DSSTPropagator.java
- /* Copyright 2002-2018 CS Systèmes d'Information
- * Licensed to CS Systèmes d'Information (CS) under one or more
- * contributor license agreements. See the NOTICE file distributed with
- * this work for additional information regarding copyright ownership.
- * CS licenses this file to You under the Apache License, Version 2.0
- * (the "License"); you may not use this file except in compliance with
- * the License. You may obtain a copy of the License at
- *
- * http://www.apache.org/licenses/LICENSE-2.0
- *
- * Unless required by applicable law or agreed to in writing, software
- * distributed under the License is distributed on an "AS IS" BASIS,
- * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- * See the License for the specific language governing permissions and
- * limitations under the License.
- */
- package org.orekit.propagation.semianalytical.dsst;
- import java.io.NotSerializableException;
- import java.io.Serializable;
- import java.util.ArrayList;
- import java.util.Arrays;
- import java.util.Collection;
- import java.util.Collections;
- import java.util.HashMap;
- import java.util.HashSet;
- import java.util.List;
- import java.util.Map;
- import java.util.Set;
- import org.hipparchus.ode.ODEIntegrator;
- import org.hipparchus.ode.ODEStateAndDerivative;
- import org.hipparchus.ode.sampling.ODEStateInterpolator;
- import org.hipparchus.ode.sampling.ODEStepHandler;
- import org.hipparchus.util.FastMath;
- import org.hipparchus.util.MathUtils;
- import org.orekit.attitudes.Attitude;
- import org.orekit.attitudes.AttitudeProvider;
- import org.orekit.errors.OrekitException;
- import org.orekit.errors.OrekitExceptionWrapper;
- import org.orekit.errors.OrekitMessages;
- import org.orekit.frames.Frame;
- import org.orekit.orbits.EquinoctialOrbit;
- import org.orekit.orbits.Orbit;
- import org.orekit.orbits.OrbitType;
- import org.orekit.orbits.PositionAngle;
- import org.orekit.propagation.SpacecraftState;
- import org.orekit.propagation.events.EventDetector;
- import org.orekit.propagation.integration.AbstractIntegratedPropagator;
- import org.orekit.propagation.integration.StateMapper;
- import org.orekit.propagation.numerical.NumericalPropagator;
- import org.orekit.propagation.semianalytical.dsst.forces.DSSTForceModel;
- import org.orekit.propagation.semianalytical.dsst.forces.ShortPeriodTerms;
- import org.orekit.propagation.semianalytical.dsst.utilities.AuxiliaryElements;
- import org.orekit.propagation.semianalytical.dsst.utilities.FixedNumberInterpolationGrid;
- import org.orekit.propagation.semianalytical.dsst.utilities.InterpolationGrid;
- import org.orekit.propagation.semianalytical.dsst.utilities.MaxGapInterpolationGrid;
- import org.orekit.time.AbsoluteDate;
- /**
- * This class propagates {@link org.orekit.orbits.Orbit orbits} using the DSST theory.
- * <p>
- * Whereas analytical propagators are configured only thanks to their various
- * constructors and can be used immediately after construction, such a semianalytical
- * propagator configuration involves setting several parameters between construction
- * time and propagation time, just as numerical propagators.
- * </p>
- * <p>
- * The configuration parameters that can be set are:
- * </p>
- * <ul>
- * <li>the initial spacecraft state ({@link #setInitialState(SpacecraftState)})</li>
- * <li>the various force models ({@link #addForceModel(DSSTForceModel)},
- * {@link #removeForceModels()})</li>
- * <li>the discrete events that should be triggered during propagation (
- * {@link #addEventDetector(org.orekit.propagation.events.EventDetector)},
- * {@link #clearEventsDetectors()})</li>
- * <li>the binding logic with the rest of the application ({@link #setSlaveMode()},
- * {@link #setMasterMode(double, org.orekit.propagation.sampling.OrekitFixedStepHandler)},
- * {@link #setMasterMode(org.orekit.propagation.sampling.OrekitStepHandler)},
- * {@link #setEphemerisMode()}, {@link #getGeneratedEphemeris()})</li>
- * </ul>
- * <p>
- * From these configuration parameters, only the initial state is mandatory.
- * The default propagation settings are in {@link OrbitType#EQUINOCTIAL equinoctial}
- * parameters with {@link PositionAngle#TRUE true} longitude argument.
- * The central attraction coefficient used to define the initial orbit will be used.
- * However, specifying only the initial state would mean the propagator would use
- * only Keplerian forces. In this case, the simpler
- * {@link org.orekit.propagation.analytical.KeplerianPropagator KeplerianPropagator}
- * class would be more effective.
- * </p>
- * <p>
- * The underlying numerical integrator set up in the constructor may also have
- * its own configuration parameters. Typical configuration parameters for adaptive
- * stepsize integrators are the min, max and perhaps start step size as well as
- * the absolute and/or relative errors thresholds.
- * </p>
- * <p>
- * The state that is seen by the integrator is a simple six elements double array.
- * These six elements are:
- * <ul>
- * <li>the {@link org.orekit.orbits.EquinoctialOrbit equinoctial orbit parameters}
- * (a, e<sub>x</sub>, e<sub>y</sub>, h<sub>x</sub>, h<sub>y</sub>, λ<sub>m</sub>)
- * in meters and radians,</li>
- * </ul>
- *
- * <p>By default, at the end of the propagation, the propagator resets the initial state to the final state,
- * thus allowing a new propagation to be started from there without recomputing the part already performed.
- * This behaviour can be chenged by calling {@link #setResetAtEnd(boolean)}.
- * </p>
- * <p>Beware the same instance cannot be used simultaneously by different threads, the class is <em>not</em>
- * thread-safe.</p>
- *
- * @see SpacecraftState
- * @see DSSTForceModel
- * @author Romain Di Costanzo
- * @author Pascal Parraud
- */
- public class DSSTPropagator extends AbstractIntegratedPropagator {
- /** Retrograde factor I.
- * <p>
- * DSST model needs equinoctial orbit as internal representation.
- * Classical equinoctial elements have discontinuities when inclination
- * is close to zero. In this representation, I = +1. <br>
- * To avoid this discontinuity, another representation exists and equinoctial
- * elements can be expressed in a different way, called "retrograde" orbit.
- * This implies I = -1. <br>
- * As Orekit doesn't implement the retrograde orbit, I is always set to +1.
- * But for the sake of consistency with the theory, the retrograde factor
- * has been kept in the formulas.
- * </p>
- */
- private static final int I = 1;
- /** Number of grid points per integration step to be used in interpolation of short periodics coefficients.*/
- private static final int INTERPOLATION_POINTS_PER_STEP = 3;
- /** Flag specifying whether the initial orbital state is given with osculating elements. */
- private boolean initialIsOsculating;
- /** Force models used to compute short periodic terms. */
- private final transient List<DSSTForceModel> forceModels;
- /** State mapper holding the force models. */
- private MeanPlusShortPeriodicMapper mapper;
- /** Generator for the interpolation grid. */
- private InterpolationGrid interpolationgrid;
- /** Create a new instance of DSSTPropagator.
- * <p>
- * After creation, there are no perturbing forces at all.
- * This means that if {@link #addForceModel addForceModel}
- * is not called after creation, the integrated orbit will
- * follow a Keplerian evolution only.
- * </p>
- * @param integrator numerical integrator to use for propagation.
- * @param meanOnly output only the mean orbits.
- */
- public DSSTPropagator(final ODEIntegrator integrator, final boolean meanOnly) {
- super(integrator, meanOnly);
- forceModels = new ArrayList<DSSTForceModel>();
- initMapper();
- // DSST uses only equinoctial orbits and mean longitude argument
- setOrbitType(OrbitType.EQUINOCTIAL);
- setPositionAngleType(PositionAngle.MEAN);
- setAttitudeProvider(DEFAULT_LAW);
- setInterpolationGridToFixedNumberOfPoints(INTERPOLATION_POINTS_PER_STEP);
- }
- /** Create a new instance of DSSTPropagator.
- * <p>
- * After creation, there are no perturbing forces at all.
- * This means that if {@link #addForceModel addForceModel}
- * is not called after creation, the integrated orbit will
- * follow a Keplerian evolution only. Only the mean orbits
- * will be generated.
- * </p>
- * @param integrator numerical integrator to use for propagation.
- */
- public DSSTPropagator(final ODEIntegrator integrator) {
- super(integrator, true);
- forceModels = new ArrayList<DSSTForceModel>();
- initMapper();
- // DSST uses only equinoctial orbits and mean longitude argument
- setOrbitType(OrbitType.EQUINOCTIAL);
- setPositionAngleType(PositionAngle.MEAN);
- setAttitudeProvider(DEFAULT_LAW);
- setInterpolationGridToFixedNumberOfPoints(INTERPOLATION_POINTS_PER_STEP);
- }
- /** Set the initial state with osculating orbital elements.
- * @param initialState initial state (defined with osculating elements)
- * @throws OrekitException if the initial state cannot be set
- */
- public void setInitialState(final SpacecraftState initialState)
- throws OrekitException {
- setInitialState(initialState, true);
- }
- /** Set the initial state.
- * @param initialState initial state
- * @param isOsculating true if the orbital state is defined with osculating elements
- * @throws OrekitException if the initial state cannot be set
- */
- public void setInitialState(final SpacecraftState initialState,
- final boolean isOsculating)
- throws OrekitException {
- initialIsOsculating = isOsculating;
- resetInitialState(initialState);
- }
- /** Reset the initial state.
- *
- * @param state new initial state
- * @throws OrekitException if initial state cannot be reset
- */
- @Override
- public void resetInitialState(final SpacecraftState state) throws OrekitException {
- super.setStartDate(state.getDate());
- super.resetInitialState(state);
- }
- /** Set the selected short periodic coefficients that must be stored as additional states.
- * @param selectedCoefficients short periodic coefficients that must be stored as additional states
- * (null means no coefficients are selected, empty set means all coefficients are selected)
- */
- public void setSelectedCoefficients(final Set<String> selectedCoefficients) {
- mapper.setSelectedCoefficients(selectedCoefficients == null ?
- null : new HashSet<String>(selectedCoefficients));
- }
- /** Get the selected short periodic coefficients that must be stored as additional states.
- * @return short periodic coefficients that must be stored as additional states
- * (null means no coefficients are selected, empty set means all coefficients are selected)
- */
- public Set<String> getSelectedCoefficients() {
- final Set<String> set = mapper.getSelectedCoefficients();
- return set == null ? null : Collections.unmodifiableSet(set);
- }
- /** Check if the initial state is provided in osculating elements.
- * @return true if initial state is provided in osculating elements
- */
- public boolean initialIsOsculating() {
- return initialIsOsculating;
- }
- /** Set the interpolation grid generator.
- * <p>
- * The generator will create an interpolation grid with a fixed
- * number of points for each mean element integration step.
- * </p>
- * <p>
- * If neither {@link #setInterpolationGridToFixedNumberOfPoints(int)}
- * nor {@link #setInterpolationGridToMaxTimeGap(double)} has been called,
- * by default the propagator is set as to 3 interpolations points per step.
- * </p>
- * @param interpolationPoints number of interpolation points at
- * each integration step
- * @see #setInterpolationGridToMaxTimeGap(double)
- * @since 7.1
- */
- public void setInterpolationGridToFixedNumberOfPoints(final int interpolationPoints) {
- interpolationgrid = new FixedNumberInterpolationGrid(interpolationPoints);
- }
- /** Set the interpolation grid generator.
- * <p>
- * The generator will create an interpolation grid with a maximum
- * time gap between interpolation points.
- * </p>
- * <p>
- * If neither {@link #setInterpolationGridToFixedNumberOfPoints(int)}
- * nor {@link #setInterpolationGridToMaxTimeGap(double)} has been called,
- * by default the propagator is set as to 3 interpolations points per step.
- * </p>
- * @param maxGap maximum time gap between interpolation points (seconds)
- * @see #setInterpolationGridToFixedNumberOfPoints(int)
- * @since 7.1
- */
- public void setInterpolationGridToMaxTimeGap(final double maxGap) {
- interpolationgrid = new MaxGapInterpolationGrid(maxGap);
- }
- /** Add a force model to the global perturbation model.
- * <p>
- * If this method is not called at all,
- * the integrated orbit will follow a Keplerian evolution only.
- * </p>
- * @param force perturbing {@link DSSTForceModel force} to add
- * @see #removeForceModels()
- */
- public void addForceModel(final DSSTForceModel force) {
- forceModels.add(force);
- force.registerAttitudeProvider(getAttitudeProvider());
- }
- /** Remove all perturbing force models from the global perturbation model.
- * <p>
- * Once all perturbing forces have been removed (and as long as no new force model is added),
- * the integrated orbit will follow a Keplerian evolution only.
- * </p>
- * @see #addForceModel(DSSTForceModel)
- */
- public void removeForceModels() {
- forceModels.clear();
- }
- /** Conversion from mean to osculating orbit.
- * <p>
- * Compute osculating state <b>in a DSST sense</b>, corresponding to the
- * mean SpacecraftState in input, and according to the Force models taken
- * into account.
- * </p><p>
- * Since the osculating state is obtained by adding short-periodic variation
- * of each force model, the resulting output will depend on the
- * force models parameterized in input.
- * </p>
- * @param mean Mean state to convert
- * @param forces Forces to take into account
- * @param attitudeProvider attitude provider (may be null if there are no Gaussian force models
- * like atmospheric drag, radiation pressure or specific user-defined models)
- * @return osculating state in a DSST sense
- * @throws OrekitException if computation of short periodics fails
- */
- public static SpacecraftState computeOsculatingState(final SpacecraftState mean,
- final AttitudeProvider attitudeProvider,
- final Collection<DSSTForceModel> forces)
- throws OrekitException {
- //Create the auxiliary object
- final AuxiliaryElements aux = new AuxiliaryElements(mean.getOrbit(), I);
- // Set the force models
- final List<ShortPeriodTerms> shortPeriodTerms = new ArrayList<ShortPeriodTerms>();
- for (final DSSTForceModel force : forces) {
- force.registerAttitudeProvider(attitudeProvider);
- shortPeriodTerms.addAll(force.initialize(aux, false));
- force.updateShortPeriodTerms(mean);
- }
- final EquinoctialOrbit osculatingOrbit = computeOsculatingOrbit(mean, shortPeriodTerms);
- return new SpacecraftState(osculatingOrbit, mean.getAttitude(), mean.getMass(),
- mean.getAdditionalStates());
- }
- /** Conversion from osculating to mean orbit.
- * <p>
- * Compute mean state <b>in a DSST sense</b>, corresponding to the
- * osculating SpacecraftState in input, and according to the Force models
- * taken into account.
- * </p><p>
- * Since the osculating state is obtained with the computation of
- * short-periodic variation of each force model, the resulting output will
- * depend on the force models parameterized in input.
- * </p><p>
- * The computation is done through a fixed-point iteration process.
- * </p>
- * @param osculating Osculating state to convert
- * @param attitudeProvider attitude provider (may be null if there are no Gaussian force models
- * like atmospheric drag, radiation pressure or specific user-defined models)
- * @param forceModels Forces to take into account
- * @return mean state in a DSST sense
- * @throws OrekitException if computation of short periodics fails or iteration algorithm does not converge
- */
- public static SpacecraftState computeMeanState(final SpacecraftState osculating,
- final AttitudeProvider attitudeProvider,
- final Collection<DSSTForceModel> forceModels)
- throws OrekitException {
- final Orbit meanOrbit = computeMeanOrbit(osculating, attitudeProvider, forceModels);
- return new SpacecraftState(meanOrbit, osculating.getAttitude(), osculating.getMass(), osculating.getAdditionalStates());
- }
- /** Override the default value of the parameter.
- * <p>
- * By default, if the initial orbit is defined as osculating,
- * it will be averaged over 2 satellite revolutions.
- * This can be changed by using this method.
- * </p>
- * @param satelliteRevolution number of satellite revolutions to use for converting osculating to mean
- * elements
- */
- public void setSatelliteRevolution(final int satelliteRevolution) {
- mapper.setSatelliteRevolution(satelliteRevolution);
- }
- /** Get the number of satellite revolutions to use for converting osculating to mean elements.
- * @return number of satellite revolutions to use for converting osculating to mean elements
- */
- public int getSatelliteRevolution() {
- return mapper.getSatelliteRevolution();
- }
- /** {@inheritDoc} */
- @Override
- public void setAttitudeProvider(final AttitudeProvider attitudeProvider) {
- super.setAttitudeProvider(attitudeProvider);
- //Register the attitude provider for each force model
- for (final DSSTForceModel force : forceModels) {
- force.registerAttitudeProvider(attitudeProvider);
- }
- }
- /** Method called just before integration.
- * <p>
- * The default implementation does nothing, it may be specialized in subclasses.
- * </p>
- * @param initialState initial state
- * @param tEnd target date at which state should be propagated
- * @exception OrekitException if hook cannot be run
- */
- @Override
- protected void beforeIntegration(final SpacecraftState initialState,
- final AbsoluteDate tEnd)
- throws OrekitException {
- // compute common auxiliary elements
- final AuxiliaryElements aux = new AuxiliaryElements(initialState.getOrbit(), I);
- // check if only mean elements must be used
- final boolean meanOnly = isMeanOrbit();
- // initialize all perturbing forces
- final List<ShortPeriodTerms> shortPeriodTerms = new ArrayList<ShortPeriodTerms>();
- for (final DSSTForceModel force : forceModels) {
- shortPeriodTerms.addAll(force.initialize(aux, meanOnly));
- }
- mapper.setShortPeriodTerms(shortPeriodTerms);
- // if required, insert the special short periodics step handler
- if (!meanOnly) {
- final ShortPeriodicsHandler spHandler = new ShortPeriodicsHandler(forceModels);
- final Collection<ODEStepHandler> stepHandlers = new ArrayList<ODEStepHandler>();
- stepHandlers.add(spHandler);
- final ODEIntegrator integrator = getIntegrator();
- final Collection<ODEStepHandler> existing = integrator.getStepHandlers();
- stepHandlers.addAll(existing);
- integrator.clearStepHandlers();
- // add back the existing handlers after the short periodics one
- for (final ODEStepHandler sp : stepHandlers) {
- integrator.addStepHandler(sp);
- }
- }
- }
- /** {@inheritDoc} */
- @Override
- protected void afterIntegration() throws OrekitException {
- // remove the special short periodics step handler if added before
- if (!isMeanOrbit()) {
- final List<ODEStepHandler> preserved = new ArrayList<ODEStepHandler>();
- final ODEIntegrator integrator = getIntegrator();
- for (final ODEStepHandler sp : integrator.getStepHandlers()) {
- if (!(sp instanceof ShortPeriodicsHandler)) {
- preserved.add(sp);
- }
- }
- // clear the list
- integrator.clearStepHandlers();
- // add back the step handlers that were important for the user
- for (final ODEStepHandler sp : preserved) {
- integrator.addStepHandler(sp);
- }
- }
- }
- /** Compute mean state from osculating state.
- * <p>
- * Compute in a DSST sense the mean state corresponding to the input osculating state.
- * </p><p>
- * The computing is done through a fixed-point iteration process.
- * </p>
- * @param osculating initial osculating state
- * @param attitudeProvider attitude provider (may be null if there are no Gaussian force models
- * like atmospheric drag, radiation pressure or specific user-defined models)
- * @param forceModels force models
- * @return mean state
- * @throws OrekitException if the underlying computation of short periodic variation fails
- */
- private static Orbit computeMeanOrbit(final SpacecraftState osculating,
- final AttitudeProvider attitudeProvider,
- final Collection<DSSTForceModel> forceModels)
- throws OrekitException {
- // rough initialization of the mean parameters
- EquinoctialOrbit meanOrbit = (EquinoctialOrbit) OrbitType.EQUINOCTIAL.convertType(osculating.getOrbit());
- // threshold for each parameter
- final double epsilon = 1.0e-13;
- final double thresholdA = epsilon * (1 + FastMath.abs(meanOrbit.getA()));
- final double thresholdE = epsilon * (1 + meanOrbit.getE());
- final double thresholdI = epsilon * (1 + meanOrbit.getI());
- final double thresholdL = epsilon * FastMath.PI;
- // ensure all Gaussian force models can rely on attitude
- for (final DSSTForceModel force : forceModels) {
- force.registerAttitudeProvider(attitudeProvider);
- }
- int i = 0;
- while (i++ < 200) {
- final SpacecraftState meanState = new SpacecraftState(meanOrbit, osculating.getAttitude(), osculating.getMass());
- //Create the auxiliary object
- final AuxiliaryElements aux = new AuxiliaryElements(meanOrbit, I);
- // Set the force models
- final List<ShortPeriodTerms> shortPeriodTerms = new ArrayList<ShortPeriodTerms>();
- for (final DSSTForceModel force : forceModels) {
- shortPeriodTerms.addAll(force.initialize(aux, false));
- force.updateShortPeriodTerms(meanState);
- }
- // recompute the osculating parameters from the current mean parameters
- final EquinoctialOrbit rebuilt = computeOsculatingOrbit(meanState, shortPeriodTerms);
- // adapted parameters residuals
- final double deltaA = osculating.getA() - rebuilt.getA();
- final double deltaEx = osculating.getEquinoctialEx() - rebuilt.getEquinoctialEx();
- final double deltaEy = osculating.getEquinoctialEy() - rebuilt.getEquinoctialEy();
- final double deltaHx = osculating.getHx() - rebuilt.getHx();
- final double deltaHy = osculating.getHy() - rebuilt.getHy();
- final double deltaLv = MathUtils.normalizeAngle(osculating.getLv() - rebuilt.getLv(), 0.0);
- // check convergence
- if (FastMath.abs(deltaA) < thresholdA &&
- FastMath.abs(deltaEx) < thresholdE &&
- FastMath.abs(deltaEy) < thresholdE &&
- FastMath.abs(deltaHx) < thresholdI &&
- FastMath.abs(deltaHy) < thresholdI &&
- FastMath.abs(deltaLv) < thresholdL) {
- return meanOrbit;
- }
- // update mean parameters
- meanOrbit = new EquinoctialOrbit(meanOrbit.getA() + deltaA,
- meanOrbit.getEquinoctialEx() + deltaEx,
- meanOrbit.getEquinoctialEy() + deltaEy,
- meanOrbit.getHx() + deltaHx,
- meanOrbit.getHy() + deltaHy,
- meanOrbit.getLv() + deltaLv,
- PositionAngle.TRUE, meanOrbit.getFrame(),
- meanOrbit.getDate(), meanOrbit.getMu());
- }
- throw new OrekitException(OrekitMessages.UNABLE_TO_COMPUTE_DSST_MEAN_PARAMETERS, i);
- }
- /** Compute osculating state from mean state.
- * <p>
- * Compute and add the short periodic variation to the mean {@link SpacecraftState}.
- * </p>
- * @param meanState initial mean state
- * @param shortPeriodTerms short period terms
- * @return osculating state
- * @throws OrekitException if the computation of the short-periodic variation fails
- */
- private static EquinoctialOrbit computeOsculatingOrbit(final SpacecraftState meanState,
- final List<ShortPeriodTerms> shortPeriodTerms)
- throws OrekitException {
- final double[] mean = new double[6];
- final double[] meanDot = new double[6];
- OrbitType.EQUINOCTIAL.mapOrbitToArray(meanState.getOrbit(), PositionAngle.MEAN, mean, meanDot);
- final double[] y = mean.clone();
- for (final ShortPeriodTerms spt : shortPeriodTerms) {
- final double[] shortPeriodic = spt.value(meanState.getOrbit());
- for (int i = 0; i < shortPeriodic.length; i++) {
- y[i] += shortPeriodic[i];
- }
- }
- return (EquinoctialOrbit) OrbitType.EQUINOCTIAL.mapArrayToOrbit(y, meanDot,
- PositionAngle.MEAN, meanState.getDate(),
- meanState.getMu(), meanState.getFrame());
- }
- /** {@inheritDoc} */
- @Override
- protected SpacecraftState getInitialIntegrationState() throws OrekitException {
- if (initialIsOsculating) {
- // the initial state is an osculating state,
- // it must be converted to mean state
- return computeMeanState(getInitialState(), getAttitudeProvider(), forceModels);
- } else {
- // the initial state is already a mean state
- return getInitialState();
- }
- }
- /** {@inheritDoc}
- * <p>
- * Note that for DSST, orbit type is hardcoded to {@link OrbitType#EQUINOCTIAL}
- * and position angle type is hardcoded to {@link PositionAngle#MEAN}, so
- * the corresponding parameters are ignored.
- * </p>
- */
- @Override
- protected StateMapper createMapper(final AbsoluteDate referenceDate, final double mu,
- final OrbitType ignoredOrbitType, final PositionAngle ignoredPositionAngleType,
- final AttitudeProvider attitudeProvider, final Frame frame) {
- // create a mapper with the common settings provided as arguments
- final MeanPlusShortPeriodicMapper newMapper =
- new MeanPlusShortPeriodicMapper(referenceDate, mu, attitudeProvider, frame);
- // copy the specific settings from the existing mapper
- if (mapper != null) {
- newMapper.setSatelliteRevolution(mapper.getSatelliteRevolution());
- newMapper.setSelectedCoefficients(mapper.getSelectedCoefficients());
- newMapper.setShortPeriodTerms(mapper.getShortPeriodTerms());
- }
- mapper = newMapper;
- return mapper;
- }
- /** Internal mapper using mean parameters plus short periodic terms. */
- private static class MeanPlusShortPeriodicMapper extends StateMapper implements Serializable {
- /** Serializable UID. */
- private static final long serialVersionUID = 20151104L;
- /** Short periodic coefficients that must be stored as additional states. */
- private Set<String> selectedCoefficients;
- /** Number of satellite revolutions in the averaging interval. */
- private int satelliteRevolution;
- /** Short period terms. */
- private List<ShortPeriodTerms> shortPeriodTerms;
- /** Simple constructor.
- * @param referenceDate reference date
- * @param mu central attraction coefficient (m³/s²)
- * @param attitudeProvider attitude provider
- * @param frame inertial frame
- */
- MeanPlusShortPeriodicMapper(final AbsoluteDate referenceDate, final double mu,
- final AttitudeProvider attitudeProvider, final Frame frame) {
- super(referenceDate, mu, OrbitType.EQUINOCTIAL, PositionAngle.MEAN, attitudeProvider, frame);
- this.selectedCoefficients = null;
- // Default averaging period for conversion from osculating to mean elements
- this.satelliteRevolution = 2;
- this.shortPeriodTerms = Collections.emptyList();
- }
- /** {@inheritDoc} */
- @Override
- public SpacecraftState mapArrayToState(final AbsoluteDate date,
- final double[] y, final double[] yDot,
- final boolean meanOnly)
- throws OrekitException {
- // add short periodic variations to mean elements to get osculating elements
- // (the loop may not be performed if there are no force models and in the
- // case we want to remain in mean parameters only)
- final double[] elements = y.clone();
- final Map<String, double[]> coefficients;
- if (meanOnly) {
- coefficients = null;
- } else {
- final Orbit meanOrbit = OrbitType.EQUINOCTIAL.mapArrayToOrbit(elements, yDot, PositionAngle.MEAN, date, getMu(), getFrame());
- coefficients = selectedCoefficients == null ? null : new HashMap<String, double[]>();
- for (final ShortPeriodTerms spt : shortPeriodTerms) {
- final double[] shortPeriodic = spt.value(meanOrbit);
- for (int i = 0; i < shortPeriodic.length; i++) {
- elements[i] += shortPeriodic[i];
- }
- if (selectedCoefficients != null) {
- coefficients.putAll(spt.getCoefficients(date, selectedCoefficients));
- }
- }
- }
- final double mass = elements[6];
- if (mass <= 0.0) {
- throw new OrekitException(OrekitMessages.SPACECRAFT_MASS_BECOMES_NEGATIVE, mass);
- }
- final Orbit orbit = OrbitType.EQUINOCTIAL.mapArrayToOrbit(elements, yDot, PositionAngle.MEAN, date, getMu(), getFrame());
- final Attitude attitude = getAttitudeProvider().getAttitude(orbit, date, getFrame());
- if (coefficients == null) {
- return new SpacecraftState(orbit, attitude, mass);
- } else {
- return new SpacecraftState(orbit, attitude, mass, coefficients);
- }
- }
- /** {@inheritDoc} */
- @Override
- public void mapStateToArray(final SpacecraftState state, final double[] y, final double[] yDot)
- throws OrekitException {
- OrbitType.EQUINOCTIAL.mapOrbitToArray(state.getOrbit(), PositionAngle.MEAN, y, yDot);
- y[6] = state.getMass();
- }
- /** Set the number of satellite revolutions to use for converting osculating to mean elements.
- * <p>
- * By default, if the initial orbit is defined as osculating,
- * it will be averaged over 2 satellite revolutions.
- * This can be changed by using this method.
- * </p>
- * @param satelliteRevolution number of satellite revolutions to use for converting osculating to mean
- * elements
- */
- public void setSatelliteRevolution(final int satelliteRevolution) {
- this.satelliteRevolution = satelliteRevolution;
- }
- /** Get the number of satellite revolutions to use for converting osculating to mean elements.
- * @return number of satellite revolutions to use for converting osculating to mean elements
- */
- public int getSatelliteRevolution() {
- return satelliteRevolution;
- }
- /** Set the selected short periodic coefficients that must be stored as additional states.
- * @param selectedCoefficients short periodic coefficients that must be stored as additional states
- * (null means no coefficients are selected, empty set means all coefficients are selected)
- */
- public void setSelectedCoefficients(final Set<String> selectedCoefficients) {
- this.selectedCoefficients = selectedCoefficients;
- }
- /** Get the selected short periodic coefficients that must be stored as additional states.
- * @return short periodic coefficients that must be stored as additional states
- * (null means no coefficients are selected, empty set means all coefficients are selected)
- */
- public Set<String> getSelectedCoefficients() {
- return selectedCoefficients;
- }
- /** Set the short period terms.
- * @param shortPeriodTerms short period terms
- * @since 7.1
- */
- public void setShortPeriodTerms(final List<ShortPeriodTerms> shortPeriodTerms) {
- this.shortPeriodTerms = shortPeriodTerms;
- }
- /** Get the short period terms.
- * @return shortPeriodTerms short period terms
- * @since 7.1
- */
- public List<ShortPeriodTerms> getShortPeriodTerms() {
- return shortPeriodTerms;
- }
- /** Replace the instance with a data transfer object for serialization.
- * @return data transfer object that will be serialized
- * @exception NotSerializableException if one of the force models cannot be serialized
- */
- private Object writeReplace() throws NotSerializableException {
- return new DataTransferObject(getReferenceDate(), getMu(), getAttitudeProvider(), getFrame(),
- satelliteRevolution, selectedCoefficients, shortPeriodTerms);
- }
- /** Internal class used only for serialization. */
- private static class DataTransferObject implements Serializable {
- /** Serializable UID. */
- private static final long serialVersionUID = 20151106L;
- /** Reference date. */
- private final AbsoluteDate referenceDate;
- /** Central attraction coefficient (m³/s²). */
- private final double mu;
- /** Attitude provider. */
- private final AttitudeProvider attitudeProvider;
- /** Inertial frame. */
- private final Frame frame;
- /** Short periodic coefficients that must be stored as additional states. */
- private final Set<String> selectedCoefficients;
- /** Number of satellite revolutions in the averaging interval. */
- private final int satelliteRevolution;
- /** Short period terms. */
- private final List<ShortPeriodTerms> shortPeriodTerms;
- /** Simple constructor.
- * @param referenceDate reference date
- * @param mu central attraction coefficient (m³/s²)
- * @param attitudeProvider attitude provider
- * @param frame inertial frame
- * @param satelliteRevolution number of satellite revolutions in the averaging interval
- * @param selectedCoefficients short periodic coefficients that must be stored as additional states
- * @param shortPeriodTerms short period terms
- */
- DataTransferObject(final AbsoluteDate referenceDate, final double mu,
- final AttitudeProvider attitudeProvider, final Frame frame,
- final int satelliteRevolution,
- final Set<String> selectedCoefficients,
- final List<ShortPeriodTerms> shortPeriodTerms) {
- this.referenceDate = referenceDate;
- this.mu = mu;
- this.attitudeProvider = attitudeProvider;
- this.frame = frame;
- this.satelliteRevolution = satelliteRevolution;
- this.selectedCoefficients = selectedCoefficients;
- this.shortPeriodTerms = shortPeriodTerms;
- }
- /** Replace the deserialized data transfer object with a {@link MeanPlusShortPeriodicMapper}.
- * @return replacement {@link MeanPlusShortPeriodicMapper}
- */
- private Object readResolve() {
- final MeanPlusShortPeriodicMapper mapper =
- new MeanPlusShortPeriodicMapper(referenceDate, mu, attitudeProvider, frame);
- mapper.setSatelliteRevolution(satelliteRevolution);
- mapper.setSelectedCoefficients(selectedCoefficients);
- mapper.setShortPeriodTerms(shortPeriodTerms);
- return mapper;
- }
- }
- }
- /** {@inheritDoc} */
- @Override
- protected MainStateEquations getMainStateEquations(final ODEIntegrator integrator) {
- return new Main(integrator);
- }
- /** Internal class for mean parameters integration. */
- private class Main implements MainStateEquations {
- /** Derivatives array. */
- private final double[] yDot;
- /** Simple constructor.
- * @param integrator numerical integrator to use for propagation.
- */
- Main(final ODEIntegrator integrator) {
- yDot = new double[7];
- for (final DSSTForceModel forceModel : forceModels) {
- final EventDetector[] modelDetectors = forceModel.getEventsDetectors();
- if (modelDetectors != null) {
- for (final EventDetector detector : modelDetectors) {
- setUpEventDetector(integrator, detector);
- }
- }
- }
- }
- /** {@inheritDoc} */
- @Override
- public double[] computeDerivatives(final SpacecraftState state) throws OrekitException {
- // compute common auxiliary elements
- final AuxiliaryElements aux = new AuxiliaryElements(state.getOrbit(), I);
- // initialize all perturbing forces
- for (final DSSTForceModel force : forceModels) {
- force.initializeStep(aux);
- }
- Arrays.fill(yDot, 0.0);
- // compute the contributions of all perturbing forces
- for (final DSSTForceModel forceModel : forceModels) {
- final double[] daidt = forceModel.getMeanElementRate(state);
- for (int i = 0; i < daidt.length; i++) {
- yDot[i] += daidt[i];
- }
- }
- // finalize derivatives by adding the Kepler contribution
- final EquinoctialOrbit orbit = (EquinoctialOrbit) OrbitType.EQUINOCTIAL.convertType(state.getOrbit());
- orbit.addKeplerContribution(PositionAngle.MEAN, getMu(), yDot);
- return yDot.clone();
- }
- }
- /** Estimate tolerance vectors for an AdaptativeStepsizeIntegrator.
- * <p>
- * The errors are estimated from partial derivatives properties of orbits,
- * starting from a scalar position error specified by the user.
- * Considering the energy conservation equation V = sqrt(mu (2/r - 1/a)),
- * we get at constant energy (i.e. on a Keplerian trajectory):
- *
- * <pre>
- * V² r |dV| = mu |dr|
- * </pre>
- *
- * <p> So we deduce a scalar velocity error consistent with the position error. From here, we apply
- * orbits Jacobians matrices to get consistent errors on orbital parameters.
- *
- * <p>
- * The tolerances are only <em>orders of magnitude</em>, and integrator tolerances are only
- * local estimates, not global ones. So some care must be taken when using these tolerances.
- * Setting 1mm as a position error does NOT mean the tolerances will guarantee a 1mm error
- * position after several orbits integration.
- * </p>
- *
- * @param dP user specified position error (m)
- * @param orbit reference orbit
- * @return a two rows array, row 0 being the absolute tolerance error
- * and row 1 being the relative tolerance error
- * @exception OrekitException if Jacobian is singular
- */
- public static double[][] tolerances(final double dP, final Orbit orbit)
- throws OrekitException {
- return NumericalPropagator.tolerances(dP, orbit, OrbitType.EQUINOCTIAL);
- }
- /** Step handler used to compute the parameters for the short periodic contributions.
- * @author Lucian Barbulescu
- */
- private class ShortPeriodicsHandler implements ODEStepHandler {
- /** Force models used to compute short periodic terms. */
- private final List<DSSTForceModel> forceModels;
- /** Constructor.
- * @param forceModels force models
- */
- ShortPeriodicsHandler(final List<DSSTForceModel> forceModels) {
- this.forceModels = forceModels;
- }
- /** {@inheritDoc} */
- @Override
- public void init(final ODEStateAndDerivative initialState, final double finalTime)
- throws OrekitExceptionWrapper {
- try {
- // Build the mean state interpolated at initial point
- final SpacecraftState meanStates = mapper.mapArrayToState(0.0,
- initialState.getPrimaryState(),
- initialState.getPrimaryDerivative(),
- true);
- // Compute short periodic coefficients for this point
- for (DSSTForceModel forceModel : forceModels) {
- forceModel.updateShortPeriodTerms(meanStates);
- }
- } catch (OrekitException oe) {
- throw new OrekitExceptionWrapper(oe);
- }
- }
- /** {@inheritDoc} */
- @Override
- public void handleStep(final ODEStateInterpolator interpolator, final boolean isLast)
- throws OrekitExceptionWrapper {
- try {
- // Get the grid points to compute
- final double[] interpolationPoints =
- interpolationgrid.getGridPoints(interpolator.getPreviousState().getTime(),
- interpolator.getCurrentState().getTime());
- final SpacecraftState[] meanStates = new SpacecraftState[interpolationPoints.length];
- for (int i = 0; i < interpolationPoints.length; ++i) {
- // Build the mean state interpolated at grid point
- final double time = interpolationPoints[i];
- final ODEStateAndDerivative sd = interpolator.getInterpolatedState(time);
- meanStates[i] = mapper.mapArrayToState(time,
- sd.getPrimaryState(),
- sd.getPrimaryDerivative(),
- true);
- }
- // Computate short periodic coefficients for this step
- for (DSSTForceModel forceModel : forceModels) {
- forceModel.updateShortPeriodTerms(meanStates);
- }
- } catch (OrekitException oe) {
- throw new OrekitExceptionWrapper(oe);
- }
- }
- }
- }