        new Vector3D(dt, rotationAcceleration),
  434.                                        rotationAcceleration);

  435.         // the quadratic contribution is a small rotation:
  436.         // its initial angle and angular rate are both zero.
  437.         // small rotations are almost commutative, so we append the small
  438.         // quadratic part after the linear part as a simple offset
  439.         return quadraticContribution.addOffset(linearPart);

  440.     }

  441.     /** Get the rotation.
  442.      * @return the rotation.
  443.      */
  444.     public Rotation getRotation() {
  445.         return rotation;
  446.     }

  447.     /** Get the rotation rate.
  448.      * @return the rotation rate vector Ω (rad/s).
  449.      */
  450.     public Vector3D getRotationRate() {
  451.         return rotationRate;
  452.     }

  453.     /** Get the rotation acceleration.
  454.      * @return the rotation acceleration vector dΩ/dt (rad²/s²).
  455.      */
  456.     public Vector3D getRotationAcceleration() {
  457.         return rotationAcceleration;
  458.     }

  459.     /** Add an offset from the instance.
  460.      * <p>
  461.      * We consider here that the offset rotation is applied first and the
  462.      * instance is applied afterward. Note that angular coordinates do <em>not</em>
  463.      * commute under this operation, i.e. {@code a.addOffset(b)} and {@code
  464.      * b.addOffset(a)} lead to <em>different</em> results in most cases.
  465.      * </p>
  466.      * <p>
  467.      * The two methods {@link #addOffset(AngularCoordinates) addOffset} and
  468.      * {@link #subtractOffset(AngularCoordinates) subtractOffset} are designed
  469.      * so that round trip applications are possible. This means that both {@code
  470.      * ac1.subtractOffset(ac2).addOffset(ac2)} and {@code
  471.      * ac1.addOffset(ac2).subtractOffset(ac2)} return angular coordinates equal to ac1.
  472.      * </p>
  473.      * @param offset offset to subtract
  474.      * @return new instance, with offset subtracted
  475.      * @see #subtractOffset(AngularCoordinates)
  476.      */
  477.     public AngularCoordinates addOffset(final AngularCoordinates offset) {
  478.         final Vector3D rOmega    = rotation.applyTo(offset.rotationRate);
  479.         final Vector3D rOmegaDot = rotation.applyTo(offset.rotationAcceleration);
  480.         return new AngularCoordinates(rotation.compose(offset.rotation, RotationConvention.VECTOR_OPERATOR),
  481.                                       rotationRate.add(rOmega),
  482.                                       new Vector3D( 1.0, rotationAcceleration,
  483.                                                     1.0, rOmegaDot,
  484.                                                    -1.0, Vector3D.crossProduct(rotationRate, rOmega)));
  485.     }

  486.     /** Subtract an offset from the instance.
  487.      * <p>
  488.      * We consider here that the offset rotation is applied first and the
  489.      * instance is applied afterward. Note that angular coordinates do <em>not</em>
  490.      * commute under this operation, i.e. {@code a.subtractOffset(b)} and {@code
  491.      * b.subtractOffset(a)} lead to <em>different</em> results in most cases.
  492.      * </p>
  493.      * <p>
  494.      * The two methods {@link #addOffset(AngularCoordinates) addOffset} and
  495.      * {@link #subtractOffset(AngularCoordinates) subtractOffset} are designed
  496.      * so that round trip applications are possible. This means that both {@code
  497.      * ac1.subtractOffset(ac2).addOffset(ac2)} and {@code
  498.      * ac1.addOffset(ac2).subtractOffset(ac2)} return angular coordinates equal to ac1.
  499.      * </p>
  500.      * @param offset offset to subtract
  501.      * @return new instance, with offset subtracted
  502.      * @see #addOffset(AngularCoordinates)
  503.      */
  504.     public AngularCoordinates subtractOffset(final AngularCoordinates offset) {
  505.         return addOffset(offset.revert());
  506.     }

  507.     /** Apply the rotation to a pv coordinates.
  508.      * @param pv vector to apply the rotation to
  509.      * @return a new pv coordinates which is the image of u by the rotation
  510.      */
  511.     public PVCoordinates applyTo(final PVCoordinates pv) {

  512.         final Vector3D transformedP = rotation.applyTo(pv.getPosition());
  513.         final Vector3D crossP       = Vector3D.crossProduct(rotationRate, transformedP);
  514.         final Vector3D transformedV = rotation.applyTo(pv.getVelocity()).subtract(crossP);
  515.         final Vector3D crossV       = Vector3D.crossProduct(rotationRate, transformedV);
  516.         final Vector3D crossCrossP  = Vector3D.crossProduct(rotationRate, crossP);
  517.         final Vector3D crossDotP    = Vector3D.crossProduct(rotationAcceleration, transformedP);
  518.         final Vector3D transformedA = new Vector3D( 1, rotation.applyTo(pv.getAcceleration()),
  519.                                                    -2, crossV,
  520.                                                    -1, crossCrossP,
  521.                                                    -1, crossDotP);

  522.         return new PVCoordinates(transformedP, transformedV, transformedA);

  523.     }

  524.     /** Apply the rotation to a pv coordinates.
  525.      * @param pv vector to apply the rotation to
  526.      * @return a new pv coordinates which is the image of u by the rotation
  527.      */
  528.     public TimeStampedPVCoordinates applyTo(final TimeStampedPVCoordinates pv) {

  529.         final Vector3D transformedP = getRotation().applyTo(pv.getPosition());
  530.         final Vector3D crossP       = Vector3D.crossProduct(getRotationRate(), transformedP);
  531.         final Vector3D transformedV = getRotation().applyTo(pv.getVelocity()).subtract(crossP);
  532.         final Vector3D crossV       = Vector3D.crossProduct(getRotationRate(), transformedV);
  533.         final Vector3D crossCrossP  = Vector3D.crossProduct(getRotationRate(), crossP);
  534.         final Vector3D crossDotP    = Vector3D.crossProduct(getRotationAcceleration(), transformedP);
  535.         final Vector3D transformedA = new Vector3D( 1, getRotation().applyTo(pv.getAcceleration()),
  536.                                                    -2, crossV,
  537.                                                    -1, crossCrossP,
  538.                                                    -1, crossDotP);

  539.         return new TimeStampedPVCoordinates(pv.getDate(), transformedP, transformedV, transformedA);

  540.     }

  541.     /** Apply the rotation to a pv coordinates.
  542.      * @param pv vector to apply the rotation to
  543.      * @param <T> type of the field elements
  544.      * @return a new pv coordinates which is the image of u by the rotation
  545.      * @since 9.0
  546.      */
  547.     public <T extends RealFieldElement<T>> FieldPVCoordinates<T> applyTo(final FieldPVCoordinates<T> pv) {

  548.         final FieldVector3D<T> transformedP = FieldRotation.applyTo(rotation, pv.getPosition());
  549.         final FieldVector3D<T> crossP       = FieldVector3D.crossProduct(rotationRate, transformedP);
  550.         final FieldVector3D<T> transformedV = FieldRotation.applyTo(rotation, pv.getVelocity()).subtract(crossP);
  551.         final FieldVector3D<T> crossV       = FieldVector3D.crossProduct(rotationRate, transformedV);
  552.         final FieldVector3D<T> crossCrossP  = FieldVector3D.crossProduct(rotationRate, crossP);
  553.         final FieldVector3D<T> crossDotP    = FieldVector3D.crossProduct(rotationAcceleration, transformedP);
  554.         final FieldVector3D<T> transformedA = new FieldVector3D<>( 1, FieldRotation.applyTo(rotation, pv.getAcceleration()),
  555.                                                                   -2, crossV,
  556.                                                                   -1, crossCrossP,
  557.                                                                   -1, crossDotP);

  558.         return new FieldPVCoordinates<>(transformedP, transformedV, transformedA);

  559.     }

  560.     /** Apply the rotation to a pv coordinates.
  561.      * @param pv vector to apply the rotation to
  562.      * @param <T> type of the field elements
  563.      * @return a new pv coordinates which is the image of u by the rotation
  564.      * @since 9.0
  565.      */
  566.     public <T extends RealFieldElement<T>> TimeStampedFieldPVCoordinates<T> applyTo(final TimeStampedFieldPVCoordinates<T> pv) {

  567.         final FieldVector3D<T> transformedP = FieldRotation.applyTo(rotation, pv.getPosition());
  568.         final FieldVector3D<T> crossP       = FieldVector3D.crossProduct(rotationRate, transformedP);
  569.         final FieldVector3D<T> transformedV = FieldRotation.applyTo(rotation, pv.getVelocity()).subtract(crossP);
  570.         final FieldVector3D<T> crossV       = FieldVector3D.crossProduct(rotationRate, transformedV);
  571.         final FieldVector3D<T> crossCrossP  = FieldVector3D.crossProduct(rotationRate, crossP);
  572.         final FieldVector3D<T> crossDotP    = FieldVector3D.crossProduct(rotationAcceleration, transformedP);
  573.         final FieldVector3D<T> transformedA = new FieldVector3D<>( 1, FieldRotation.applyTo(rotation, pv.getAcceleration()),
  574.                                                                   -2, crossV,
  575.                                                                   -1, crossCrossP,
  576.                                                                   -1, crossDotP);

  577.         return new TimeStampedFieldPVCoordinates<>(pv.getDate(), transformedP, transformedV, transformedA);

  578.     }

  579.     /** Convert rotation, rate and acceleration to modified Rodrigues vector and derivatives.
  580.      * <p>
  581.      * The modified Rodrigues vector is tan(θ/4) u where θ and u are the
  582.      * rotation angle and axis respectively.
  583.      * </p>
  584.      * @param sign multiplicative sign for quaternion components
  585.      * @return modified Rodrigues vector and derivatives (vector on row 0, first derivative
  586.      * on row 1, second derivative on row 2)
  587.      * @see #createFromModifiedRodrigues(double[][])
  588.      */
  589.     public double[][] getModifiedRodrigues(final double sign) {

  590.         final double q0    = sign * getRotation().getQ0();
  591.         final double q1    = sign * getRotation().getQ1();
  592.         final double q2    = sign * getRotation().getQ2();
  593.         final double q3    = sign * getRotation().getQ3();
  594.         final double oX    = getRotationRate().getX();
  595.         final double oY    = getRotationRate().getY();
  596.         final double oZ    = getRotationRate().getZ();
  597.         final double oXDot = getRotationAcceleration().getX();
  598.         final double oYDot = getRotationAcceleration().getY();
  599.         final double oZDot = getRotationAcceleration().getZ();

  600.         // first time-derivatives of the quaternion
  601.         final double q0Dot = 0.5 * MathArrays.linearCombination(-q1, oX, -q2, oY, -q3, oZ);
  602.         final double q1Dot = 0.5 * MathArrays.linearCombination( q0, oX, -q3, oY,  q2, oZ);
  603.         final double q2Dot = 0.5 * MathArrays.linearCombination( q3, oX,  q0, oY, -q1, oZ);
  604.         final double q3Dot = 0.5 * MathArrays.linearCombination(-q2, oX,  q1, oY,  q0, oZ);

  605.         // second time-derivatives of the quaternion
  606.         final double q0DotDot = -0.5 * MathArrays.linearCombination(new double[] {
  607.             q1, q2,  q3, q1Dot, q2Dot,  q3Dot
  608.         }, new double[] {
  609.             oXDot, oYDot, oZDot, oX, oY, oZ
  610.         });
  611.         final double q1DotDot =  0.5 * MathArrays.linearCombination(new double[] {
  612.             q0, q2, -q3, q0Dot, q2Dot, -q3Dot
  613.         }, new double[] {
  614.             oXDot, oZDot, oYDot, oX, oZ, oY
  615.         });
  616.         final double q2DotDot =  0.5 * MathArrays.linearCombination(new double[] {
  617.             q0, q3, -q1, q0Dot, q3Dot, -q1Dot
  618.         }, new double[] {
  619.             oYDot, oXDot, oZDot, oY, oX, oZ
  620.         });
  621.         final double q3DotDot =  0.5 * MathArrays.linearCombination(new double[] {
  622.             q0, q1, -q2, q0Dot, q1Dot, -q2Dot
  623.         }, new double[] {
  624.             oZDot, oYDot, oXDot, oZ, oY, oX
  625.         });

  626.         // the modified Rodrigues is tan(θ/4) u where θ and u are the rotation angle and axis respectively
  627.         // this can be rewritten using quaternion components:
  628.         //      r (q₁ / (1+q₀), q₂ / (1+q₀), q₃ / (1+q₀))
  629.         // applying the derivation chain rule to previous expression gives rDot and rDotDot
  630.         final double inv          = 1.0 / (1.0 + q0);
  631.         final double mTwoInvQ0Dot = -2 * inv * q0Dot;

  632.         final double r1       = inv * q1;
  633.         final double r2       = inv * q2;
  634.         final double r3       = inv * q3;

  635.         final double mInvR1   = -inv * r1;
  636.         final double mInvR2   = -inv * r2;
  637.         final double mInvR3   = -inv * r3;

  638.         final double r1Dot    = MathArrays.linearCombination(inv, q1Dot, mInvR1, q0Dot);
  639.         final double r2Dot    = MathArrays.linearCombination(inv, q2Dot, mInvR2, q0Dot);
  640.         final double r3Dot    = MathArrays.linearCombination(inv, q3Dot, mInvR3, q0Dot);

  641.         final double r1DotDot = MathArrays.linearCombination(inv, q1DotDot, mTwoInvQ0Dot, r1Dot, mInvR1, q0DotDot);
  642.         final double r2DotDot = MathArrays.linearCombination(inv, q2DotDot, mTwoInvQ0Dot, r2Dot, mInvR2, q0DotDot);
  643.         final double r3DotDot = MathArrays.linearCombination(inv, q3DotDot, mTwoInvQ0Dot, r3Dot, mInvR3, q0DotDot);

  644.         return new double[][] {
  645.             {
  646.                 r1,       r2,       r3
  647.             }, {
  648.                 r1Dot,    r2Dot,    r3Dot
  649.             }, {
  650.                 r1DotDot, r2DotDot, r3DotDot
  651.             }
  652.         };

  653.     }

  654.     /** Convert a modified Rodrigues vector and derivatives to angular coordinates.
  655.      * @param r modified Rodrigues vector (with first and second times derivatives)
  656.      * @return angular coordinates
  657.      * @see #getModifiedRodrigues(double)
  658.      */
  659.     public static AngularCoordinates createFromModifiedRodrigues(final double[][] r) {

  660.         // rotation
  661.         final double rSquared = r[0][0] * r[0][0] + r[0][1] * r[0][1] + r[0][2] * r[0][2];
  662.         final double oPQ0     = 2 / (1 + rSquared);
  663.         final double q0       = oPQ0 - 1;
  664.         final double q1       = oPQ0 * r[0][0];
  665.         final double q2       = oPQ0 * r[0][1];
  666.         final double q3       = oPQ0 * r[0][2];

  667.         // rotation rate
  668.         final double oPQ02    = oPQ0 * oPQ0;
  669.         final double q0Dot    = -oPQ02 * MathArrays.linearCombination(r[0][0], r[1][0], r[0][1], r[1][1],  r[0][2], r[1][2]);
  670.         final double q1Dot    = oPQ0 * r[1][0] + r[0][0] * q0Dot;
  671.         final double q2Dot    = oPQ0 * r[1][1] + r[0][1] * q0Dot;
  672.         final double q3Dot    = oPQ0 * r[1][2] + r[0][2] * q0Dot;
  673.         final double oX       = 2 * MathArrays.linearCombination(-q1, q0Dot,  q0, q1Dot,  q3, q2Dot, -q2, q3Dot);
  674.         final double oY       = 2 * MathArrays.linearCombination(-q2, q0Dot, -q3, q1Dot,  q0, q2Dot,  q1, q3Dot);
  675.         final double oZ       = 2 * MathArrays.linearCombination(-q3, q0Dot,  q2, q1Dot, -q1, q2Dot,  q0, q3Dot);

  676.         // rotation acceleration
  677.         final double q0DotDot = (1 - q0) / oPQ0 * q0Dot * q0Dot -
  678.                                 oPQ02 * MathArrays.linearCombination(r[0][0], r[2][0], r[0][1], r[2][1], r[0][2], r[2][2]) -
  679.                                 (q1Dot * q1Dot + q2Dot * q2Dot + q3Dot * q3Dot);
  680.         final double q1DotDot = MathArrays.linearCombination(oPQ0, r[2][0], 2 * r[1][0], q0Dot, r[0][0], q0DotDot);
  681.         final double q2DotDot = MathArrays.linearCombination(oPQ0, r[2][1], 2 * r[1][1], q0Dot, r[0][1], q0DotDot);
  682.         final double q3DotDot = MathArrays.linearCombination(oPQ0, r[2][2], 2 * r[1][2], q0Dot, r[0][2], q0DotDot);
  683.         final double oXDot    = 2 * MathArrays.linearCombination(-q1, q0DotDot,  q0, q1DotDot,  q3, q2DotDot, -q2, q3DotDot);
  684.         final double oYDot    = 2 * MathArrays.linearCombination(-q2, q0DotDot, -q3, q1DotDot,  q0, q2DotDot,  q1, q3DotDot);
  685.         final double oZDot    = 2 * MathArrays.linearCombination(-q3, q0DotDot,  q2, q1DotDot, -q1, q2DotDot,  q0, q3DotDot);

  686.         return new AngularCoordinates(new Rotation(q0, q1, q2, q3, false),
  687.                                       new Vector3D(oX, oY, oZ),
  688.                                       new Vector3D(oXDot, oYDot, oZDot));

  689.     }

  690. }