DSSTZonal.java
- /* Copyright 2002-2018 CS Systèmes d'Information
- * Licensed to CS Systèmes d'Information (CS) under one or more
- * contributor license agreements. See the NOTICE file distributed with
- * this work for additional information regarding copyright ownership.
- * CS licenses this file to You under the Apache License, Version 2.0
- * (the "License"); you may not use this file except in compliance with
- * the License. You may obtain a copy of the License at
- *
- * http://www.apache.org/licenses/LICENSE-2.0
- *
- * Unless required by applicable law or agreed to in writing, software
- * distributed under the License is distributed on an "AS IS" BASIS,
- * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- * See the License for the specific language governing permissions and
- * limitations under the License.
- */
- package org.orekit.propagation.semianalytical.dsst.forces;
- import java.io.NotSerializableException;
- import java.io.Serializable;
- import java.util.ArrayList;
- import java.util.HashMap;
- import java.util.List;
- import java.util.Map;
- import java.util.Set;
- import java.util.SortedSet;
- import java.util.TreeMap;
- import org.hipparchus.exception.LocalizedCoreFormats;
- import org.hipparchus.util.FastMath;
- import org.orekit.attitudes.AttitudeProvider;
- import org.orekit.errors.OrekitException;
- import org.orekit.forces.gravity.potential.UnnormalizedSphericalHarmonicsProvider;
- import org.orekit.forces.gravity.potential.UnnormalizedSphericalHarmonicsProvider.UnnormalizedSphericalHarmonics;
- import org.orekit.orbits.Orbit;
- import org.orekit.propagation.SpacecraftState;
- import org.orekit.propagation.events.EventDetector;
- import org.orekit.propagation.semianalytical.dsst.utilities.AuxiliaryElements;
- import org.orekit.propagation.semianalytical.dsst.utilities.CjSjCoefficient;
- import org.orekit.propagation.semianalytical.dsst.utilities.CoefficientsFactory;
- import org.orekit.propagation.semianalytical.dsst.utilities.CoefficientsFactory.NSKey;
- import org.orekit.propagation.semianalytical.dsst.utilities.GHIJjsPolynomials;
- import org.orekit.propagation.semianalytical.dsst.utilities.LnsCoefficients;
- import org.orekit.propagation.semianalytical.dsst.utilities.ShortPeriodicsInterpolatedCoefficient;
- import org.orekit.propagation.semianalytical.dsst.utilities.UpperBounds;
- import org.orekit.propagation.semianalytical.dsst.utilities.hansen.HansenZonalLinear;
- import org.orekit.time.AbsoluteDate;
- import org.orekit.utils.TimeSpanMap;
- /** Zonal contribution to the central body gravitational perturbation.
- *
- * @author Romain Di Costanzo
- * @author Pascal Parraud
- */
- public class DSSTZonal implements DSSTForceModel {
- /** Truncation tolerance. */
- private static final double TRUNCATION_TOLERANCE = 1e-4;
- /** Number of points for interpolation. */
- private static final int INTERPOLATION_POINTS = 3;
- /** Retrograde factor I.
- * <p>
- * DSST model needs equinoctial orbit as internal representation.
- * Classical equinoctial elements have discontinuities when inclination
- * is close to zero. In this representation, I = +1. <br>
- * To avoid this discontinuity, another representation exists and equinoctial
- * elements can be expressed in a different way, called "retrograde" orbit.
- * This implies I = -1. <br>
- * As Orekit doesn't implement the retrograde orbit, I is always set to +1.
- * But for the sake of consistency with the theory, the retrograde factor
- * has been kept in the formulas.
- * </p>
- */
- private static final int I = 1;
- /** Provider for spherical harmonics. */
- private final UnnormalizedSphericalHarmonicsProvider provider;
- /** Maximal degree to consider for harmonics potential. */
- private final int maxDegree;
- /** Maximal degree to consider for harmonics potential. */
- private final int maxDegreeShortPeriodics;
- /** Maximal degree to consider for harmonics potential in short periodic computations. */
- private final int maxOrder;
- /** Factorial. */
- private final double[] fact;
- /** Coefficient used to define the mean disturbing function V<sub>ns</sub> coefficient. */
- private final TreeMap<NSKey, Double> Vns;
- /** Highest power of the eccentricity to be used in mean elements computations. */
- private int maxEccPowMeanElements;
- /** Highest power of the eccentricity to be used in short periodic computations. */
- private final int maxEccPowShortPeriodics;
- /** Maximum frequency in true longitude for short periodic computations. */
- private final int maxFrequencyShortPeriodics;
- /** Short period terms. */
- private ZonalShortPeriodicCoefficients zonalSPCoefs;
- // Equinoctial elements (according to DSST notation)
- /** a. */
- private double a;
- /** ex. */
- private double k;
- /** ey. */
- private double h;
- /** hx. */
- private double q;
- /** hy. */
- private double p;
- /** Eccentricity. */
- private double ecc;
- /** Direction cosine &alpha. */
- private double alpha;
- /** Direction cosine &beta. */
- private double beta;
- /** Direction cosine &gamma. */
- private double gamma;
- // Common factors for potential computation
- /** Χ = 1 / sqrt(1 - e²) = 1 / B. */
- private double X;
- /** Χ². */
- private double XX;
- /** Χ³. */
- private double XXX;
- /** 1 / (A * B) .*/
- private double ooAB;
- /** B / A .*/
- private double BoA;
- /** B / A(1 + B) .*/
- private double BoABpo;
- /** -C / (2 * A * B) .*/
- private double mCo2AB;
- /** -2 * a / A .*/
- private double m2aoA;
- /** μ / a .*/
- private double muoa;
- /** R / a .*/
- private double roa;
- /** An array that contains the objects needed to build the Hansen coefficients. <br/>
- * The index is s*/
- private HansenZonalLinear[] hansenObjects;
- /** The current value of the U function. <br/>
- * Needed when computed the short periodic contribution */
- private double U;
- /** A = sqrt( μ * a ) = n * a². */
- private double A;
- /** B = sqrt( 1 - k² - h² ). */
- private double B;
- /** C = 1 + p² + Q². */
- private double C;
- /** The mean motion (n). */
- private double meanMotion;
- /** h * k. */
- private double hk;
- /** k² - h². */
- private double k2mh2;
- /** (k² - h²) / 2. */
- private double k2mh2o2;
- /** 1 / (n² * a²). */
- private double oon2a2;
- /** 1 / (n² * a) . */
- private double oon2a;
- /** χ³ / (n² * a). */
- private double x3on2a;
- /** χ / (n² * a²). */
- private double xon2a2;
- /** (C * χ) / ( 2 * n² * a² ). */
- private double cxo2n2a2;
- /** (χ²) / (n² * a² * (χ + 1 ) ). */
- private double x2on2a2xp1;
- /** B * B.*/
- private double BB;
- /** Simple constructor.
- * @param provider provider for spherical harmonics
- * @param maxDegreeShortPeriodics maximum degree to consider for short periodics zonal harmonics potential
- * (must be between 2 and {@code provider.getMaxDegree()})
- * @param maxEccPowShortPeriodics maximum power of the eccentricity to be used in short periodic computations
- * (must be between 0 and {@code maxDegreeShortPeriodics - 1}, but should typically not exceed 4 as higher
- * values will exceed computer capacity)
- * @param maxFrequencyShortPeriodics maximum frequency in true longitude for short periodic computations
- * (must be between 1 and {@code 2 * maxDegreeShortPeriodics + 1})
- * @exception OrekitException if degrees or powers are out of range
- * @since 7.2
- */
- public DSSTZonal(final UnnormalizedSphericalHarmonicsProvider provider,
- final int maxDegreeShortPeriodics,
- final int maxEccPowShortPeriodics,
- final int maxFrequencyShortPeriodics)
- throws OrekitException {
- this.provider = provider;
- this.maxDegree = provider.getMaxDegree();
- this.maxOrder = provider.getMaxOrder();
- checkIndexRange(maxDegreeShortPeriodics, 2, maxDegree);
- this.maxDegreeShortPeriodics = maxDegreeShortPeriodics;
- checkIndexRange(maxEccPowShortPeriodics, 0, maxDegreeShortPeriodics - 1);
- this.maxEccPowShortPeriodics = maxEccPowShortPeriodics;
- checkIndexRange(maxFrequencyShortPeriodics, 1, 2 * maxDegreeShortPeriodics + 1);
- this.maxFrequencyShortPeriodics = maxFrequencyShortPeriodics;
- // Vns coefficients
- this.Vns = CoefficientsFactory.computeVns(maxDegree + 1);
- // Factorials computation
- final int maxFact = 2 * maxDegree + 1;
- this.fact = new double[maxFact];
- fact[0] = 1.;
- for (int i = 1; i < maxFact; i++) {
- fact[i] = i * fact[i - 1];
- }
- // Initialize default values
- this.maxEccPowMeanElements = (maxDegree == 2) ? 0 : Integer.MIN_VALUE;
- }
- /** Check an index range.
- * @param index index value
- * @param min minimum value for index
- * @param max maximum value for index
- * @exception OrekitException if index is out of range
- */
- private void checkIndexRange(final int index, final int min, final int max)
- throws OrekitException {
- if (index < min || index > max) {
- throw new OrekitException(LocalizedCoreFormats.OUT_OF_RANGE_SIMPLE, index, min, max);
- }
- }
- /** Get the spherical harmonics provider.
- * @return the spherical harmonics provider
- */
- public UnnormalizedSphericalHarmonicsProvider getProvider() {
- return provider;
- }
- /** {@inheritDoc}
- * <p>
- * Computes the highest power of the eccentricity to appear in the truncated
- * analytical power series expansion.
- * </p>
- * <p>
- * This method computes the upper value for the central body potential and
- * determines the maximal power for the eccentricity producing potential
- * terms bigger than a defined tolerance.
- * </p>
- */
- @Override
- public List<ShortPeriodTerms> initialize(final AuxiliaryElements aux, final boolean meanOnly)
- throws OrekitException {
- computeMeanElementsTruncations(aux);
- final int maxEccPow;
- if (!meanOnly) {
- maxEccPow = FastMath.max(maxEccPowMeanElements, maxEccPowShortPeriodics);
- } else {
- maxEccPow = maxEccPowMeanElements;
- }
- //Initialize the HansenCoefficient generator
- this.hansenObjects = new HansenZonalLinear[maxEccPow + 1];
- for (int s = 0; s <= maxEccPow; s++) {
- this.hansenObjects[s] = new HansenZonalLinear(maxDegree, s);
- }
- final List<ShortPeriodTerms> list = new ArrayList<ShortPeriodTerms>();
- zonalSPCoefs = new ZonalShortPeriodicCoefficients(maxFrequencyShortPeriodics,
- INTERPOLATION_POINTS,
- new TimeSpanMap<Slot>(new Slot(maxFrequencyShortPeriodics,
- INTERPOLATION_POINTS)));
- list.add(zonalSPCoefs);
- return list;
- }
- /** Compute indices truncations for mean elements computations.
- * @param aux auxiliary elements
- * @throws OrekitException if an error occurs
- */
- private void computeMeanElementsTruncations(final AuxiliaryElements aux) throws OrekitException {
- //Compute the max eccentricity power for the mean element rate expansion
- if (maxDegree == 2) {
- maxEccPowMeanElements = 0;
- } else {
- // Initializes specific parameters.
- initializeStep(aux);
- final UnnormalizedSphericalHarmonics harmonics = provider.onDate(aux.getDate());
- // Utilities for truncation
- final double ax2or = 2. * a / provider.getAe();
- double xmuran = provider.getMu() / a;
- // Set a lower bound for eccentricity
- final double eo2 = FastMath.max(0.0025, ecc / 2.);
- final double x2o2 = XX / 2.;
- final double[] eccPwr = new double[maxDegree + 1];
- final double[] chiPwr = new double[maxDegree + 1];
- final double[] hafPwr = new double[maxDegree + 1];
- eccPwr[0] = 1.;
- chiPwr[0] = X;
- hafPwr[0] = 1.;
- for (int i = 1; i <= maxDegree; i++) {
- eccPwr[i] = eccPwr[i - 1] * eo2;
- chiPwr[i] = chiPwr[i - 1] * x2o2;
- hafPwr[i] = hafPwr[i - 1] * 0.5;
- xmuran /= ax2or;
- }
- // Set highest power of e and degree of current spherical harmonic.
- maxEccPowMeanElements = 0;
- int n = maxDegree;
- // Loop over n
- do {
- // Set order of current spherical harmonic.
- int m = 0;
- // Loop over m
- do {
- // Compute magnitude of current spherical harmonic coefficient.
- final double cnm = harmonics.getUnnormalizedCnm(n, m);
- final double snm = harmonics.getUnnormalizedSnm(n, m);
- final double csnm = FastMath.hypot(cnm, snm);
- if (csnm == 0.) break;
- // Set magnitude of last spherical harmonic term.
- double lastTerm = 0.;
- // Set current power of e and related indices.
- int nsld2 = (n - maxEccPowMeanElements - 1) / 2;
- int l = n - 2 * nsld2;
- // Loop over l
- double term = 0.;
- do {
- // Compute magnitude of current spherical harmonic term.
- if (m < l) {
- term = csnm * xmuran *
- (fact[n - l] / (fact[n - m])) *
- (fact[n + l] / (fact[nsld2] * fact[nsld2 + l])) *
- eccPwr[l] * UpperBounds.getDnl(XX, chiPwr[l], n, l) *
- (UpperBounds.getRnml(gamma, n, l, m, 1, I) + UpperBounds.getRnml(gamma, n, l, m, -1, I));
- } else {
- term = csnm * xmuran *
- (fact[n + m] / (fact[nsld2] * fact[nsld2 + l])) *
- eccPwr[l] * hafPwr[m - l] * UpperBounds.getDnl(XX, chiPwr[l], n, l) *
- (UpperBounds.getRnml(gamma, n, m, l, 1, I) + UpperBounds.getRnml(gamma, n, m, l, -1, I));
- }
- // Is the current spherical harmonic term bigger than the truncation tolerance ?
- if (term >= TRUNCATION_TOLERANCE) {
- maxEccPowMeanElements = l;
- } else {
- // Is the current term smaller than the last term ?
- if (term < lastTerm) {
- break;
- }
- }
- // Proceed to next power of e.
- lastTerm = term;
- l += 2;
- nsld2--;
- } while (l < n);
- // Is the current spherical harmonic term bigger than the truncation tolerance ?
- if (term >= TRUNCATION_TOLERANCE) {
- maxEccPowMeanElements = FastMath.min(maxDegree - 2, maxEccPowMeanElements);
- return;
- }
- // Proceed to next order.
- m++;
- } while (m <= FastMath.min(n, maxOrder));
- // Proceed to next degree.
- xmuran *= ax2or;
- n--;
- } while (n > maxEccPowMeanElements + 2);
- maxEccPowMeanElements = FastMath.min(maxDegree - 2, maxEccPowMeanElements);
- }
- }
- /** {@inheritDoc} */
- @Override
- public void initializeStep(final AuxiliaryElements aux) throws OrekitException {
- // Equinoctial elements
- a = aux.getSma();
- k = aux.getK();
- h = aux.getH();
- q = aux.getQ();
- p = aux.getP();
- // Eccentricity
- ecc = aux.getEcc();
- // Direction cosines
- alpha = aux.getAlpha();
- beta = aux.getBeta();
- gamma = aux.getGamma();
- // Equinoctial coefficients
- A = aux.getA();
- B = aux.getB();
- C = aux.getC();
- // Χ = 1 / B
- X = 1. / B;
- XX = X * X;
- XXX = X * XX;
- // 1 / AB
- ooAB = 1. / (A * B);
- // B / A
- BoA = B / A;
- // -C / 2AB
- mCo2AB = -C * ooAB / 2.;
- // B / A(1 + B)
- BoABpo = BoA / (1. + B);
- // -2 * a / A
- m2aoA = -2 * a / A;
- // μ / a
- muoa = provider.getMu() / a;
- // R / a
- roa = provider.getAe() / a;
- // Mean motion
- meanMotion = aux.getMeanMotion();
- }
- /** {@inheritDoc} */
- @Override
- public double[] getMeanElementRate(final SpacecraftState spacecraftState) throws OrekitException {
- return computeMeanElementRates(spacecraftState.getDate());
- }
- /** {@inheritDoc} */
- @Override
- public EventDetector[] getEventsDetectors() {
- return null;
- }
- /** Compute the mean element rates.
- * @param date current date
- * @return the mean element rates
- * @throws OrekitException if an error occurs in hansen computation
- */
- private double[] computeMeanElementRates(final AbsoluteDate date) throws OrekitException {
- // Compute potential derivative
- final double[] dU = computeUDerivatives(date);
- final double dUda = dU[0];
- final double dUdk = dU[1];
- final double dUdh = dU[2];
- final double dUdAl = dU[3];
- final double dUdBe = dU[4];
- final double dUdGa = dU[5];
- // Compute cross derivatives [Eq. 2.2-(8)]
- // U(alpha,gamma) = alpha * dU/dgamma - gamma * dU/dalpha
- final double UAlphaGamma = alpha * dUdGa - gamma * dUdAl;
- // U(beta,gamma) = beta * dU/dgamma - gamma * dU/dbeta
- final double UBetaGamma = beta * dUdGa - gamma * dUdBe;
- // Common factor
- final double pUAGmIqUBGoAB = (p * UAlphaGamma - I * q * UBetaGamma) * ooAB;
- // Compute mean elements rates [Eq. 3.1-(1)]
- final double da = 0.;
- final double dh = BoA * dUdk + k * pUAGmIqUBGoAB;
- final double dk = -BoA * dUdh - h * pUAGmIqUBGoAB;
- final double dp = mCo2AB * UBetaGamma;
- final double dq = mCo2AB * UAlphaGamma * I;
- final double dM = m2aoA * dUda + BoABpo * (h * dUdh + k * dUdk) + pUAGmIqUBGoAB;
- return new double[] {da, dk, dh, dq, dp, dM};
- }
- /** Compute the derivatives of the gravitational potential U [Eq. 3.1-(6)].
- * <p>
- * The result is the array
- * [dU/da, dU/dk, dU/dh, dU/dα, dU/dβ, dU/dγ]
- * </p>
- * @param date current date
- * @return potential derivatives
- * @throws OrekitException if an error occurs in hansen computation
- */
- private double[] computeUDerivatives(final AbsoluteDate date) throws OrekitException {
- final UnnormalizedSphericalHarmonics harmonics = provider.onDate(date);
- //Reset U
- U = 0.;
- // Gs and Hs coefficients
- final double[][] GsHs = CoefficientsFactory.computeGsHs(k, h, alpha, beta, maxEccPowMeanElements);
- // Qns coefficients
- final double[][] Qns = CoefficientsFactory.computeQns(gamma, maxDegree, maxEccPowMeanElements);
- final double[] roaPow = new double[maxDegree + 1];
- roaPow[0] = 1.;
- for (int i = 1; i <= maxDegree; i++) {
- roaPow[i] = roa * roaPow[i - 1];
- }
- // Potential derivatives
- double dUda = 0.;
- double dUdk = 0.;
- double dUdh = 0.;
- double dUdAl = 0.;
- double dUdBe = 0.;
- double dUdGa = 0.;
- for (int s = 0; s <= maxEccPowMeanElements; s++) {
- //Initialize the Hansen roots
- this.hansenObjects[s].computeInitValues(X);
- // Get the current Gs coefficient
- final double gs = GsHs[0][s];
- // Compute Gs partial derivatives from 3.1-(9)
- double dGsdh = 0.;
- double dGsdk = 0.;
- double dGsdAl = 0.;
- double dGsdBe = 0.;
- if (s > 0) {
- // First get the G(s-1) and the H(s-1) coefficients
- final double sxgsm1 = s * GsHs[0][s - 1];
- final double sxhsm1 = s * GsHs[1][s - 1];
- // Then compute derivatives
- dGsdh = beta * sxgsm1 - alpha * sxhsm1;
- dGsdk = alpha * sxgsm1 + beta * sxhsm1;
- dGsdAl = k * sxgsm1 - h * sxhsm1;
- dGsdBe = h * sxgsm1 + k * sxhsm1;
- }
- // Kronecker symbol (2 - delta(0,s))
- final double d0s = (s == 0) ? 1 : 2;
- for (int n = s + 2; n <= maxDegree; n++) {
- // (n - s) must be even
- if ((n - s) % 2 == 0) {
- //Extract data from previous computation :
- final double kns = this.hansenObjects[s].getValue(-n - 1, X);
- final double dkns = this.hansenObjects[s].getDerivative(-n - 1, X);
- final double vns = Vns.get(new NSKey(n, s));
- final double coef0 = d0s * roaPow[n] * vns * -harmonics.getUnnormalizedCnm(n, 0);
- final double coef1 = coef0 * Qns[n][s];
- final double coef2 = coef1 * kns;
- final double coef3 = coef2 * gs;
- // dQns/dGamma = Q(n, s + 1) from Equation 3.1-(8)
- final double dqns = Qns[n][s + 1];
- // Compute U
- U += coef3;
- // Compute dU / da :
- dUda += coef3 * (n + 1);
- // Compute dU / dEx
- dUdk += coef1 * (kns * dGsdk + k * XXX * gs * dkns);
- // Compute dU / dEy
- dUdh += coef1 * (kns * dGsdh + h * XXX * gs * dkns);
- // Compute dU / dAlpha
- dUdAl += coef2 * dGsdAl;
- // Compute dU / dBeta
- dUdBe += coef2 * dGsdBe;
- // Compute dU / dGamma
- dUdGa += coef0 * kns * dqns * gs;
- }
- }
- }
- // Multiply by -(μ / a)
- U *= -muoa;
- return new double[] {
- dUda * muoa / a,
- dUdk * -muoa,
- dUdh * -muoa,
- dUdAl * -muoa,
- dUdBe * -muoa,
- dUdGa * -muoa
- };
- }
- /** {@inheritDoc} */
- @Override
- public void registerAttitudeProvider(final AttitudeProvider attitudeProvider) {
- //nothing is done since this contribution is not sensitive to attitude
- }
- /** Check if an index is within the accepted interval.
- *
- * @param index the index to check
- * @param lowerBound the lower bound of the interval
- * @param upperBound the upper bound of the interval
- * @return true if the index is between the lower and upper bounds, false otherwise
- */
- private boolean isBetween(final int index, final int lowerBound, final int upperBound) {
- return index >= lowerBound && index <= upperBound;
- }
- /** {@inheritDoc} */
- @Override
- public void updateShortPeriodTerms(final SpacecraftState... meanStates)
- throws OrekitException {
- final Slot slot = zonalSPCoefs.createSlot(meanStates);
- for (final SpacecraftState meanState : meanStates) {
- initializeStep(new AuxiliaryElements(meanState.getOrbit(), I));
- // h * k.
- this.hk = h * k;
- // k² - h².
- this.k2mh2 = k * k - h * h;
- // (k² - h²) / 2.
- this.k2mh2o2 = k2mh2 / 2.;
- // 1 / (n² * a²) = 1 / (n * A)
- this.oon2a2 = 1 / (A * meanMotion);
- // 1 / (n² * a) = a / (n * A)
- this.oon2a = a * oon2a2;
- // χ³ / (n² * a)
- this.x3on2a = XXX * oon2a;
- // χ / (n² * a²)
- this.xon2a2 = X * oon2a2;
- // (C * χ) / ( 2 * n² * a² )
- this.cxo2n2a2 = xon2a2 * C / 2;
- // (χ²) / (n² * a² * (χ + 1 ) )
- this.x2on2a2xp1 = xon2a2 * X / (X + 1);
- // B * B
- this.BB = B * B;
- // Compute rhoj and sigmaj
- final double[][] rhoSigma = computeRhoSigmaCoefficients(meanState.getDate(), slot);
- // Compute Di
- computeDiCoefficients(meanState.getDate(), slot);
- // generate the Cij and Sij coefficients
- final FourierCjSjCoefficients cjsj = new FourierCjSjCoefficients(meanState.getDate(),
- maxDegreeShortPeriodics,
- maxEccPowShortPeriodics,
- maxFrequencyShortPeriodics);
- computeCijSijCoefficients(meanState.getDate(), slot, cjsj, rhoSigma);
- }
- }
- /** Generate the values for the D<sub>i</sub> coefficients.
- * @param date target date
- * @param slot slot to which the coefficients belong
- * @throws OrekitException if an error occurs during the coefficient computation
- */
- private void computeDiCoefficients(final AbsoluteDate date, final Slot slot)
- throws OrekitException {
- final double[] meanElementRates = computeMeanElementRates(date);
- final double[] currentDi = new double[6];
- // Add the coefficients to the interpolation grid
- for (int i = 0; i < 6; i++) {
- currentDi[i] = meanElementRates[i] / meanMotion;
- if (i == 5) {
- currentDi[i] += -1.5 * 2 * U * oon2a2;
- }
- }
- slot.di.addGridPoint(date, currentDi);
- }
- /**
- * Generate the values for the C<sub>i</sub><sup>j</sup> and the S<sub>i</sub><sup>j</sup> coefficients.
- * @param date date of computation
- * @param slot slot to which the coefficients belong
- * @param cjsj Fourier coefficients
- * @param rhoSigma ρ<sub>j</sub> and σ<sub>j</sub>
- */
- private void computeCijSijCoefficients(final AbsoluteDate date, final Slot slot,
- final FourierCjSjCoefficients cjsj,
- final double[][] rhoSigma) {
- final int nMax = maxDegreeShortPeriodics;
- // The C<sub>i</sub>⁰ coefficients
- final double[] currentCi0 = new double[] {0., 0., 0., 0., 0., 0.};
- for (int j = 1; j < slot.cij.length; j++) {
- // Create local arrays
- final double[] currentCij = new double[] {0., 0., 0., 0., 0., 0.};
- final double[] currentSij = new double[] {0., 0., 0., 0., 0., 0.};
- // j == 1
- if (j == 1) {
- final double coef1 = 4 * k * U - hk * cjsj.getCj(1) + k2mh2o2 * cjsj.getSj(1);
- final double coef2 = 4 * h * U + k2mh2o2 * cjsj.getCj(1) + hk * cjsj.getSj(1);
- final double coef3 = (k * cjsj.getCj(1) + h * cjsj.getSj(1)) / 4.;
- final double coef4 = (8 * U - h * cjsj.getCj(1) + k * cjsj.getSj(1)) / 4.;
- //Coefficients for a
- currentCij[0] += coef1;
- currentSij[0] += coef2;
- //Coefficients for k
- currentCij[1] += coef4;
- currentSij[1] += coef3;
- //Coefficients for h
- currentCij[2] -= coef3;
- currentSij[2] += coef4;
- //Coefficients for λ
- currentCij[5] -= coef2 / 2;
- currentSij[5] += coef1 / 2;
- }
- // j == 2
- if (j == 2) {
- final double coef1 = k2mh2 * U;
- final double coef2 = 2 * hk * U;
- final double coef3 = h * U / 2;
- final double coef4 = k * U / 2;
- //Coefficients for a
- currentCij[0] += coef1;
- currentSij[0] += coef2;
- //Coefficients for k
- currentCij[1] += coef4;
- currentSij[1] += coef3;
- //Coefficients for h
- currentCij[2] -= coef3;
- currentSij[2] += coef4;
- //Coefficients for λ
- currentCij[5] -= coef2 / 2;
- currentSij[5] += coef1 / 2;
- }
- // j between 1 and 2N-3
- if (isBetween(j, 1, 2 * nMax - 3) && j + 2 < cjsj.jMax) {
- final double coef1 = ( j + 2 ) * (-hk * cjsj.getCj(j + 2) + k2mh2o2 * cjsj.getSj(j + 2));
- final double coef2 = ( j + 2 ) * (k2mh2o2 * cjsj.getCj(j + 2) + hk * cjsj.getSj(j + 2));
- final double coef3 = ( j + 2 ) * (k * cjsj.getCj(j + 2) + h * cjsj.getSj(j + 2)) / 4;
- final double coef4 = ( j + 2 ) * (h * cjsj.getCj(j + 2) - k * cjsj.getSj(j + 2)) / 4;
- //Coefficients for a
- currentCij[0] += coef1;
- currentSij[0] -= coef2;
- //Coefficients for k
- currentCij[1] += -coef4;
- currentSij[1] -= coef3;
- //Coefficients for h
- currentCij[2] -= coef3;
- currentSij[2] += coef4;
- //Coefficients for λ
- currentCij[5] -= coef2 / 2;
- currentSij[5] += -coef1 / 2;
- }
- // j between 1 and 2N-2
- if (isBetween(j, 1, 2 * nMax - 2) && j + 1 < cjsj.jMax) {
- final double coef1 = 2 * ( j + 1 ) * (-h * cjsj.getCj(j + 1) + k * cjsj.getSj(j + 1));
- final double coef2 = 2 * ( j + 1 ) * (k * cjsj.getCj(j + 1) + h * cjsj.getSj(j + 1));
- final double coef3 = ( j + 1 ) * cjsj.getCj(j + 1);
- final double coef4 = ( j + 1 ) * cjsj.getSj(j + 1);
- //Coefficients for a
- currentCij[0] += coef1;
- currentSij[0] -= coef2;
- //Coefficients for k
- currentCij[1] += coef4;
- currentSij[1] -= coef3;
- //Coefficients for h
- currentCij[2] -= coef3;
- currentSij[2] -= coef4;
- //Coefficients for λ
- currentCij[5] -= coef2 / 2;
- currentSij[5] += -coef1 / 2;
- }
- // j between 2 and 2N
- if (isBetween(j, 2, 2 * nMax) && j - 1 < cjsj.jMax) {
- final double coef1 = 2 * ( j - 1 ) * (h * cjsj.getCj(j - 1) + k * cjsj.getSj(j - 1));
- final double coef2 = 2 * ( j - 1 ) * (k * cjsj.getCj(j - 1) - h * cjsj.getSj(j - 1));
- final double coef3 = ( j - 1 ) * cjsj.getCj(j - 1);
- final double coef4 = ( j - 1 ) * cjsj.getSj(j - 1);
- //Coefficients for a
- currentCij[0] += coef1;
- currentSij[0] -= coef2;
- //Coefficients for k
- currentCij[1] += coef4;
- currentSij[1] -= coef3;
- //Coefficients for h
- currentCij[2] += coef3;
- currentSij[2] += coef4;
- //Coefficients for λ
- currentCij[5] += coef2 / 2;
- currentSij[5] += coef1 / 2;
- }
- // j between 3 and 2N + 1
- if (isBetween(j, 3, 2 * nMax + 1) && j - 2 < cjsj.jMax) {
- final double coef1 = ( j - 2 ) * (hk * cjsj.getCj(j - 2) + k2mh2o2 * cjsj.getSj(j - 2));
- final double coef2 = ( j - 2 ) * (-k2mh2o2 * cjsj.getCj(j - 2) + hk * cjsj.getSj(j - 2));
- final double coef3 = ( j - 2 ) * (k * cjsj.getCj(j - 2) - h * cjsj.getSj(j - 2)) / 4;
- final double coef4 = ( j - 2 ) * (h * cjsj.getCj(j - 2) + k * cjsj.getSj(j - 2)) / 4;
- final double coef5 = ( j - 2 ) * (k2mh2o2 * cjsj.getCj(j - 2) - hk * cjsj.getSj(j - 2));
- //Coefficients for a
- currentCij[0] += coef1;
- currentSij[0] += coef2;
- //Coefficients for k
- currentCij[1] += coef4;
- currentSij[1] += -coef3;
- //Coefficients for h
- currentCij[2] += coef3;
- currentSij[2] += coef4;
- //Coefficients for λ
- currentCij[5] += coef5 / 2;
- currentSij[5] += coef1 / 2;
- }
- //multiply by the common factor
- //for a (i == 0) -> χ³ / (n² * a)
- currentCij[0] *= this.x3on2a;
- currentSij[0] *= this.x3on2a;
- //for k (i == 1) -> χ / (n² * a²)
- currentCij[1] *= this.xon2a2;
- currentSij[1] *= this.xon2a2;
- //for h (i == 2) -> χ / (n² * a²)
- currentCij[2] *= this.xon2a2;
- currentSij[2] *= this.xon2a2;
- //for λ (i == 5) -> (χ²) / (n² * a² * (χ + 1 ) )
- currentCij[5] *= this.x2on2a2xp1;
- currentSij[5] *= this.x2on2a2xp1;
- // j is between 1 and 2 * N - 1
- if (isBetween(j, 1, 2 * nMax - 1) && j < cjsj.jMax) {
- // Compute cross derivatives
- // Cj(alpha,gamma) = alpha * dC/dgamma - gamma * dC/dalpha
- final double CjAlphaGamma = alpha * cjsj.getdCjdGamma(j) - gamma * cjsj.getdCjdAlpha(j);
- // Cj(alpha,beta) = alpha * dC/dbeta - beta * dC/dalpha
- final double CjAlphaBeta = alpha * cjsj.getdCjdBeta(j) - beta * cjsj.getdCjdAlpha(j);
- // Cj(beta,gamma) = beta * dC/dgamma - gamma * dC/dbeta
- final double CjBetaGamma = beta * cjsj.getdCjdGamma(j) - gamma * cjsj.getdCjdBeta(j);
- // Cj(h,k) = h * dC/dk - k * dC/dh
- final double CjHK = h * cjsj.getdCjdK(j) - k * cjsj.getdCjdH(j);
- // Sj(alpha,gamma) = alpha * dS/dgamma - gamma * dS/dalpha
- final double SjAlphaGamma = alpha * cjsj.getdSjdGamma(j) - gamma * cjsj.getdSjdAlpha(j);
- // Sj(alpha,beta) = alpha * dS/dbeta - beta * dS/dalpha
- final double SjAlphaBeta = alpha * cjsj.getdSjdBeta(j) - beta * cjsj.getdSjdAlpha(j);
- // Sj(beta,gamma) = beta * dS/dgamma - gamma * dS/dbeta
- final double SjBetaGamma = beta * cjsj.getdSjdGamma(j) - gamma * cjsj.getdSjdBeta(j);
- // Sj(h,k) = h * dS/dk - k * dS/dh
- final double SjHK = h * cjsj.getdSjdK(j) - k * cjsj.getdSjdH(j);
- //Coefficients for a
- final double coef1 = this.x3on2a * (3 - BB) * j;
- currentCij[0] += coef1 * cjsj.getSj(j);
- currentSij[0] -= coef1 * cjsj.getCj(j);
- //Coefficients for k and h
- final double coef2 = p * CjAlphaGamma - I * q * CjBetaGamma;
- final double coef3 = p * SjAlphaGamma - I * q * SjBetaGamma;
- currentCij[1] -= this.xon2a2 * (h * coef2 + BB * cjsj.getdCjdH(j) - 1.5 * k * j * cjsj.getSj(j));
- currentSij[1] -= this.xon2a2 * (h * coef3 + BB * cjsj.getdSjdH(j) + 1.5 * k * j * cjsj.getCj(j));
- currentCij[2] += this.xon2a2 * (k * coef2 + BB * cjsj.getdCjdK(j) + 1.5 * h * j * cjsj.getSj(j));
- currentSij[2] += this.xon2a2 * (k * coef3 + BB * cjsj.getdSjdK(j) - 1.5 * h * j * cjsj.getCj(j));
- //Coefficients for q and p
- final double coef4 = CjHK - CjAlphaBeta - j * cjsj.getSj(j);
- final double coef5 = SjHK - SjAlphaBeta + j * cjsj.getCj(j);
- currentCij[3] = this.cxo2n2a2 * (-I * CjAlphaGamma + q * coef4);
- currentSij[3] = this.cxo2n2a2 * (-I * SjAlphaGamma + q * coef5);
- currentCij[4] = this.cxo2n2a2 * (-CjBetaGamma + p * coef4);
- currentSij[4] = this.cxo2n2a2 * (-SjBetaGamma + p * coef5);
- //Coefficients for λ
- final double coef6 = h * cjsj.getdCjdH(j) + k * cjsj.getdCjdK(j);
- final double coef7 = h * cjsj.getdSjdH(j) + k * cjsj.getdSjdK(j);
- currentCij[5] += this.oon2a2 * (-2 * a * cjsj.getdCjdA(j) + coef6 / (X + 1) + X * coef2 - 3 * cjsj.getCj(j));
- currentSij[5] += this.oon2a2 * (-2 * a * cjsj.getdSjdA(j) + coef7 / (X + 1) + X * coef3 - 3 * cjsj.getSj(j));
- }
- for (int i = 0; i < 6; i++) {
- //Add the current coefficients contribution to C<sub>i</sub>⁰
- currentCi0[i] -= currentCij[i] * rhoSigma[j][0] + currentSij[i] * rhoSigma[j][1];
- }
- // Add the coefficients to the interpolation grid
- slot.cij[j].addGridPoint(date, currentCij);
- slot.sij[j].addGridPoint(date, currentSij);
- }
- //Add C<sub>i</sub>⁰ to the interpolation grid
- slot.cij[0].addGridPoint(date, currentCi0);
- }
- /**
- * Compute the auxiliary quantities ρ<sub>j</sub> and σ<sub>j</sub>.
- * <p>
- * The expressions used are equations 2.5.3-(4) from the Danielson paper. <br/>
- * ρ<sub>j</sub> = (1+jB)(-b)<sup>j</sup>C<sub>j</sub>(k, h) <br/>
- * σ<sub>j</sub> = (1+jB)(-b)<sup>j</sup>S<sub>j</sub>(k, h) <br/>
- * </p>
- * @param date target date
- * @param slot slot to which the coefficients belong
- * @return array containing ρ<sub>j</sub> and σ<sub>j</sub>
- */
- private double[][] computeRhoSigmaCoefficients(final AbsoluteDate date, final Slot slot) {
- final CjSjCoefficient cjsjKH = new CjSjCoefficient(k, h);
- final double b = 1. / (1 + B);
- // (-b)<sup>j</sup>
- double mbtj = 1;
- final double[][] rhoSigma = new double[slot.cij.length][2];
- for (int j = 1; j < rhoSigma.length; j++) {
- //Compute current rho and sigma;
- mbtj *= -b;
- final double coef = (1 + j * B) * mbtj;
- final double rho = coef * cjsjKH.getCj(j);
- final double sigma = coef * cjsjKH.getSj(j);
- // Add the coefficients to the interpolation grid
- rhoSigma[j][0] = rho;
- rhoSigma[j][1] = sigma;
- }
- return rhoSigma;
- }
- /** The coefficients used to compute the short-periodic zonal contribution.
- *
- * <p>
- * Those coefficients are given in Danielson paper by expressions 4.1-(20) to 4.1.-(25)
- * </p>
- * <p>
- * The coefficients are: <br>
- * - C<sub>i</sub><sup>j</sup> and S<sub>i</sub><sup>j</sup> <br>
- * - ρ<sub>j</sub> and σ<sub>j</sub> <br>
- * - C<sub>i</sub>⁰
- * </p>
- *
- * @author Lucian Barbulescu
- */
- private static class ZonalShortPeriodicCoefficients implements ShortPeriodTerms {
- /** Serializable UID. */
- private static final long serialVersionUID = 20151118L;
- /** Maximum value for j index. */
- private final int maxFrequencyShortPeriodics;
- /** Number of points used in the interpolation process. */
- private final int interpolationPoints;
- /** All coefficients slots. */
- private final transient TimeSpanMap<Slot> slots;
- /** Constructor.
- * @param maxFrequencyShortPeriodics maximum value for j index
- * @param interpolationPoints number of points used in the interpolation process
- * @param slots all coefficients slots
- */
- ZonalShortPeriodicCoefficients(final int maxFrequencyShortPeriodics, final int interpolationPoints,
- final TimeSpanMap<Slot> slots) {
- // Save parameters
- this.maxFrequencyShortPeriodics = maxFrequencyShortPeriodics;
- this.interpolationPoints = interpolationPoints;
- this.slots = slots;
- }
- /** Get the slot valid for some date.
- * @param meanStates mean states defining the slot
- * @return slot valid at the specified date
- */
- public Slot createSlot(final SpacecraftState... meanStates) {
- final Slot slot = new Slot(maxFrequencyShortPeriodics, interpolationPoints);
- final AbsoluteDate first = meanStates[0].getDate();
- final AbsoluteDate last = meanStates[meanStates.length - 1].getDate();
- if (first.compareTo(last) <= 0) {
- slots.addValidAfter(slot, first);
- } else {
- slots.addValidBefore(slot, first);
- }
- return slot;
- }
- /** {@inheritDoc} */
- @Override
- public double[] value(final Orbit meanOrbit) {
- // select the coefficients slot
- final Slot slot = slots.get(meanOrbit.getDate());
- // Get the True longitude L
- final double L = meanOrbit.getLv();
- // Compute the center
- final double center = L - meanOrbit.getLM();
- // Initialize short periodic variations
- final double[] shortPeriodicVariation = slot.cij[0].value(meanOrbit.getDate());
- final double[] d = slot.di.value(meanOrbit.getDate());
- for (int i = 0; i < 6; i++) {
- shortPeriodicVariation[i] += center * d[i];
- }
- for (int j = 1; j <= maxFrequencyShortPeriodics; j++) {
- final double[] c = slot.cij[j].value(meanOrbit.getDate());
- final double[] s = slot.sij[j].value(meanOrbit.getDate());
- final double cos = FastMath.cos(j * L);
- final double sin = FastMath.sin(j * L);
- for (int i = 0; i < 6; i++) {
- // add corresponding term to the short periodic variation
- shortPeriodicVariation[i] += c[i] * cos;
- shortPeriodicVariation[i] += s[i] * sin;
- }
- }
- return shortPeriodicVariation;
- }
- /** {@inheritDoc} */
- @Override
- public String getCoefficientsKeyPrefix() {
- return "DSST-central-body-zonal-";
- }
- /** {@inheritDoc}
- * <p>
- * For zonal terms contributions,there are maxJ cj coefficients,
- * maxJ sj coefficients and 2 dj coefficients, where maxJ depends
- * on the orbit. The j index is the integer multiplier for the true
- * longitude argument in the cj and sj coefficients and the degree
- * in the polynomial dj coefficients.
- * </p>
- */
- @Override
- public Map<String, double[]> getCoefficients(final AbsoluteDate date, final Set<String> selected)
- throws OrekitException {
- // select the coefficients slot
- final Slot slot = slots.get(date);
- final Map<String, double[]> coefficients = new HashMap<String, double[]>(2 * maxFrequencyShortPeriodics + 2);
- storeIfSelected(coefficients, selected, slot.cij[0].value(date), "d", 0);
- storeIfSelected(coefficients, selected, slot.di.value(date), "d", 1);
- for (int j = 1; j <= maxFrequencyShortPeriodics; j++) {
- storeIfSelected(coefficients, selected, slot.cij[j].value(date), "c", j);
- storeIfSelected(coefficients, selected, slot.sij[j].value(date), "s", j);
- }
- return coefficients;
- }
- /** Put a coefficient in a map if selected.
- * @param map map to populate
- * @param selected set of coefficients that should be put in the map
- * (empty set means all coefficients are selected)
- * @param value coefficient value
- * @param id coefficient identifier
- * @param indices list of coefficient indices
- */
- private void storeIfSelected(final Map<String, double[]> map, final Set<String> selected,
- final double[] value, final String id, final int... indices) {
- final StringBuilder keyBuilder = new StringBuilder(getCoefficientsKeyPrefix());
- keyBuilder.append(id);
- for (int index : indices) {
- keyBuilder.append('[').append(index).append(']');
- }
- final String key = keyBuilder.toString();
- if (selected.isEmpty() || selected.contains(key)) {
- map.put(key, value);
- }
- }
- /** Replace the instance with a data transfer object for serialization.
- * @return data transfer object that will be serialized
- * @exception NotSerializableException if an additional state provider is not serializable
- */
- private Object writeReplace() throws NotSerializableException {
- // slots transitions
- final SortedSet<TimeSpanMap.Transition<Slot>> transitions = slots.getTransitions();
- final AbsoluteDate[] transitionDates = new AbsoluteDate[transitions.size()];
- final Slot[] allSlots = new Slot[transitions.size() + 1];
- int i = 0;
- for (final TimeSpanMap.Transition<Slot> transition : transitions) {
- if (i == 0) {
- // slot before the first transition
- allSlots[i] = transition.getBefore();
- }
- if (i < transitionDates.length) {
- transitionDates[i] = transition.getDate();
- allSlots[++i] = transition.getAfter();
- }
- }
- return new DataTransferObject(maxFrequencyShortPeriodics, interpolationPoints,
- transitionDates, allSlots);
- }
- /** Internal class used only for serialization. */
- private static class DataTransferObject implements Serializable {
- /** Serializable UID. */
- private static final long serialVersionUID = 20170420L;
- /** Maximum value for j index. */
- private final int maxFrequencyShortPeriodics;
- /** Number of points used in the interpolation process. */
- private final int interpolationPoints;
- /** Transitions dates. */
- private final AbsoluteDate[] transitionDates;
- /** All slots. */
- private final Slot[] allSlots;
- /** Simple constructor.
- * @param maxFrequencyShortPeriodics maximum value for j index
- * @param interpolationPoints number of points used in the interpolation process
- * @param transitionDates transitions dates
- * @param allSlots all slots
- */
- DataTransferObject(final int maxFrequencyShortPeriodics, final int interpolationPoints,
- final AbsoluteDate[] transitionDates, final Slot[] allSlots) {
- this.maxFrequencyShortPeriodics = maxFrequencyShortPeriodics;
- this.interpolationPoints = interpolationPoints;
- this.transitionDates = transitionDates;
- this.allSlots = allSlots;
- }
- /** Replace the deserialized data transfer object with a {@link ZonalShortPeriodicCoefficients}.
- * @return replacement {@link ZonalShortPeriodicCoefficients}
- */
- private Object readResolve() {
- final TimeSpanMap<Slot> slots = new TimeSpanMap<Slot>(allSlots[0]);
- for (int i = 0; i < transitionDates.length; ++i) {
- slots.addValidAfter(allSlots[i + 1], transitionDates[i]);
- }
- return new ZonalShortPeriodicCoefficients(maxFrequencyShortPeriodics,
- interpolationPoints,
- slots);
- }
- }
- }
- /** Compute the C<sup>j</sup> and the S<sup>j</sup> coefficients.
- * <p>
- * Those coefficients are given in Danielson paper by expressions 4.1-(13) to 4.1.-(16b)
- * </p>
- */
- private class FourierCjSjCoefficients {
- /** The G<sub>js</sub>, H<sub>js</sub>, I<sub>js</sub> and J<sub>js</sub> polynomials. */
- private final GHIJjsPolynomials ghijCoef;
- /** L<sub>n</sub><sup>s</sup>(γ). */
- private final LnsCoefficients lnsCoef;
- /** Maximum possible value for n. */
- private final int nMax;
- /** Maximum possible value for s. */
- private final int sMax;
- /** Maximum possible value for j. */
- private final int jMax;
- /** The C<sup>j</sup> coefficients and their derivatives.
- * <p>
- * Each column of the matrix contains the following values: <br/>
- * - C<sup>j</sup> <br/>
- * - dC<sup>j</sup> / da <br/>
- * - dC<sup>j</sup> / dh <br/>
- * - dC<sup>j</sup> / dk <br/>
- * - dC<sup>j</sup> / dα <br/>
- * - dC<sup>j</sup> / dβ <br/>
- * - dC<sup>j</sup> / dγ <br/>
- * </p>
- */
- private final double[][] cCoef;
- /** The S<sup>j</sup> coefficients and their derivatives.
- * <p>
- * Each column of the matrix contains the following values: <br/>
- * - S<sup>j</sup> <br/>
- * - dS<sup>j</sup> / da <br/>
- * - dS<sup>j</sup> / dh <br/>
- * - dS<sup>j</sup> / dk <br/>
- * - dS<sup>j</sup> / dα <br/>
- * - dS<sup>j</sup> / dβ <br/>
- * - dS<sup>j</sup> / dγ <br/>
- * </p>
- */
- private final double[][] sCoef;
- /** h * Χ³. */
- private final double hXXX;
- /** k * Χ³. */
- private final double kXXX;
- /** Create a set of C<sup>j</sup> and the S<sup>j</sup> coefficients.
- * @param date the current date
- * @param nMax maximum possible value for n
- * @param sMax maximum possible value for s
- * @param jMax maximum possible value for j
- * @throws OrekitException if an error occurs while generating the coefficients
- */
- FourierCjSjCoefficients(final AbsoluteDate date,
- final int nMax, final int sMax, final int jMax)
- throws OrekitException {
- this.ghijCoef = new GHIJjsPolynomials(k, h, alpha, beta);
- // Qns coefficients
- final double[][] Qns = CoefficientsFactory.computeQns(gamma, nMax, nMax);
- this.lnsCoef = new LnsCoefficients(nMax, nMax, Qns, Vns, roa);
- this.nMax = nMax;
- this.sMax = sMax;
- this.jMax = jMax;
- // compute the common factors that depends on the mean elements
- this.hXXX = h * XXX;
- this.kXXX = k * XXX;
- this.cCoef = new double[7][jMax + 1];
- this.sCoef = new double[7][jMax + 1];
- for (int s = 0; s <= sMax; s++) {
- //Initialise the Hansen roots
- hansenObjects[s].computeInitValues(X);
- }
- generateCoefficients(date);
- }
- /** Generate all coefficients.
- * @param date the current date
- * @throws OrekitException if an error occurs while generating the coefficients
- */
- private void generateCoefficients(final AbsoluteDate date) throws OrekitException {
- final UnnormalizedSphericalHarmonics harmonics = provider.onDate(date);
- for (int j = 1; j <= jMax; j++) {
- //init arrays
- for (int i = 0; i <= 6; i++) {
- cCoef[i][j] = 0.;
- sCoef[i][j] = 0.;
- }
- if (isBetween(j, 1, nMax - 1)) {
- //compute first double sum where s: j -> N-1 and n: s+1 -> N
- for (int s = j; s <= FastMath.min(nMax - 1, sMax); s++) {
- // j - s
- final int jms = j - s;
- // Kronecker symbols (2 - delta(0,s-j)) and (2 - delta(0,j-s))
- final int d0smj = (s == j) ? 1 : 2;
- for (int n = s + 1; n <= nMax; n++) {
- // if n + (j-s) is odd, then the term is equal to zero due to the factor Vn,s-j
- if ((n + jms) % 2 == 0) {
- // (2 - delta(0,s-j)) * J<sub>n</sub> * K₀<sup>-n-1,s</sup> * L<sub>n</sub><sup>j-s</sup>
- final double lns = lnsCoef.getLns(n, -jms);
- final double dlns = lnsCoef.getdLnsdGamma(n, -jms);
- final double hjs = ghijCoef.getHjs(s, -jms);
- final double dHjsdh = ghijCoef.getdHjsdh(s, -jms);
- final double dHjsdk = ghijCoef.getdHjsdk(s, -jms);
- final double dHjsdAlpha = ghijCoef.getdHjsdAlpha(s, -jms);
- final double dHjsdBeta = ghijCoef.getdHjsdBeta(s, -jms);
- final double gjs = ghijCoef.getGjs(s, -jms);
- final double dGjsdh = ghijCoef.getdGjsdh(s, -jms);
- final double dGjsdk = ghijCoef.getdGjsdk(s, -jms);
- final double dGjsdAlpha = ghijCoef.getdGjsdAlpha(s, -jms);
- final double dGjsdBeta = ghijCoef.getdGjsdBeta(s, -jms);
- // J<sub>n</sub>
- final double jn = -harmonics.getUnnormalizedCnm(n, 0);
- // K₀<sup>-n-1,s</sup>
- final double kns = hansenObjects[s].getValue(-n - 1, X);
- final double dkns = hansenObjects[s].getDerivative(-n - 1, X);
- final double coef0 = d0smj * jn;
- final double coef1 = coef0 * lns;
- final double coef2 = coef1 * kns;
- final double coef3 = coef2 * hjs;
- final double coef4 = coef2 * gjs;
- // Add the term to the coefficients
- cCoef[0][j] += coef3;
- cCoef[1][j] += coef3 * (n + 1);
- cCoef[2][j] += coef1 * (kns * dHjsdh + hjs * hXXX * dkns);
- cCoef[3][j] += coef1 * (kns * dHjsdk + hjs * kXXX * dkns);
- cCoef[4][j] += coef2 * dHjsdAlpha;
- cCoef[5][j] += coef2 * dHjsdBeta;
- cCoef[6][j] += coef0 * dlns * kns * hjs;
- sCoef[0][j] += coef4;
- sCoef[1][j] += coef4 * (n + 1);
- sCoef[2][j] += coef1 * (kns * dGjsdh + gjs * hXXX * dkns);
- sCoef[3][j] += coef1 * (kns * dGjsdk + gjs * kXXX * dkns);
- sCoef[4][j] += coef2 * dGjsdAlpha;
- sCoef[5][j] += coef2 * dGjsdBeta;
- sCoef[6][j] += coef0 * dlns * kns * gjs;
- }
- }
- }
- //compute second double sum where s: 0 -> N-j and n: max(j+s, j+1) -> N
- for (int s = 0; s <= FastMath.min(nMax - j, sMax); s++) {
- // j + s
- final int jps = j + s;
- // Kronecker symbols (2 - delta(0,j+s))
- final double d0spj = (s == -j) ? 1 : 2;
- for (int n = FastMath.max(j + s, j + 1); n <= nMax; n++) {
- // if n + (j+s) is odd, then the term is equal to zero due to the factor Vn,s+j
- if ((n + jps) % 2 == 0) {
- // (2 - delta(0,s+j)) * J<sub>n</sub> * K₀<sup>-n-1,s</sup> * L<sub>n</sub><sup>j+s</sup>
- final double lns = lnsCoef.getLns(n, jps);
- final double dlns = lnsCoef.getdLnsdGamma(n, jps);
- final double hjs = ghijCoef.getHjs(s, jps);
- final double dHjsdh = ghijCoef.getdHjsdh(s, jps);
- final double dHjsdk = ghijCoef.getdHjsdk(s, jps);
- final double dHjsdAlpha = ghijCoef.getdHjsdAlpha(s, jps);
- final double dHjsdBeta = ghijCoef.getdHjsdBeta(s, jps);
- final double gjs = ghijCoef.getGjs(s, jps);
- final double dGjsdh = ghijCoef.getdGjsdh(s, jps);
- final double dGjsdk = ghijCoef.getdGjsdk(s, jps);
- final double dGjsdAlpha = ghijCoef.getdGjsdAlpha(s, jps);
- final double dGjsdBeta = ghijCoef.getdGjsdBeta(s, jps);
- // J<sub>n</sub>
- final double jn = -harmonics.getUnnormalizedCnm(n, 0);
- // K₀<sup>-n-1,s</sup>
- final double kns = hansenObjects[s].getValue(-n - 1, X);
- final double dkns = hansenObjects[s].getDerivative(-n - 1, X);
- final double coef0 = d0spj * jn;
- final double coef1 = coef0 * lns;
- final double coef2 = coef1 * kns;
- final double coef3 = coef2 * hjs;
- final double coef4 = coef2 * gjs;
- // Add the term to the coefficients
- cCoef[0][j] -= coef3;
- cCoef[1][j] -= coef3 * (n + 1);
- cCoef[2][j] -= coef1 * (kns * dHjsdh + hjs * hXXX * dkns);
- cCoef[3][j] -= coef1 * (kns * dHjsdk + hjs * kXXX * dkns);
- cCoef[4][j] -= coef2 * dHjsdAlpha;
- cCoef[5][j] -= coef2 * dHjsdBeta;
- cCoef[6][j] -= coef0 * dlns * kns * hjs;
- sCoef[0][j] += coef4;
- sCoef[1][j] += coef4 * (n + 1);
- sCoef[2][j] += coef1 * (kns * dGjsdh + gjs * hXXX * dkns);
- sCoef[3][j] += coef1 * (kns * dGjsdk + gjs * kXXX * dkns);
- sCoef[4][j] += coef2 * dGjsdAlpha;
- sCoef[5][j] += coef2 * dGjsdBeta;
- sCoef[6][j] += coef0 * dlns * kns * gjs;
- }
- }
- }
- //compute third double sum where s: 1 -> j and n: j+1 -> N
- for (int s = 1; s <= FastMath.min(j, sMax); s++) {
- // j - s
- final int jms = j - s;
- // Kronecker symbols (2 - delta(0,s-j)) and (2 - delta(0,j-s))
- final int d0smj = (s == j) ? 1 : 2;
- for (int n = j + 1; n <= nMax; n++) {
- // if n + (j-s) is odd, then the term is equal to zero due to the factor Vn,s-j
- if ((n + jms) % 2 == 0) {
- // (2 - delta(0,j-s)) * J<sub>n</sub> * K₀<sup>-n-1,s</sup> * L<sub>n</sub><sup>j-s</sup>
- final double lns = lnsCoef.getLns(n, jms);
- final double dlns = lnsCoef.getdLnsdGamma(n, jms);
- final double ijs = ghijCoef.getIjs(s, jms);
- final double dIjsdh = ghijCoef.getdIjsdh(s, jms);
- final double dIjsdk = ghijCoef.getdIjsdk(s, jms);
- final double dIjsdAlpha = ghijCoef.getdIjsdAlpha(s, jms);
- final double dIjsdBeta = ghijCoef.getdIjsdBeta(s, jms);
- final double jjs = ghijCoef.getJjs(s, jms);
- final double dJjsdh = ghijCoef.getdJjsdh(s, jms);
- final double dJjsdk = ghijCoef.getdJjsdk(s, jms);
- final double dJjsdAlpha = ghijCoef.getdJjsdAlpha(s, jms);
- final double dJjsdBeta = ghijCoef.getdJjsdBeta(s, jms);
- // J<sub>n</sub>
- final double jn = -harmonics.getUnnormalizedCnm(n, 0);
- // K₀<sup>-n-1,s</sup>
- final double kns = hansenObjects[s].getValue(-n - 1, X);
- final double dkns = hansenObjects[s].getDerivative(-n - 1, X);
- final double coef0 = d0smj * jn;
- final double coef1 = coef0 * lns;
- final double coef2 = coef1 * kns;
- final double coef3 = coef2 * ijs;
- final double coef4 = coef2 * jjs;
- // Add the term to the coefficients
- cCoef[0][j] -= coef3;
- cCoef[1][j] -= coef3 * (n + 1);
- cCoef[2][j] -= coef1 * (kns * dIjsdh + ijs * hXXX * dkns);
- cCoef[3][j] -= coef1 * (kns * dIjsdk + ijs * kXXX * dkns);
- cCoef[4][j] -= coef2 * dIjsdAlpha;
- cCoef[5][j] -= coef2 * dIjsdBeta;
- cCoef[6][j] -= coef0 * dlns * kns * ijs;
- sCoef[0][j] += coef4;
- sCoef[1][j] += coef4 * (n + 1);
- sCoef[2][j] += coef1 * (kns * dJjsdh + jjs * hXXX * dkns);
- sCoef[3][j] += coef1 * (kns * dJjsdk + jjs * kXXX * dkns);
- sCoef[4][j] += coef2 * dJjsdAlpha;
- sCoef[5][j] += coef2 * dJjsdBeta;
- sCoef[6][j] += coef0 * dlns * kns * jjs;
- }
- }
- }
- }
- if (isBetween(j, 2, nMax)) {
- //add first term
- // J<sub>j</sub>
- final double jj = -harmonics.getUnnormalizedCnm(j, 0);
- double kns = hansenObjects[0].getValue(-j - 1, X);
- double dkns = hansenObjects[0].getDerivative(-j - 1, X);
- double lns = lnsCoef.getLns(j, j);
- //dlns is 0 because n == s == j
- final double hjs = ghijCoef.getHjs(0, j);
- final double dHjsdh = ghijCoef.getdHjsdh(0, j);
- final double dHjsdk = ghijCoef.getdHjsdk(0, j);
- final double dHjsdAlpha = ghijCoef.getdHjsdAlpha(0, j);
- final double dHjsdBeta = ghijCoef.getdHjsdBeta(0, j);
- final double gjs = ghijCoef.getGjs(0, j);
- final double dGjsdh = ghijCoef.getdGjsdh(0, j);
- final double dGjsdk = ghijCoef.getdGjsdk(0, j);
- final double dGjsdAlpha = ghijCoef.getdGjsdAlpha(0, j);
- final double dGjsdBeta = ghijCoef.getdGjsdBeta(0, j);
- // 2 * J<sub>j</sub> * K₀<sup>-j-1,0</sup> * L<sub>j</sub><sup>j</sup>
- double coef0 = 2 * jj;
- double coef1 = coef0 * lns;
- double coef2 = coef1 * kns;
- double coef3 = coef2 * hjs;
- double coef4 = coef2 * gjs;
- // Add the term to the coefficients
- cCoef[0][j] -= coef3;
- cCoef[1][j] -= coef3 * (j + 1);
- cCoef[2][j] -= coef1 * (kns * dHjsdh + hjs * hXXX * dkns);
- cCoef[3][j] -= coef1 * (kns * dHjsdk + hjs * kXXX * dkns);
- cCoef[4][j] -= coef2 * dHjsdAlpha;
- cCoef[5][j] -= coef2 * dHjsdBeta;
- //no contribution to cCoef[6][j] because dlns is 0
- sCoef[0][j] += coef4;
- sCoef[1][j] += coef4 * (j + 1);
- sCoef[2][j] += coef1 * (kns * dGjsdh + gjs * hXXX * dkns);
- sCoef[3][j] += coef1 * (kns * dGjsdk + gjs * kXXX * dkns);
- sCoef[4][j] += coef2 * dGjsdAlpha;
- sCoef[5][j] += coef2 * dGjsdBeta;
- //no contribution to sCoef[6][j] because dlns is 0
- //compute simple sum where s: 1 -> j-1
- for (int s = 1; s <= FastMath.min(j - 1, sMax); s++) {
- // j - s
- final int jms = j - s;
- // Kronecker symbols (2 - delta(0,s-j)) and (2 - delta(0,j-s))
- final int d0smj = (s == j) ? 1 : 2;
- // if s is odd, then the term is equal to zero due to the factor Vj,s-j
- if (s % 2 == 0) {
- // (2 - delta(0,j-s)) * J<sub>j</sub> * K₀<sup>-j-1,s</sup> * L<sub>j</sub><sup>j-s</sup>
- kns = hansenObjects[s].getValue(-j - 1, X);
- dkns = hansenObjects[s].getDerivative(-j - 1, X);
- lns = lnsCoef.getLns(j, jms);
- final double dlns = lnsCoef.getdLnsdGamma(j, jms);
- final double ijs = ghijCoef.getIjs(s, jms);
- final double dIjsdh = ghijCoef.getdIjsdh(s, jms);
- final double dIjsdk = ghijCoef.getdIjsdk(s, jms);
- final double dIjsdAlpha = ghijCoef.getdIjsdAlpha(s, jms);
- final double dIjsdBeta = ghijCoef.getdIjsdBeta(s, jms);
- final double jjs = ghijCoef.getJjs(s, jms);
- final double dJjsdh = ghijCoef.getdJjsdh(s, jms);
- final double dJjsdk = ghijCoef.getdJjsdk(s, jms);
- final double dJjsdAlpha = ghijCoef.getdJjsdAlpha(s, jms);
- final double dJjsdBeta = ghijCoef.getdJjsdBeta(s, jms);
- coef0 = d0smj * jj;
- coef1 = coef0 * lns;
- coef2 = coef1 * kns;
- coef3 = coef2 * ijs;
- coef4 = coef2 * jjs;
- // Add the term to the coefficients
- cCoef[0][j] -= coef3;
- cCoef[1][j] -= coef3 * (j + 1);
- cCoef[2][j] -= coef1 * (kns * dIjsdh + ijs * hXXX * dkns);
- cCoef[3][j] -= coef1 * (kns * dIjsdk + ijs * kXXX * dkns);
- cCoef[4][j] -= coef2 * dIjsdAlpha;
- cCoef[5][j] -= coef2 * dIjsdBeta;
- cCoef[6][j] -= coef0 * dlns * kns * ijs;
- sCoef[0][j] += coef4;
- sCoef[1][j] += coef4 * (j + 1);
- sCoef[2][j] += coef1 * (kns * dJjsdh + jjs * hXXX * dkns);
- sCoef[3][j] += coef1 * (kns * dJjsdk + jjs * kXXX * dkns);
- sCoef[4][j] += coef2 * dJjsdAlpha;
- sCoef[5][j] += coef2 * dJjsdBeta;
- sCoef[6][j] += coef0 * dlns * kns * jjs;
- }
- }
- }
- if (isBetween(j, 3, 2 * nMax - 1)) {
- //compute uppercase sigma expressions
- //min(j-1,N)
- final int minjm1on = FastMath.min(j - 1, nMax);
- //if j is even
- if (j % 2 == 0) {
- //compute first double sum where s: j-min(j-1,N) -> j/2-1 and n: j-s -> min(j-1,N)
- for (int s = j - minjm1on; s <= FastMath.min(j / 2 - 1, sMax); s++) {
- // j - s
- final int jms = j - s;
- // Kronecker symbols (2 - delta(0,s-j)) and (2 - delta(0,j-s))
- final int d0smj = (s == j) ? 1 : 2;
- for (int n = j - s; n <= minjm1on; n++) {
- // if n + (j-s) is odd, then the term is equal to zero due to the factor Vn,s-j
- if ((n + jms) % 2 == 0) {
- // (2 - delta(0,j-s)) * J<sub>n</sub> * K₀<sup>-n-1,s</sup> * L<sub>n</sub><sup>j-s</sup>
- final double lns = lnsCoef.getLns(n, jms);
- final double dlns = lnsCoef.getdLnsdGamma(n, jms);
- final double ijs = ghijCoef.getIjs(s, jms);
- final double dIjsdh = ghijCoef.getdIjsdh(s, jms);
- final double dIjsdk = ghijCoef.getdIjsdk(s, jms);
- final double dIjsdAlpha = ghijCoef.getdIjsdAlpha(s, jms);
- final double dIjsdBeta = ghijCoef.getdIjsdBeta(s, jms);
- final double jjs = ghijCoef.getJjs(s, jms);
- final double dJjsdh = ghijCoef.getdJjsdh(s, jms);
- final double dJjsdk = ghijCoef.getdJjsdk(s, jms);
- final double dJjsdAlpha = ghijCoef.getdJjsdAlpha(s, jms);
- final double dJjsdBeta = ghijCoef.getdJjsdBeta(s, jms);
- // J<sub>n</sub>
- final double jn = -harmonics.getUnnormalizedCnm(n, 0);
- // K₀<sup>-n-1,s</sup>
- final double kns = hansenObjects[s].getValue(-n - 1, X);
- final double dkns = hansenObjects[s].getDerivative(-n - 1, X);
- final double coef0 = d0smj * jn;
- final double coef1 = coef0 * lns;
- final double coef2 = coef1 * kns;
- final double coef3 = coef2 * ijs;
- final double coef4 = coef2 * jjs;
- // Add the term to the coefficients
- cCoef[0][j] -= coef3;
- cCoef[1][j] -= coef3 * (n + 1);
- cCoef[2][j] -= coef1 * (kns * dIjsdh + ijs * hXXX * dkns);
- cCoef[3][j] -= coef1 * (kns * dIjsdk + ijs * kXXX * dkns);
- cCoef[4][j] -= coef2 * dIjsdAlpha;
- cCoef[5][j] -= coef2 * dIjsdBeta;
- cCoef[6][j] -= coef0 * dlns * kns * ijs;
- sCoef[0][j] += coef4;
- sCoef[1][j] += coef4 * (n + 1);
- sCoef[2][j] += coef1 * (kns * dJjsdh + jjs * hXXX * dkns);
- sCoef[3][j] += coef1 * (kns * dJjsdk + jjs * kXXX * dkns);
- sCoef[4][j] += coef2 * dJjsdAlpha;
- sCoef[5][j] += coef2 * dJjsdBeta;
- sCoef[6][j] += coef0 * dlns * kns * jjs;
- }
- }
- }
- //compute second double sum where s: j/2 -> min(j-1,N)-1 and n: s+1 -> min(j-1,N)
- for (int s = j / 2; s <= FastMath.min(minjm1on - 1, sMax); s++) {
- // j - s
- final int jms = j - s;
- // Kronecker symbols (2 - delta(0,s-j)) and (2 - delta(0,j-s))
- final int d0smj = (s == j) ? 1 : 2;
- for (int n = s + 1; n <= minjm1on; n++) {
- // if n + (j-s) is odd, then the term is equal to zero due to the factor Vn,s-j
- if ((n + jms) % 2 == 0) {
- // (2 - delta(0,j-s)) * J<sub>n</sub> * K₀<sup>-n-1,s</sup> * L<sub>n</sub><sup>j-s</sup>
- final double lns = lnsCoef.getLns(n, jms);
- final double dlns = lnsCoef.getdLnsdGamma(n, jms);
- final double ijs = ghijCoef.getIjs(s, jms);
- final double dIjsdh = ghijCoef.getdIjsdh(s, jms);
- final double dIjsdk = ghijCoef.getdIjsdk(s, jms);
- final double dIjsdAlpha = ghijCoef.getdIjsdAlpha(s, jms);
- final double dIjsdBeta = ghijCoef.getdIjsdBeta(s, jms);
- final double jjs = ghijCoef.getJjs(s, jms);
- final double dJjsdh = ghijCoef.getdJjsdh(s, jms);
- final double dJjsdk = ghijCoef.getdJjsdk(s, jms);
- final double dJjsdAlpha = ghijCoef.getdJjsdAlpha(s, jms);
- final double dJjsdBeta = ghijCoef.getdJjsdBeta(s, jms);
- // J<sub>n</sub>
- final double jn = -harmonics.getUnnormalizedCnm(n, 0);
- // K₀<sup>-n-1,s</sup>
- final double kns = hansenObjects[s].getValue(-n - 1, X);
- final double dkns = hansenObjects[s].getDerivative(-n - 1, X);
- final double coef0 = d0smj * jn;
- final double coef1 = coef0 * lns;
- final double coef2 = coef1 * kns;
- final double coef3 = coef2 * ijs;
- final double coef4 = coef2 * jjs;
- // Add the term to the coefficients
- cCoef[0][j] -= coef3;
- cCoef[1][j] -= coef3 * (n + 1);
- cCoef[2][j] -= coef1 * (kns * dIjsdh + ijs * hXXX * dkns);
- cCoef[3][j] -= coef1 * (kns * dIjsdk + ijs * kXXX * dkns);
- cCoef[4][j] -= coef2 * dIjsdAlpha;
- cCoef[5][j] -= coef2 * dIjsdBeta;
- cCoef[6][j] -= coef0 * dlns * kns * ijs;
- sCoef[0][j] += coef4;
- sCoef[1][j] += coef4 * (n + 1);
- sCoef[2][j] += coef1 * (kns * dJjsdh + jjs * hXXX * dkns);
- sCoef[3][j] += coef1 * (kns * dJjsdk + jjs * kXXX * dkns);
- sCoef[4][j] += coef2 * dJjsdAlpha;
- sCoef[5][j] += coef2 * dJjsdBeta;
- sCoef[6][j] += coef0 * dlns * kns * jjs;
- }
- }
- }
- }
- //if j is odd
- else {
- //compute first double sum where s: (j-1)/2 -> min(j-1,N)-1 and n: s+1 -> min(j-1,N)
- for (int s = (j - 1) / 2; s <= FastMath.min(minjm1on - 1, sMax); s++) {
- // j - s
- final int jms = j - s;
- // Kronecker symbols (2 - delta(0,s-j)) and (2 - delta(0,j-s))
- final int d0smj = (s == j) ? 1 : 2;
- for (int n = s + 1; n <= minjm1on; n++) {
- // if n + (j-s) is odd, then the term is equal to zero due to the factor Vn,s-j
- if ((n + jms) % 2 == 0) {
- // (2 - delta(0,j-s)) * J<sub>n</sub> * K₀<sup>-n-1,s</sup> * L<sub>n</sub><sup>j-s</sup>
- final double lns = lnsCoef.getLns(n, jms);
- final double dlns = lnsCoef.getdLnsdGamma(n, jms);
- final double ijs = ghijCoef.getIjs(s, jms);
- final double dIjsdh = ghijCoef.getdIjsdh(s, jms);
- final double dIjsdk = ghijCoef.getdIjsdk(s, jms);
- final double dIjsdAlpha = ghijCoef.getdIjsdAlpha(s, jms);
- final double dIjsdBeta = ghijCoef.getdIjsdBeta(s, jms);
- final double jjs = ghijCoef.getJjs(s, jms);
- final double dJjsdh = ghijCoef.getdJjsdh(s, jms);
- final double dJjsdk = ghijCoef.getdJjsdk(s, jms);
- final double dJjsdAlpha = ghijCoef.getdJjsdAlpha(s, jms);
- final double dJjsdBeta = ghijCoef.getdJjsdBeta(s, jms);
- // J<sub>n</sub>
- final double jn = -harmonics.getUnnormalizedCnm(n, 0);
- // K₀<sup>-n-1,s</sup>
- final double kns = hansenObjects[s].getValue(-n - 1, X);
- final double dkns = hansenObjects[s].getDerivative(-n - 1, X);
- final double coef0 = d0smj * jn;
- final double coef1 = coef0 * lns;
- final double coef2 = coef1 * kns;
- final double coef3 = coef2 * ijs;
- final double coef4 = coef2 * jjs;
- // Add the term to the coefficients
- cCoef[0][j] -= coef3;
- cCoef[1][j] -= coef3 * (n + 1);
- cCoef[2][j] -= coef1 * (kns * dIjsdh + ijs * hXXX * dkns);
- cCoef[3][j] -= coef1 * (kns * dIjsdk + ijs * kXXX * dkns);
- cCoef[4][j] -= coef2 * dIjsdAlpha;
- cCoef[5][j] -= coef2 * dIjsdBeta;
- cCoef[6][j] -= coef0 * dlns * kns * ijs;
- sCoef[0][j] += coef4;
- sCoef[1][j] += coef4 * (n + 1);
- sCoef[2][j] += coef1 * (kns * dJjsdh + jjs * hXXX * dkns);
- sCoef[3][j] += coef1 * (kns * dJjsdk + jjs * kXXX * dkns);
- sCoef[4][j] += coef2 * dJjsdAlpha;
- sCoef[5][j] += coef2 * dJjsdBeta;
- sCoef[6][j] += coef0 * dlns * kns * jjs;
- }
- }
- }
- //the second double sum is added only if N >= 4 and j between 5 and 2*N-3
- if (nMax >= 4 && isBetween(j, 5, 2 * nMax - 3)) {
- //compute second double sum where s: j-min(j-1,N) -> (j-3)/2 and n: j-s -> min(j-1,N)
- for (int s = j - minjm1on; s <= FastMath.min((j - 3) / 2, sMax); s++) {
- // j - s
- final int jms = j - s;
- // Kronecker symbols (2 - delta(0,s-j)) and (2 - delta(0,j-s))
- final int d0smj = (s == j) ? 1 : 2;
- for (int n = j - s; n <= minjm1on; n++) {
- // if n + (j-s) is odd, then the term is equal to zero due to the factor Vn,s-j
- if ((n + jms) % 2 == 0) {
- // (2 - delta(0,j-s)) * J<sub>n</sub> * K₀<sup>-n-1,s</sup> * L<sub>n</sub><sup>j-s</sup>
- final double lns = lnsCoef.getLns(n, jms);
- final double dlns = lnsCoef.getdLnsdGamma(n, jms);
- final double ijs = ghijCoef.getIjs(s, jms);
- final double dIjsdh = ghijCoef.getdIjsdh(s, jms);
- final double dIjsdk = ghijCoef.getdIjsdk(s, jms);
- final double dIjsdAlpha = ghijCoef.getdIjsdAlpha(s, jms);
- final double dIjsdBeta = ghijCoef.getdIjsdBeta(s, jms);
- final double jjs = ghijCoef.getJjs(s, jms);
- final double dJjsdh = ghijCoef.getdJjsdh(s, jms);
- final double dJjsdk = ghijCoef.getdJjsdk(s, jms);
- final double dJjsdAlpha = ghijCoef.getdJjsdAlpha(s, jms);
- final double dJjsdBeta = ghijCoef.getdJjsdBeta(s, jms);
- // J<sub>n</sub>
- final double jn = -harmonics.getUnnormalizedCnm(n, 0);
- // K₀<sup>-n-1,s</sup>
- final double kns = hansenObjects[s].getValue(-n - 1, X);
- final double dkns = hansenObjects[s].getDerivative(-n - 1, X);
- final double coef0 = d0smj * jn;
- final double coef1 = coef0 * lns;
- final double coef2 = coef1 * kns;
- final double coef3 = coef2 * ijs;
- final double coef4 = coef2 * jjs;
- // Add the term to the coefficients
- cCoef[0][j] -= coef3;
- cCoef[1][j] -= coef3 * (n + 1);
- cCoef[2][j] -= coef1 * (kns * dIjsdh + ijs * hXXX * dkns);
- cCoef[3][j] -= coef1 * (kns * dIjsdk + ijs * kXXX * dkns);
- cCoef[4][j] -= coef2 * dIjsdAlpha;
- cCoef[5][j] -= coef2 * dIjsdBeta;
- cCoef[6][j] -= coef0 * dlns * kns * ijs;
- sCoef[0][j] += coef4;
- sCoef[1][j] += coef4 * (n + 1);
- sCoef[2][j] += coef1 * (kns * dJjsdh + jjs * hXXX * dkns);
- sCoef[3][j] += coef1 * (kns * dJjsdk + jjs * kXXX * dkns);
- sCoef[4][j] += coef2 * dJjsdAlpha;
- sCoef[5][j] += coef2 * dJjsdBeta;
- sCoef[6][j] += coef0 * dlns * kns * jjs;
- }
- }
- }
- }
- }
- }
- cCoef[0][j] *= -muoa / j;
- cCoef[1][j] *= muoa / ( j * a );
- cCoef[2][j] *= -muoa / j;
- cCoef[3][j] *= -muoa / j;
- cCoef[4][j] *= -muoa / j;
- cCoef[5][j] *= -muoa / j;
- cCoef[6][j] *= -muoa / j;
- sCoef[0][j] *= -muoa / j;
- sCoef[1][j] *= muoa / ( j * a );
- sCoef[2][j] *= -muoa / j;
- sCoef[3][j] *= -muoa / j;
- sCoef[4][j] *= -muoa / j;
- sCoef[5][j] *= -muoa / j;
- sCoef[6][j] *= -muoa / j;
- }
- }
- /** Check if an index is within the accepted interval.
- *
- * @param index the index to check
- * @param lowerBound the lower bound of the interval
- * @param upperBound the upper bound of the interval
- * @return true if the index is between the lower and upper bounds, false otherwise
- */
- private boolean isBetween(final int index, final int lowerBound, final int upperBound) {
- return index >= lowerBound && index <= upperBound;
- }
- /**Get the value of C<sup>j</sup>.
- *
- * @param j j index
- * @return C<sup>j</sup>
- */
- public double getCj(final int j) {
- return cCoef[0][j];
- }
- /**Get the value of dC<sup>j</sup> / da.
- *
- * @param j j index
- * @return dC<sup>j</sup> / da
- */
- public double getdCjdA(final int j) {
- return cCoef[1][j];
- }
- /**Get the value of dC<sup>j</sup> / dh.
- *
- * @param j j index
- * @return dC<sup>j</sup> / dh
- */
- public double getdCjdH(final int j) {
- return cCoef[2][j];
- }
- /**Get the value of dC<sup>j</sup> / dk.
- *
- * @param j j index
- * @return dC<sup>j</sup> / dk
- */
- public double getdCjdK(final int j) {
- return cCoef[3][j];
- }
- /**Get the value of dC<sup>j</sup> / dα.
- *
- * @param j j index
- * @return dC<sup>j</sup> / dα
- */
- public double getdCjdAlpha(final int j) {
- return cCoef[4][j];
- }
- /**Get the value of dC<sup>j</sup> / dβ.
- *
- * @param j j index
- * @return dC<sup>j</sup> / dβ
- */
- public double getdCjdBeta(final int j) {
- return cCoef[5][j];
- }
- /**Get the value of dC<sup>j</sup> / dγ.
- *
- * @param j j index
- * @return dC<sup>j</sup> / dγ
- */
- public double getdCjdGamma(final int j) {
- return cCoef[6][j];
- }
- /**Get the value of S<sup>j</sup>.
- *
- * @param j j index
- * @return S<sup>j</sup>
- */
- public double getSj(final int j) {
- return sCoef[0][j];
- }
- /**Get the value of dS<sup>j</sup> / da.
- *
- * @param j j index
- * @return dS<sup>j</sup> / da
- */
- public double getdSjdA(final int j) {
- return sCoef[1][j];
- }
- /**Get the value of dS<sup>j</sup> / dh.
- *
- * @param j j index
- * @return dS<sup>j</sup> / dh
- */
- public double getdSjdH(final int j) {
- return sCoef[2][j];
- }
- /**Get the value of dS<sup>j</sup> / dk.
- *
- * @param j j index
- * @return dS<sup>j</sup> / dk
- */
- public double getdSjdK(final int j) {
- return sCoef[3][j];
- }
- /**Get the value of dS<sup>j</sup> / dα.
- *
- * @param j j index
- * @return dS<sup>j</sup> / dα
- */
- public double getdSjdAlpha(final int j) {
- return sCoef[4][j];
- }
- /**Get the value of dS<sup>j</sup> / dβ.
- *
- * @param j j index
- * @return dS<sup>j</sup> / dβ
- */
- public double getdSjdBeta(final int j) {
- return sCoef[5][j];
- }
- /**Get the value of dS<sup>j</sup> / dγ.
- *
- * @param j j index
- * @return dS<sup>j</sup> / dγ
- */
- public double getdSjdGamma(final int j) {
- return sCoef[6][j];
- }
- }
- /** Coefficients valid for one time slot. */
- private static class Slot implements Serializable {
- /** Serializable UID. */
- private static final long serialVersionUID = 20160319L;
- /**The coefficients D<sub>i</sub>.
- * <p>
- * i corresponds to the equinoctial element, as follows:
- * - i=0 for a <br/>
- * - i=1 for k <br/>
- * - i=2 for h <br/>
- * - i=3 for q <br/>
- * - i=4 for p <br/>
- * - i=5 for λ <br/>
- * </p>
- */
- private final ShortPeriodicsInterpolatedCoefficient di;
- /** The coefficients C<sub>i</sub><sup>j</sup>.
- * <p>
- * The constant term C<sub>i</sub>⁰ is also stored in this variable at index j = 0 <br>
- * The index order is cij[j][i] <br/>
- * i corresponds to the equinoctial element, as follows: <br/>
- * - i=0 for a <br/>
- * - i=1 for k <br/>
- * - i=2 for h <br/>
- * - i=3 for q <br/>
- * - i=4 for p <br/>
- * - i=5 for λ <br/>
- * </p>
- */
- private final ShortPeriodicsInterpolatedCoefficient[] cij;
- /** The coefficients S<sub>i</sub><sup>j</sup>.
- * <p>
- * The index order is sij[j][i] <br/>
- * i corresponds to the equinoctial element, as follows: <br/>
- * - i=0 for a <br/>
- * - i=1 for k <br/>
- * - i=2 for h <br/>
- * - i=3 for q <br/>
- * - i=4 for p <br/>
- * - i=5 for λ <br/>
- * </p>
- */
- private final ShortPeriodicsInterpolatedCoefficient[] sij;
- /** Simple constructor.
- * @param maxFrequencyShortPeriodics maximum value for j index
- * @param interpolationPoints number of points used in the interpolation process
- */
- Slot(final int maxFrequencyShortPeriodics, final int interpolationPoints) {
- final int rows = maxFrequencyShortPeriodics + 1;
- di = new ShortPeriodicsInterpolatedCoefficient(interpolationPoints);
- cij = new ShortPeriodicsInterpolatedCoefficient[rows];
- sij = new ShortPeriodicsInterpolatedCoefficient[rows];
- //Initialize the arrays
- for (int j = 0; j <= maxFrequencyShortPeriodics; j++) {
- cij[j] = new ShortPeriodicsInterpolatedCoefficient(interpolationPoints);
- sij[j] = new ShortPeriodicsInterpolatedCoefficient(interpolationPoints);
- }
- }
- }
- }