DSSTThirdBody.java
- /* Copyright 2002-2018 CS Systèmes d'Information
- * Licensed to CS Systèmes d'Information (CS) under one or more
- * contributor license agreements. See the NOTICE file distributed with
- * this work for additional information regarding copyright ownership.
- * CS licenses this file to You under the Apache License, Version 2.0
- * (the "License"); you may not use this file except in compliance with
- * the License. You may obtain a copy of the License at
- *
- * http://www.apache.org/licenses/LICENSE-2.0
- *
- * Unless required by applicable law or agreed to in writing, software
- * distributed under the License is distributed on an "AS IS" BASIS,
- * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- * See the License for the specific language governing permissions and
- * limitations under the License.
- */
- package org.orekit.propagation.semianalytical.dsst.forces;
- import java.io.NotSerializableException;
- import java.io.Serializable;
- import java.util.ArrayList;
- import java.util.HashMap;
- import java.util.List;
- import java.util.Map;
- import java.util.Set;
- import java.util.SortedSet;
- import java.util.TreeMap;
- import org.hipparchus.analysis.differentiation.DSFactory;
- import org.hipparchus.analysis.differentiation.DerivativeStructure;
- import org.hipparchus.geometry.euclidean.threed.Vector3D;
- import org.hipparchus.util.FastMath;
- import org.orekit.attitudes.AttitudeProvider;
- import org.orekit.bodies.CelestialBody;
- import org.orekit.errors.OrekitException;
- import org.orekit.orbits.Orbit;
- import org.orekit.propagation.SpacecraftState;
- import org.orekit.propagation.events.EventDetector;
- import org.orekit.propagation.semianalytical.dsst.utilities.AuxiliaryElements;
- import org.orekit.propagation.semianalytical.dsst.utilities.CjSjCoefficient;
- import org.orekit.propagation.semianalytical.dsst.utilities.CoefficientsFactory;
- import org.orekit.propagation.semianalytical.dsst.utilities.CoefficientsFactory.NSKey;
- import org.orekit.propagation.semianalytical.dsst.utilities.JacobiPolynomials;
- import org.orekit.propagation.semianalytical.dsst.utilities.ShortPeriodicsInterpolatedCoefficient;
- import org.orekit.propagation.semianalytical.dsst.utilities.UpperBounds;
- import org.orekit.propagation.semianalytical.dsst.utilities.hansen.HansenThirdBodyLinear;
- import org.orekit.time.AbsoluteDate;
- import org.orekit.utils.TimeSpanMap;
- /** Third body attraction perturbation to the
- * {@link org.orekit.propagation.semianalytical.dsst.DSSTPropagator DSSTPropagator}.
- *
- * @author Romain Di Costanzo
- * @author Pascal Parraud
- */
- public class DSSTThirdBody implements DSSTForceModel {
- /** Max power for summation. */
- private static final int MAX_POWER = 22;
- /** Truncation tolerance for big, eccentric orbits. */
- private static final double BIG_TRUNCATION_TOLERANCE = 1.e-1;
- /** Truncation tolerance for small orbits. */
- private static final double SMALL_TRUNCATION_TOLERANCE = 1.9e-6;
- /** Number of points for interpolation. */
- private static final int INTERPOLATION_POINTS = 3;
- /** Maximum power for eccentricity used in short periodic computation. */
- private static final int MAX_ECCPOWER_SP = 4;
- /** Retrograde factor I.
- * <p>
- * DSST model needs equinoctial orbit as internal representation.
- * Classical equinoctial elements have discontinuities when inclination
- * is close to zero. In this representation, I = +1. <br>
- * To avoid this discontinuity, another representation exists and equinoctial
- * elements can be expressed in a different way, called "retrograde" orbit.
- * This implies I = -1. <br>
- * As Orekit doesn't implement the retrograde orbit, I is always set to +1.
- * But for the sake of consistency with the theory, the retrograde factor
- * has been kept in the formulas.
- * </p>
- */
- private static final int I = 1;
- /** The 3rd body to consider. */
- private final CelestialBody body;
- /** Standard gravitational parameter μ for the body in m³/s². */
- private final double gm;
- /** Factorial. */
- private final double[] fact;
- /** V<sub>ns</sub> coefficients. */
- private final TreeMap<NSKey, Double> Vns;
- /** Distance from center of mass of the central body to the 3rd body. */
- private double R3;
- /** Short period terms. */
- private ThirdBodyShortPeriodicCoefficients shortPeriods;
- // Equinoctial elements (according to DSST notation)
- /** a. */
- private double a;
- /** e<sub>x</sub>. */
- private double k;
- /** e<sub>y</sub>. */
- private double h;
- /** h<sub>x</sub>. */
- private double q;
- /** h<sub>y</sub>. */
- private double p;
- /** Eccentricity. */
- private double ecc;
- // Direction cosines of the symmetry axis
- /** α. */
- private double alpha;
- /** β. */
- private double beta;
- /** γ. */
- private double gamma;
- // Common factors for potential computation
- /** A = n * a². */
- private double A;
- /** B = sqrt(1 - e²). */
- private double B;
- /** C = 1 + p² + q². */
- private double C;
- /** B². */
- private double BB;
- /** B³. */
- private double BBB;
- /** The mean motion (n). */
- private double meanMotion;
- /** Χ = 1 / sqrt(1 - e²) = 1 / B. */
- private double X;
- /** Χ². */
- private double XX;
- /** Χ³. */
- private double XXX;
- /** -2 * a / A. */
- private double m2aoA;
- /** B / A. */
- private double BoA;
- /** 1 / (A * B). */
- private double ooAB;
- /** -C / (2 * A * B). */
- private double mCo2AB;
- /** B / A(1 + B). */
- private double BoABpo;
- /** Max power for a/R3 in the serie expansion. */
- private int maxAR3Pow;
- /** Max power for e in the serie expansion. */
- private int maxEccPow;
- /** Max power for e in the serie expansion (for short periodics). */
- private int maxEccPowShort;
- /** Max frequency of F. */
- private int maxFreqF;
- /** An array that contains the objects needed to build the Hansen coefficients. <br/>
- * The index is s */
- private final HansenThirdBodyLinear[] hansenObjects;
- /** The current value of the U function. <br/>
- * Needed for the short periodic contribution */
- private double U;
- /** Qns coefficients. */
- private double[][] Qns;
- /** a / R3 up to power maxAR3Pow. */
- private double[] aoR3Pow;
- /** mu3 / R3. */
- private double muoR3;
- /** b = 1 / (1 + sqrt(1 - e²)) = 1 / (1 + B).*/
- private double b;
- /** h * Χ³. */
- private double hXXX;
- /** k * Χ³. */
- private double kXXX;
- /** Factory for the DerivativeStructure instances. */
- private final DSFactory factory;
- /** Complete constructor.
- * @param body the 3rd body to consider
- * @see org.orekit.bodies.CelestialBodyFactory
- */
- public DSSTThirdBody(final CelestialBody body) {
- this.body = body;
- this.gm = body.getGM();
- this.maxAR3Pow = Integer.MIN_VALUE;
- this.maxEccPow = Integer.MIN_VALUE;
- this.Vns = CoefficientsFactory.computeVns(MAX_POWER);
- // Factorials computation
- final int dim = 2 * MAX_POWER;
- this.fact = new double[dim];
- fact[0] = 1.;
- for (int i = 1; i < dim; i++) {
- fact[i] = i * fact[i - 1];
- }
- //Initialise the HansenCoefficient generator
- this.hansenObjects = new HansenThirdBodyLinear[MAX_POWER + 1];
- for (int s = 0; s <= MAX_POWER; s++) {
- this.hansenObjects[s] = new HansenThirdBodyLinear(MAX_POWER, s);
- }
- this.factory = new DSFactory(1, 1);
- }
- /** Get third body.
- * @return third body
- */
- public CelestialBody getBody() {
- return body;
- }
- /** Computes the highest power of the eccentricity and the highest power
- * of a/R3 to appear in the truncated analytical power series expansion.
- * <p>
- * This method computes the upper value for the 3rd body potential and
- * determines the maximal powers for the eccentricity and a/R3 producing
- * potential terms bigger than a defined tolerance.
- * </p>
- * @param aux auxiliary elements related to the current orbit
- * @param meanOnly only mean elements will be used for the propagation
- * @throws OrekitException if some specific error occurs
- */
- @Override
- public List<ShortPeriodTerms> initialize(final AuxiliaryElements aux, final boolean meanOnly)
- throws OrekitException {
- // Initializes specific parameters.
- initializeStep(aux);
- // Truncation tolerance.
- final double aor = a / R3;
- final double tol = ( aor > .3 || (aor > .15 && ecc > .25) ) ? BIG_TRUNCATION_TOLERANCE : SMALL_TRUNCATION_TOLERANCE;
- // Utilities for truncation
- // Set a lower bound for eccentricity
- final double eo2 = FastMath.max(0.0025, ecc / 2.);
- final double x2o2 = XX / 2.;
- final double[] eccPwr = new double[MAX_POWER];
- final double[] chiPwr = new double[MAX_POWER];
- eccPwr[0] = 1.;
- chiPwr[0] = X;
- for (int i = 1; i < MAX_POWER; i++) {
- eccPwr[i] = eccPwr[i - 1] * eo2;
- chiPwr[i] = chiPwr[i - 1] * x2o2;
- }
- // Auxiliary quantities.
- final double ao2rxx = aor / (2. * XX);
- double xmuarn = ao2rxx * ao2rxx * gm / (X * R3);
- double term = 0.;
- // Compute max power for a/R3 and e.
- maxAR3Pow = 2;
- maxEccPow = 0;
- int n = 2;
- int m = 2;
- int nsmd2 = 0;
- do {
- // Upper bound for Tnm.
- term = xmuarn *
- (fact[n + m] / (fact[nsmd2] * fact[nsmd2 + m])) *
- (fact[n + m + 1] / (fact[m] * fact[n + 1])) *
- (fact[n - m + 1] / fact[n + 1]) *
- eccPwr[m] * UpperBounds.getDnl(XX, chiPwr[m], n + 2, m);
- if (term < tol) {
- if (m == 0) {
- break;
- } else if (m < 2) {
- xmuarn *= ao2rxx;
- m = 0;
- n++;
- nsmd2++;
- } else {
- m -= 2;
- nsmd2++;
- }
- } else {
- maxAR3Pow = n;
- maxEccPow = FastMath.max(m, maxEccPow);
- xmuarn *= ao2rxx;
- m++;
- n++;
- }
- } while (n < MAX_POWER);
- maxEccPow = FastMath.min(maxAR3Pow, maxEccPow);
- // allocate the array aoR3Pow
- aoR3Pow = new double[maxAR3Pow + 1];
- maxFreqF = maxAR3Pow + 1;
- maxEccPowShort = MAX_ECCPOWER_SP;
- Qns = CoefficientsFactory.computeQns(gamma, maxAR3Pow, FastMath.max(maxEccPow, maxEccPowShort));
- final int jMax = maxAR3Pow + 1;
- shortPeriods = new ThirdBodyShortPeriodicCoefficients(jMax, INTERPOLATION_POINTS,
- maxFreqF, body.getName(),
- new TimeSpanMap<Slot>(new Slot(jMax, INTERPOLATION_POINTS)));
- final List<ShortPeriodTerms> list = new ArrayList<ShortPeriodTerms>();
- list.add(shortPeriods);
- return list;
- }
- /** {@inheritDoc} */
- @Override
- public void initializeStep(final AuxiliaryElements aux) throws OrekitException {
- // Equinoctial elements
- a = aux.getSma();
- k = aux.getK();
- h = aux.getH();
- q = aux.getQ();
- p = aux.getP();
- // Eccentricity
- ecc = aux.getEcc();
- // Distance from center of mass of the central body to the 3rd body
- final Vector3D bodyPos = body.getPVCoordinates(aux.getDate(), aux.getFrame()).getPosition();
- R3 = bodyPos.getNorm();
- // Direction cosines
- final Vector3D bodyDir = bodyPos.normalize();
- alpha = bodyDir.dotProduct(aux.getVectorF());
- beta = bodyDir.dotProduct(aux.getVectorG());
- gamma = bodyDir.dotProduct(aux.getVectorW());
- // Equinoctial coefficients
- A = aux.getA();
- B = aux.getB();
- C = aux.getC();
- meanMotion = aux.getMeanMotion();
- //Χ<sup>-2</sup>.
- BB = B * B;
- //Χ<sup>-3</sup>.
- BBB = BB * B;
- //b = 1 / (1 + B)
- b = 1. / (1. + B);
- // Χ
- X = 1. / B;
- XX = X * X;
- XXX = X * XX;
- // -2 * a / A
- m2aoA = -2. * a / A;
- // B / A
- BoA = B / A;
- // 1 / AB
- ooAB = 1. / (A * B);
- // -C / 2AB
- mCo2AB = -C * ooAB / 2.;
- // B / A(1 + B)
- BoABpo = BoA / (1. + B);
- // mu3 / R3
- muoR3 = gm / R3;
- //h * Χ³
- hXXX = h * XXX;
- //k * Χ³
- kXXX = k * XXX;
- }
- /** {@inheritDoc} */
- @Override
- public double[] getMeanElementRate(final SpacecraftState currentState) {
- // Qns coefficients
- Qns = CoefficientsFactory.computeQns(gamma, maxAR3Pow, maxEccPow);
- // a / R3 up to power maxAR3Pow
- final double aoR3 = a / R3;
- aoR3Pow[0] = 1.;
- for (int i = 1; i <= maxAR3Pow; i++) {
- aoR3Pow[i] = aoR3 * aoR3Pow[i - 1];
- }
- // Compute potential U derivatives
- final double[] dU = computeUDerivatives();
- final double dUda = dU[0];
- final double dUdk = dU[1];
- final double dUdh = dU[2];
- final double dUdAl = dU[3];
- final double dUdBe = dU[4];
- final double dUdGa = dU[5];
- // Compute cross derivatives [Eq. 2.2-(8)]
- // U(alpha,gamma) = alpha * dU/dgamma - gamma * dU/dalpha
- final double UAlphaGamma = alpha * dUdGa - gamma * dUdAl;
- // U(beta,gamma) = beta * dU/dgamma - gamma * dU/dbeta
- final double UBetaGamma = beta * dUdGa - gamma * dUdBe;
- // Common factor
- final double pUAGmIqUBGoAB = (p * UAlphaGamma - I * q * UBetaGamma) * ooAB;
- // Compute mean elements rates [Eq. 3.1-(1)]
- final double da = 0.;
- final double dh = BoA * dUdk + k * pUAGmIqUBGoAB;
- final double dk = -BoA * dUdh - h * pUAGmIqUBGoAB;
- final double dp = mCo2AB * UBetaGamma;
- final double dq = mCo2AB * UAlphaGamma * I;
- final double dM = m2aoA * dUda + BoABpo * (h * dUdh + k * dUdk) + pUAGmIqUBGoAB;
- return new double[] {da, dk, dh, dq, dp, dM};
- }
- /** {@inheritDoc} */
- @Override
- public void updateShortPeriodTerms(final SpacecraftState... meanStates)
- throws OrekitException {
- final Slot slot = shortPeriods.createSlot(meanStates);
- for (final SpacecraftState meanState : meanStates) {
- initializeStep(new AuxiliaryElements(meanState.getOrbit(), I));
- // a / R3 up to power maxAR3Pow
- final double aoR3 = a / R3;
- aoR3Pow[0] = 1.;
- for (int i = 1; i <= maxAR3Pow; i++) {
- aoR3Pow[i] = aoR3 * aoR3Pow[i - 1];
- }
- // Qns coefficients
- Qns = CoefficientsFactory.computeQns(gamma, maxAR3Pow, FastMath.max(maxEccPow, maxEccPowShort));
- final GeneratingFunctionCoefficients gfCoefs =
- new GeneratingFunctionCoefficients(maxAR3Pow, MAX_ECCPOWER_SP, maxAR3Pow + 1);
- //Compute additional quantities
- // 2 * a / An
- final double ax2oAn = -m2aoA / meanMotion;
- // B / An
- final double BoAn = BoA / meanMotion;
- // 1 / ABn
- final double ooABn = ooAB / meanMotion;
- // C / 2ABn
- final double Co2ABn = -mCo2AB / meanMotion;
- // B / (A * (1 + B) * n)
- final double BoABpon = BoABpo / meanMotion;
- // -3 / n²a² = -3 / nA
- final double m3onA = -3 / (A * meanMotion);
- //Compute the C<sub>i</sub><sup>j</sup> and S<sub>i</sub><sup>j</sup> coefficients.
- for (int j = 1; j < slot.cij.length; j++) {
- // First compute the C<sub>i</sub><sup>j</sup> coefficients
- final double[] currentCij = new double[6];
- // Compute the cross derivatives operator :
- final double SAlphaGammaCj = alpha * gfCoefs.getdSdgammaCj(j) - gamma * gfCoefs.getdSdalphaCj(j);
- final double SAlphaBetaCj = alpha * gfCoefs.getdSdbetaCj(j) - beta * gfCoefs.getdSdalphaCj(j);
- final double SBetaGammaCj = beta * gfCoefs.getdSdgammaCj(j) - gamma * gfCoefs.getdSdbetaCj(j);
- final double ShkCj = h * gfCoefs.getdSdkCj(j) - k * gfCoefs.getdSdhCj(j);
- final double pSagmIqSbgoABnCj = (p * SAlphaGammaCj - I * q * SBetaGammaCj) * ooABn;
- final double ShkmSabmdSdlCj = ShkCj - SAlphaBetaCj - gfCoefs.getdSdlambdaCj(j);
- currentCij[0] = ax2oAn * gfCoefs.getdSdlambdaCj(j);
- currentCij[1] = -(BoAn * gfCoefs.getdSdhCj(j) + h * pSagmIqSbgoABnCj + k * BoABpon * gfCoefs.getdSdlambdaCj(j));
- currentCij[2] = BoAn * gfCoefs.getdSdkCj(j) + k * pSagmIqSbgoABnCj - h * BoABpon * gfCoefs.getdSdlambdaCj(j);
- currentCij[3] = Co2ABn * (q * ShkmSabmdSdlCj - I * SAlphaGammaCj);
- currentCij[4] = Co2ABn * (p * ShkmSabmdSdlCj - SBetaGammaCj);
- currentCij[5] = -ax2oAn * gfCoefs.getdSdaCj(j) + BoABpon * (h * gfCoefs.getdSdhCj(j) + k * gfCoefs.getdSdkCj(j)) + pSagmIqSbgoABnCj + m3onA * gfCoefs.getSCj(j);
- // add the computed coefficients to the interpolators
- slot.cij[j].addGridPoint(meanState.getDate(), currentCij);
- // Compute the S<sub>i</sub><sup>j</sup> coefficients
- final double[] currentSij = new double[6];
- // Compute the cross derivatives operator :
- final double SAlphaGammaSj = alpha * gfCoefs.getdSdgammaSj(j) - gamma * gfCoefs.getdSdalphaSj(j);
- final double SAlphaBetaSj = alpha * gfCoefs.getdSdbetaSj(j) - beta * gfCoefs.getdSdalphaSj(j);
- final double SBetaGammaSj = beta * gfCoefs.getdSdgammaSj(j) - gamma * gfCoefs.getdSdbetaSj(j);
- final double ShkSj = h * gfCoefs.getdSdkSj(j) - k * gfCoefs.getdSdhSj(j);
- final double pSagmIqSbgoABnSj = (p * SAlphaGammaSj - I * q * SBetaGammaSj) * ooABn;
- final double ShkmSabmdSdlSj = ShkSj - SAlphaBetaSj - gfCoefs.getdSdlambdaSj(j);
- currentSij[0] = ax2oAn * gfCoefs.getdSdlambdaSj(j);
- currentSij[1] = -(BoAn * gfCoefs.getdSdhSj(j) + h * pSagmIqSbgoABnSj + k * BoABpon * gfCoefs.getdSdlambdaSj(j));
- currentSij[2] = BoAn * gfCoefs.getdSdkSj(j) + k * pSagmIqSbgoABnSj - h * BoABpon * gfCoefs.getdSdlambdaSj(j);
- currentSij[3] = Co2ABn * (q * ShkmSabmdSdlSj - I * SAlphaGammaSj);
- currentSij[4] = Co2ABn * (p * ShkmSabmdSdlSj - SBetaGammaSj);
- currentSij[5] = -ax2oAn * gfCoefs.getdSdaSj(j) + BoABpon * (h * gfCoefs.getdSdhSj(j) + k * gfCoefs.getdSdkSj(j)) + pSagmIqSbgoABnSj + m3onA * gfCoefs.getSSj(j);
- // add the computed coefficients to the interpolators
- slot.sij[j].addGridPoint(meanState.getDate(), currentSij);
- if (j == 1) {
- //Compute the C⁰ coefficients using Danielson 2.5.2-15a.
- final double[] value = new double[6];
- for (int i = 0; i < 6; ++i) {
- value[i] = currentCij[i] * k / 2. + currentSij[i] * h / 2.;
- }
- slot.cij[0].addGridPoint(meanState.getDate(), value);
- }
- }
- }
- }
- /** {@inheritDoc} */
- @Override
- public EventDetector[] getEventsDetectors() {
- return null;
- }
- /** Compute potential derivatives.
- * @return derivatives of the potential with respect to orbital parameters
- */
- private double[] computeUDerivatives() {
- // Gs and Hs coefficients
- final double[][] GsHs = CoefficientsFactory.computeGsHs(k, h, alpha, beta, maxEccPow);
- // Initialise U.
- U = 0.;
- // Potential derivatives
- double dUda = 0.;
- double dUdk = 0.;
- double dUdh = 0.;
- double dUdAl = 0.;
- double dUdBe = 0.;
- double dUdGa = 0.;
- for (int s = 0; s <= maxEccPow; s++) {
- // initialise the Hansen roots
- this.hansenObjects[s].computeInitValues(B, BB, BBB);
- // Get the current Gs coefficient
- final double gs = GsHs[0][s];
- // Compute Gs partial derivatives from 3.1-(9)
- double dGsdh = 0.;
- double dGsdk = 0.;
- double dGsdAl = 0.;
- double dGsdBe = 0.;
- if (s > 0) {
- // First get the G(s-1) and the H(s-1) coefficients
- final double sxGsm1 = s * GsHs[0][s - 1];
- final double sxHsm1 = s * GsHs[1][s - 1];
- // Then compute derivatives
- dGsdh = beta * sxGsm1 - alpha * sxHsm1;
- dGsdk = alpha * sxGsm1 + beta * sxHsm1;
- dGsdAl = k * sxGsm1 - h * sxHsm1;
- dGsdBe = h * sxGsm1 + k * sxHsm1;
- }
- // Kronecker symbol (2 - delta(0,s))
- final double delta0s = (s == 0) ? 1. : 2.;
- for (int n = FastMath.max(2, s); n <= maxAR3Pow; n++) {
- // (n - s) must be even
- if ((n - s) % 2 == 0) {
- // Extract data from previous computation :
- final double kns = this.hansenObjects[s].getValue(n, B);
- final double dkns = this.hansenObjects[s].getDerivative(n, B);
- final double vns = Vns.get(new NSKey(n, s));
- final double coef0 = delta0s * aoR3Pow[n] * vns;
- final double coef1 = coef0 * Qns[n][s];
- final double coef2 = coef1 * kns;
- // dQns/dGamma = Q(n, s + 1) from Equation 3.1-(8)
- // for n = s, Q(n, n + 1) = 0. (Cefola & Broucke, 1975)
- final double dqns = (n == s) ? 0. : Qns[n][s + 1];
- //Compute U:
- U += coef2 * gs;
- // Compute dU / da :
- dUda += coef2 * n * gs;
- // Compute dU / dh
- dUdh += coef1 * (kns * dGsdh + hXXX * gs * dkns);
- // Compute dU / dk
- dUdk += coef1 * (kns * dGsdk + kXXX * gs * dkns);
- // Compute dU / dAlpha
- dUdAl += coef2 * dGsdAl;
- // Compute dU / dBeta
- dUdBe += coef2 * dGsdBe;
- // Compute dU / dGamma
- dUdGa += coef0 * kns * dqns * gs;
- }
- }
- }
- // multiply by mu3 / R3
- U *= muoR3;
- return new double[] {
- dUda * muoR3 / a,
- dUdk * muoR3,
- dUdh * muoR3,
- dUdAl * muoR3,
- dUdBe * muoR3,
- dUdGa * muoR3
- };
- }
- /** {@inheritDoc} */
- @Override
- public void registerAttitudeProvider(final AttitudeProvider provider) {
- //nothing is done since this contribution is not sensitive to attitude
- }
- /** Computes the C<sup>j</sup> and S<sup>j</sup> coefficients Danielson 4.2-(15,16)
- * and their derivatives.
- * <p>
- * CS Mathematical Report $3.5.3.2
- * </p>
- */
- private class FourierCjSjCoefficients {
- /** The coefficients G<sub>n, s</sub> and their derivatives. */
- private final GnsCoefficients gns;
- /** the coefficients e<sup>-|j-s|</sup>*w<sub>j</sub><sup>n, s</sup> and their derivatives by h and k. */
- private final WnsjEtomjmsCoefficient wnsjEtomjmsCoefficient;
- /** The terms containing the coefficients C<sub>j</sub> and S<sub>j</sub> of (α, β) or (k, h). */
- private final CjSjAlphaBetaKH ABDECoefficients;
- /** The Fourier coefficients C<sup>j</sup> and their derivatives.
- * <p>
- * Each column of the matrix contains the following values: <br/>
- * - C<sup>j</sup> <br/>
- * - dC<sup>j</sup> / da <br/>
- * - dC<sup>j</sup> / dk <br/>
- * - dC<sup>j</sup> / dh <br/>
- * - dC<sup>j</sup> / dα <br/>
- * - dC<sup>j</sup> / dβ <br/>
- * - dC<sup>j</sup> / dγ <br/>
- * </p>
- */
- private final double[][] cj;
- /** The S<sup>j</sup> coefficients and their derivatives.
- * <p>
- * Each column of the matrix contains the following values: <br/>
- * - S<sup>j</sup> <br/>
- * - dS<sup>j</sup> / da <br/>
- * - dS<sup>j</sup> / dk <br/>
- * - dS<sup>j</sup> / dh <br/>
- * - dS<sup>j</sup> / dα <br/>
- * - dS<sup>j</sup> / dβ <br/>
- * - dS<sup>j</sup> / dγ <br/>
- * </p>
- */
- private final double[][] sj;
- /** The Coefficients C<sup>j</sup><sub>,λ</sub>.
- * <p>
- * See Danielson 4.2-21
- * </p>
- */
- private final double[] cjlambda;
- /** The Coefficients S<sup>j</sup><sub>,λ</sub>.
- * <p>
- * See Danielson 4.2-21
- * </p>
- */
- private final double[] sjlambda;
- /** Maximum value for n. */
- private final int nMax;
- /** Maximum value for s. */
- private final int sMax;
- /** Maximum value for j. */
- private final int jMax;
- /**
- * Private constructor.
- *
- * @param nMax maximum value for n index
- * @param sMax maximum value for s index
- * @param jMax maximum value for j index
- */
- FourierCjSjCoefficients(final int nMax, final int sMax, final int jMax) {
- //Save parameters
- this.nMax = nMax;
- this.sMax = sMax;
- this.jMax = jMax;
- //Create objects
- wnsjEtomjmsCoefficient = new WnsjEtomjmsCoefficient();
- ABDECoefficients = new CjSjAlphaBetaKH();
- gns = new GnsCoefficients(nMax, sMax);
- //create arays
- this.cj = new double[7][jMax + 1];
- this.sj = new double[7][jMax + 1];
- this.cjlambda = new double[jMax];
- this.sjlambda = new double[jMax];
- computeCoefficients();
- }
- /**
- * Compute all coefficients.
- */
- private void computeCoefficients() {
- for (int j = 1; j <= jMax; j++) {
- // initialise the coefficients
- for (int i = 0; i <= 6; i++) {
- cj[i][j] = 0.;
- sj[i][j] = 0.;
- }
- if (j < jMax) {
- // initialise the C<sup>j</sup><sub>,λ</sub> and S<sup>j</sup><sub>,λ</sub> coefficients
- cjlambda[j] = 0.;
- sjlambda[j] = 0.;
- }
- for (int s = 0; s <= sMax; s++) {
- // Compute the coefficients A<sub>j, s</sub>, B<sub>j, s</sub>, D<sub>j, s</sub> and E<sub>j, s</sub>
- ABDECoefficients.computeCoefficients(j, s);
- // compute starting value for n
- final int minN = FastMath.max(2, FastMath.max(j - 1, s));
- for (int n = minN; n <= nMax; n++) {
- // check if n-s is even
- if ((n - s) % 2 == 0) {
- // compute the coefficient e<sup>-|j-s|</sup>*w<sub>j</sub><sup>n+1, s</sup> and its derivatives
- final double[] wjnp1semjms = wnsjEtomjmsCoefficient.computeWjnsEmjmsAndDeriv(j, s, n + 1);
- // compute the coefficient e<sup>-|j-s|</sup>*w<sub>-j</sub><sup>n+1, s</sup> and its derivatives
- final double[] wmjnp1semjms = wnsjEtomjmsCoefficient.computeWjnsEmjmsAndDeriv(-j, s, n + 1);
- // compute common factors
- final double coef1 = -(wjnp1semjms[0] * ABDECoefficients.getCoefA() + wmjnp1semjms[0] * ABDECoefficients.getCoefB());
- final double coef2 = wjnp1semjms[0] * ABDECoefficients.getCoefD() + wmjnp1semjms[0] * ABDECoefficients.getCoefE();
- //Compute C<sup>j</sup>
- cj[0][j] += gns.getGns(n, s) * coef1;
- //Compute dC<sup>j</sup> / da
- cj[1][j] += gns.getdGnsda(n, s) * coef1;
- //Compute dC<sup>j</sup> / dk
- cj[2][j] += -gns.getGns(n, s) *
- (
- wjnp1semjms[1] * ABDECoefficients.getCoefA() +
- wjnp1semjms[0] * ABDECoefficients.getdCoefAdk() +
- wmjnp1semjms[1] * ABDECoefficients.getCoefB() +
- wmjnp1semjms[0] * ABDECoefficients.getdCoefBdk()
- );
- //Compute dC<sup>j</sup> / dh
- cj[3][j] += -gns.getGns(n, s) *
- (
- wjnp1semjms[2] * ABDECoefficients.getCoefA() +
- wjnp1semjms[0] * ABDECoefficients.getdCoefAdh() +
- wmjnp1semjms[2] * ABDECoefficients.getCoefB() +
- wmjnp1semjms[0] * ABDECoefficients.getdCoefBdh()
- );
- //Compute dC<sup>j</sup> / dα
- cj[4][j] += -gns.getGns(n, s) *
- (
- wjnp1semjms[0] * ABDECoefficients.getdCoefAdalpha() +
- wmjnp1semjms[0] * ABDECoefficients.getdCoefBdalpha()
- );
- //Compute dC<sup>j</sup> / dβ
- cj[5][j] += -gns.getGns(n, s) *
- (
- wjnp1semjms[0] * ABDECoefficients.getdCoefAdbeta() +
- wmjnp1semjms[0] * ABDECoefficients.getdCoefBdbeta()
- );
- //Compute dC<sup>j</sup> / dγ
- cj[6][j] += gns.getdGnsdgamma(n, s) * coef1;
- //Compute S<sup>j</sup>
- sj[0][j] += gns.getGns(n, s) * coef2;
- //Compute dS<sup>j</sup> / da
- sj[1][j] += gns.getdGnsda(n, s) * coef2;
- //Compute dS<sup>j</sup> / dk
- sj[2][j] += gns.getGns(n, s) *
- (
- wjnp1semjms[1] * ABDECoefficients.getCoefD() +
- wjnp1semjms[0] * ABDECoefficients.getdCoefDdk() +
- wmjnp1semjms[1] * ABDECoefficients.getCoefE() +
- wmjnp1semjms[0] * ABDECoefficients.getdCoefEdk()
- );
- //Compute dS<sup>j</sup> / dh
- sj[3][j] += gns.getGns(n, s) *
- (
- wjnp1semjms[2] * ABDECoefficients.getCoefD() +
- wjnp1semjms[0] * ABDECoefficients.getdCoefDdh() +
- wmjnp1semjms[2] * ABDECoefficients.getCoefE() +
- wmjnp1semjms[0] * ABDECoefficients.getdCoefEdh()
- );
- //Compute dS<sup>j</sup> / dα
- sj[4][j] += gns.getGns(n, s) *
- (
- wjnp1semjms[0] * ABDECoefficients.getdCoefDdalpha() +
- wmjnp1semjms[0] * ABDECoefficients.getdCoefEdalpha()
- );
- //Compute dS<sup>j</sup> / dβ
- sj[5][j] += gns.getGns(n, s) *
- (
- wjnp1semjms[0] * ABDECoefficients.getdCoefDdbeta() +
- wmjnp1semjms[0] * ABDECoefficients.getdCoefEdbeta()
- );
- //Compute dS<sup>j</sup> / dγ
- sj[6][j] += gns.getdGnsdgamma(n, s) * coef2;
- //Check if n is greater or equal to j and j is at most jMax-1
- if (n >= j && j < jMax) {
- // compute the coefficient e<sup>-|j-s|</sup>*w<sub>j</sub><sup>n, s</sup> and its derivatives
- final double[] wjnsemjms = wnsjEtomjmsCoefficient.computeWjnsEmjmsAndDeriv(j, s, n);
- // compute the coefficient e<sup>-|j-s|</sup>*w<sub>-j</sub><sup>n, s</sup> and its derivatives
- final double[] wmjnsemjms = wnsjEtomjmsCoefficient.computeWjnsEmjmsAndDeriv(-j, s, n);
- //Compute C<sup>j</sup><sub>,λ</sub>
- cjlambda[j] += gns.getGns(n, s) * (wjnsemjms[0] * ABDECoefficients.getCoefD() + wmjnsemjms[0] * ABDECoefficients.getCoefE());
- //Compute S<sup>j</sup><sub>,λ</sub>
- sjlambda[j] += gns.getGns(n, s) * (wjnsemjms[0] * ABDECoefficients.getCoefA() + wmjnsemjms[0] * ABDECoefficients.getCoefB());
- }
- }
- }
- }
- // Divide by j
- for (int i = 0; i <= 6; i++) {
- cj[i][j] /= j;
- sj[i][j] /= j;
- }
- }
- //The C⁰ coefficients are not computed here.
- //They are evaluated at the final point.
- //C⁰<sub>,λ</sub>
- cjlambda[0] = k * cjlambda[1] / 2. + h * sjlambda[1] / 2.;
- }
- /** Get the Fourier coefficient C<sup>j</sup>.
- * @param j j index
- * @return C<sup>j</sup>
- */
- public double getCj(final int j) {
- return cj[0][j];
- }
- /** Get the derivative dC<sup>j</sup>/da.
- * @param j j index
- * @return dC<sup>j</sup>/da
- */
- public double getdCjda(final int j) {
- return cj[1][j];
- }
- /** Get the derivative dC<sup>j</sup>/dk.
- * @param j j index
- * @return dC<sup>j</sup>/dk
- */
- public double getdCjdk(final int j) {
- return cj[2][j];
- }
- /** Get the derivative dC<sup>j</sup>/dh.
- * @param j j index
- * @return dC<sup>j</sup>/dh
- */
- public double getdCjdh(final int j) {
- return cj[3][j];
- }
- /** Get the derivative dC<sup>j</sup>/dα.
- * @param j j index
- * @return dC<sup>j</sup>/dα
- */
- public double getdCjdalpha(final int j) {
- return cj[4][j];
- }
- /** Get the derivative dC<sup>j</sup>/dβ.
- * @param j j index
- * @return dC<sup>j</sup>/dβ
- */
- public double getdCjdbeta(final int j) {
- return cj[5][j];
- }
- /** Get the derivative dC<sup>j</sup>/dγ.
- * @param j j index
- * @return dC<sup>j</sup>/dγ
- */
- public double getdCjdgamma(final int j) {
- return cj[6][j];
- }
- /** Get the Fourier coefficient S<sup>j</sup>.
- * @param j j index
- * @return S<sup>j</sup>
- */
- public double getSj(final int j) {
- return sj[0][j];
- }
- /** Get the derivative dS<sup>j</sup>/da.
- * @param j j index
- * @return dS<sup>j</sup>/da
- */
- public double getdSjda(final int j) {
- return sj[1][j];
- }
- /** Get the derivative dS<sup>j</sup>/dk.
- * @param j j index
- * @return dS<sup>j</sup>/dk
- */
- public double getdSjdk(final int j) {
- return sj[2][j];
- }
- /** Get the derivative dS<sup>j</sup>/dh.
- * @param j j index
- * @return dS<sup>j</sup>/dh
- */
- public double getdSjdh(final int j) {
- return sj[3][j];
- }
- /** Get the derivative dS<sup>j</sup>/dα.
- * @param j j index
- * @return dS<sup>j</sup>/dα
- */
- public double getdSjdalpha(final int j) {
- return sj[4][j];
- }
- /** Get the derivative dS<sup>j</sup>/dβ.
- * @param j j index
- * @return dS<sup>j</sup>/dβ
- */
- public double getdSjdbeta(final int j) {
- return sj[5][j];
- }
- /** Get the derivative dS<sup>j</sup>/dγ.
- * @param j j index
- * @return dS<sup>j</sup>/dγ
- */
- public double getdSjdgamma(final int j) {
- return sj[6][j];
- }
- /** Get the coefficient C⁰<sub>,λ</sub>.
- * @return C⁰<sub>,λ</sub>
- */
- public double getC0Lambda() {
- return cjlambda[0];
- }
- /** Get the coefficient C<sup>j</sup><sub>,λ</sub>.
- * @param j j index
- * @return C<sup>j</sup><sub>,λ</sub>
- */
- public double getCjLambda(final int j) {
- if (j < 1 || j >= jMax) {
- return 0.;
- }
- return cjlambda[j];
- }
- /** Get the coefficient S<sup>j</sup><sub>,λ</sub>.
- * @param j j index
- * @return S<sup>j</sup><sub>,λ</sub>
- */
- public double getSjLambda(final int j) {
- if (j < 1 || j >= jMax) {
- return 0.;
- }
- return sjlambda[j];
- }
- }
- /** This class covers the coefficients e<sup>-|j-s|</sup>*w<sub>j</sub><sup>n, s</sup> and their derivatives by h and k.
- *
- * <p>
- * Starting from Danielson 4.2-9,10,11 and taking into account that fact that: <br />
- * c = e / (1 + (1 - e²)<sup>1/2</sup>) = e / (1 + B) = e * b <br/>
- * the expression e<sup>-|j-s|</sup>*w<sub>j</sub><sup>n, s</sup>
- * can be written as: <br/ >
- * - for |s| > |j| <br />
- * e<sup>-|j-s|</sup>*w<sub>j</sub><sup>n, s</sup> =
- * (((n + s)!(n - s)!)/((n + j)!(n - j)!)) *
- * (-b)<sup>|j-s|</sup> *
- * ((1 - c²)<sup>n-|s|</sup>/(1 + c²)<sup>n</sup>) *
- * P<sub>n-|s|</sub><sup>|j-s|, |j+s|</sup>(χ) <br />
- * <br />
- * - for |s| <= |j| <br />
- * e<sup>-|j-s|</sup>*w<sub>j</sub><sup>n, s</sup> =
- * (-b)<sup>|j-s|</sup> *
- * ((1 - c²)<sup>n-|j|</sup>/(1 + c²)<sup>n</sup>) *
- * P<sub>n-|j|</sub><sup>|j-s|, |j+s|</sup>(χ)
- * </p>
- *
- * @author Lucian Barbulescu
- */
- private class WnsjEtomjmsCoefficient {
- /** The value c.
- * <p>
- * c = e / (1 + (1 - e²)<sup>1/2</sup>) = e / (1 + B) = e * b <br/>
- * </p>
- * */
- private final double c;
- /** db / dh. */
- private final double dbdh;
- /** db / dk. */
- private final double dbdk;
- /** dc / dh = e * db/dh + b * de/dh. */
- private final double dcdh;
- /** dc / dk = e * db/dk + b * de/dk. */
- private final double dcdk;
- /** The values (1 - c²)<sup>n</sup>. <br />
- * The maximum possible value for the power is N + 1 */
- private final double[] omc2tn;
- /** The values (1 + c²)<sup>n</sup>. <br />
- * The maximum possible value for the power is N + 1 */
- private final double[] opc2tn;
- /** The values b<sup>|j-s|</sup>. */
- private final double[] btjms;
- /**
- * Standard constructor.
- */
- WnsjEtomjmsCoefficient() {
- //initialise fields
- c = ecc * b;
- final double c2 = c * c;
- //b² * χ
- final double b2Chi = b * b * X;
- //Compute derivatives of b
- dbdh = h * b2Chi;
- dbdk = k * b2Chi;
- //Compute derivatives of c
- if (ecc == 0.0) {
- // we are at a perfectly circular orbit singularity here
- // we arbitrarily consider the perigee is along the X axis,
- // i.e cos(ω + Ω) = h/ecc 1 and sin(ω + Ω) = k/ecc = 0
- dcdh = ecc * dbdh + b;
- dcdk = ecc * dbdk;
- } else {
- dcdh = ecc * dbdh + b * h / ecc;
- dcdk = ecc * dbdk + b * k / ecc;
- }
- //Compute the powers (1 - c²)<sup>n</sup> and (1 + c²)<sup>n</sup>
- omc2tn = new double[maxAR3Pow + maxFreqF + 2];
- opc2tn = new double[maxAR3Pow + maxFreqF + 2];
- final double omc2 = 1. - c2;
- final double opc2 = 1. + c2;
- omc2tn[0] = 1.;
- opc2tn[0] = 1.;
- for (int i = 1; i <= maxAR3Pow + maxFreqF + 1; i++) {
- omc2tn[i] = omc2tn[i - 1] * omc2;
- opc2tn[i] = opc2tn[i - 1] * opc2;
- }
- //Compute the powers of b
- btjms = new double[maxAR3Pow + maxFreqF + 1];
- btjms[0] = 1.;
- for (int i = 1; i <= maxAR3Pow + maxFreqF; i++) {
- btjms[i] = btjms[i - 1] * b;
- }
- }
- /** Compute the value of the coefficient e<sup>-|j-s|</sup>*w<sub>j</sub><sup>n, s</sup> and its derivatives by h and k. <br />
- *
- * @param j j index
- * @param s s index
- * @param n n index
- * @return an array containing the value of the coefficient at index 0, the derivative by k at index 1 and the derivative by h at index 2
- */
- public double[] computeWjnsEmjmsAndDeriv(final int j, final int s, final int n) {
- final double[] wjnsemjms = new double[] {0., 0., 0.};
- // |j|
- final int absJ = FastMath.abs(j);
- // |s|
- final int absS = FastMath.abs(s);
- // |j - s|
- final int absJmS = FastMath.abs(j - s);
- // |j + s|
- final int absJpS = FastMath.abs(j + s);
- //The lower index of P. Also the power of (1 - c²)
- final int l;
- // the factorial ratio coefficient or 1. if |s| <= |j|
- final double factCoef;
- if (absS > absJ) {
- factCoef = (fact[n + s] / fact[n + j]) * (fact[n - s] / fact[n - j]);
- l = n - absS;
- } else {
- factCoef = 1.;
- l = n - absJ;
- }
- // (-1)<sup>|j-s|</sup>
- final double sign = absJmS % 2 != 0 ? -1. : 1.;
- //(1 - c²)<sup>n-|s|</sup> / (1 + c²)<sup>n</sup>
- final double coef1 = omc2tn[l] / opc2tn[n];
- //-b<sup>|j-s|</sup>
- final double coef2 = sign * btjms[absJmS];
- // P<sub>l</sub><sup>|j-s|, |j+s|</sup>(χ)
- final DerivativeStructure jac =
- JacobiPolynomials.getValue(l, absJmS, absJpS, factory.variable(0, X));
- // the derivative of coef1 by c
- final double dcoef1dc = -coef1 * 2. * c * (((double) n) / opc2tn[1] + ((double) l) / omc2tn[1]);
- // the derivative of coef1 by h
- final double dcoef1dh = dcoef1dc * dcdh;
- // the derivative of coef1 by k
- final double dcoef1dk = dcoef1dc * dcdk;
- // the derivative of coef2 by b
- final double dcoef2db = absJmS == 0 ? 0 : sign * (double) absJmS * btjms[absJmS - 1];
- // the derivative of coef2 by h
- final double dcoef2dh = dcoef2db * dbdh;
- // the derivative of coef2 by k
- final double dcoef2dk = dcoef2db * dbdk;
- // the jacobi polynomial value
- final double jacobi = jac.getValue();
- // the derivative of the Jacobi polynomial by h
- final double djacobidh = jac.getPartialDerivative(1) * hXXX;
- // the derivative of the Jacobi polynomial by k
- final double djacobidk = jac.getPartialDerivative(1) * kXXX;
- //group the above coefficients to limit the mathematical operations
- final double term1 = factCoef * coef1 * coef2;
- final double term2 = factCoef * coef1 * jacobi;
- final double term3 = factCoef * coef2 * jacobi;
- //compute e<sup>-|j-s|</sup>*w<sub>j</sub><sup>n, s</sup> and its derivatives by k and h
- wjnsemjms[0] = term1 * jacobi;
- wjnsemjms[1] = dcoef1dk * term3 + dcoef2dk * term2 + djacobidk * term1;
- wjnsemjms[2] = dcoef1dh * term3 + dcoef2dh * term2 + djacobidh * term1;
- return wjnsemjms;
- }
- }
- /** The G<sub>n,s</sub> coefficients and their derivatives.
- * <p>
- * See Danielson, 4.2-17
- *
- * @author Lucian Barbulescu
- */
- private class GnsCoefficients {
- /** Maximum value for n index. */
- private final int nMax;
- /** Maximum value for s index. */
- private final int sMax;
- /** The coefficients G<sub>n,s</sub>. */
- private final double gns[][];
- /** The derivatives of the coefficients G<sub>n,s</sub> by a. */
- private final double dgnsda[][];
- /** The derivatives of the coefficients G<sub>n,s</sub> by γ. */
- private final double dgnsdgamma[][];
- /** Standard constructor.
- *
- * @param nMax maximum value for n indes
- * @param sMax maximum value for s index
- */
- GnsCoefficients(final int nMax, final int sMax) {
- this.nMax = nMax;
- this.sMax = sMax;
- final int rows = nMax + 1;
- final int columns = sMax + 1;
- this.gns = new double[rows][columns];
- this.dgnsda = new double[rows][columns];
- this.dgnsdgamma = new double[rows][columns];
- // Generate the coefficients
- generateCoefficients();
- }
- /**
- * Compute the coefficient G<sub>n,s</sub> and its derivatives.
- * <p>
- * Only the derivatives by a and γ are computed as all others are 0
- * </p>
- */
- private void generateCoefficients() {
- for (int s = 0; s <= sMax; s++) {
- // The n index is always at least the maximum between 2 and s
- final int minN = FastMath.max(2, s);
- for (int n = minN; n <= nMax; n++) {
- // compute the coefficients only if (n - s) % 2 == 0
- if ( (n - s) % 2 == 0 ) {
- // Kronecker symbol (2 - delta(0,s))
- final double delta0s = (s == 0) ? 1. : 2.;
- final double vns = Vns.get(new NSKey(n, s));
- final double coef0 = delta0s * aoR3Pow[n] * vns * muoR3;
- final double coef1 = coef0 * Qns[n][s];
- // dQns/dGamma = Q(n, s + 1) from Equation 3.1-(8)
- // for n = s, Q(n, n + 1) = 0. (Cefola & Broucke, 1975)
- final double dqns = (n == s) ? 0. : Qns[n][s + 1];
- //Compute the coefficient and its derivatives.
- this.gns[n][s] = coef1;
- this.dgnsda[n][s] = coef1 * n / a;
- this.dgnsdgamma[n][s] = coef0 * dqns;
- } else {
- // the coefficient and its derivatives is 0
- this.gns[n][s] = 0.;
- this.dgnsda[n][s] = 0.;
- this.dgnsdgamma[n][s] = 0.;
- }
- }
- }
- }
- /** Get the coefficient G<sub>n,s</sub>.
- *
- * @param n n index
- * @param s s index
- * @return the coefficient G<sub>n,s</sub>
- */
- public double getGns(final int n, final int s) {
- return this.gns[n][s];
- }
- /** Get the derivative dG<sub>n,s</sub> / da.
- *
- * @param n n index
- * @param s s index
- * @return the derivative dG<sub>n,s</sub> / da
- */
- public double getdGnsda(final int n, final int s) {
- return this.dgnsda[n][s];
- }
- /** Get the derivative dG<sub>n,s</sub> / dγ.
- *
- * @param n n index
- * @param s s index
- * @return the derivative dG<sub>n,s</sub> / dγ
- */
- public double getdGnsdgamma(final int n, final int s) {
- return this.dgnsdgamma[n][s];
- }
- }
- /** This class computes the terms containing the coefficients C<sub>j</sub> and S<sub>j</sub> of (α, β) or (k, h).
- *
- * <p>
- * The following terms and their derivatives by k, h, alpha and beta are considered: <br/ >
- * - sign(j-s) * C<sub>s</sub>(α, β) * S<sub>|j-s|</sub>(k, h) + S<sub>s</sub>(α, β) * C<sub>|j-s|</sub>(k, h) <br />
- * - C<sub>s</sub>(α, β) * S<sub>j+s</sub>(k, h) - S<sub>s</sub>(α, β) * C<sub>j+s</sub>(k, h) <br />
- * - C<sub>s</sub>(α, β) * C<sub>|j-s|</sub>(k, h) - sign(j-s) * S<sub>s</sub>(α, β) * S<sub>|j-s|</sub>(k, h) <br />
- * - C<sub>s</sub>(α, β) * C<sub>j+s</sub>(k, h) + S<sub>s</sub>(α, β) * S<sub>j+s</sub>(k, h) <br />
- * For the ease of usage the above terms are renamed A<sub>js</sub>, B<sub>js</sub>, D<sub>js</sub> and E<sub>js</sub> respectively <br />
- * See the CS Mathematical report $3.5.3.2 for more details
- * </p>
- * @author Lucian Barbulescu
- */
- private class CjSjAlphaBetaKH {
- /** The C<sub>j</sub>(k, h) and the S<sub>j</sub>(k, h) series. */
- private final CjSjCoefficient cjsjkh;
- /** The C<sub>j</sub>(α, β) and the S<sub>j</sub>(α, β) series. */
- private final CjSjCoefficient cjsjalbe;
- /** The coeficient sign(j-s) * C<sub>s</sub>(α, β) * S<sub>|j-s|</sub>(k, h) + S<sub>s</sub>(α, β) * C<sub>|j-s|</sub>(k, h)
- * and its derivative by k, h, α and β. */
- private final double coefAandDeriv[];
- /** The coeficient C<sub>s</sub>(α, β) * S<sub>j+s</sub>(k, h) - S<sub>s</sub>(α, β) * C<sub>j+s</sub>(k, h)
- * and its derivative by k, h, α and β. */
- private final double coefBandDeriv[];
- /** The coeficient C<sub>s</sub>(α, β) * C<sub>|j-s|</sub>(k, h) - sign(j-s) * S<sub>s</sub>(α, β) * S<sub>|j-s|</sub>(k, h)
- * and its derivative by k, h, α and β. */
- private final double coefDandDeriv[];
- /** The coeficient C<sub>s</sub>(α, β) * C<sub>j+s</sub>(k, h) + S<sub>s</sub>(α, β) * S<sub>j+s</sub>(k, h)
- * and its derivative by k, h, α and β. */
- private final double coefEandDeriv[];
- /**
- * Standard constructor.
- */
- CjSjAlphaBetaKH() {
- cjsjkh = new CjSjCoefficient(k, h);
- cjsjalbe = new CjSjCoefficient(alpha, beta);
- coefAandDeriv = new double[5];
- coefBandDeriv = new double[5];
- coefDandDeriv = new double[5];
- coefEandDeriv = new double[5];
- }
- /** Compute the coefficients and their derivatives for a given (j,s) pair.
- * @param j j index
- * @param s s index
- */
- public void computeCoefficients(final int j, final int s) {
- // sign of j-s
- final int sign = j < s ? -1 : 1;
- //|j-s|
- final int absJmS = FastMath.abs(j - s);
- //j+s
- final int jps = j + s;
- //Compute the coefficient A and its derivatives
- coefAandDeriv[0] = sign * cjsjalbe.getCj(s) * cjsjkh.getSj(absJmS) + cjsjalbe.getSj(s) * cjsjkh.getCj(absJmS);
- coefAandDeriv[1] = sign * cjsjalbe.getCj(s) * cjsjkh.getDsjDk(absJmS) + cjsjalbe.getSj(s) * cjsjkh.getDcjDk(absJmS);
- coefAandDeriv[2] = sign * cjsjalbe.getCj(s) * cjsjkh.getDsjDh(absJmS) + cjsjalbe.getSj(s) * cjsjkh.getDcjDh(absJmS);
- coefAandDeriv[3] = sign * cjsjalbe.getDcjDk(s) * cjsjkh.getSj(absJmS) + cjsjalbe.getDsjDk(s) * cjsjkh.getCj(absJmS);
- coefAandDeriv[4] = sign * cjsjalbe.getDcjDh(s) * cjsjkh.getSj(absJmS) + cjsjalbe.getDsjDh(s) * cjsjkh.getCj(absJmS);
- //Compute the coefficient B and its derivatives
- coefBandDeriv[0] = cjsjalbe.getCj(s) * cjsjkh.getSj(jps) - cjsjalbe.getSj(s) * cjsjkh.getCj(jps);
- coefBandDeriv[1] = cjsjalbe.getCj(s) * cjsjkh.getDsjDk(jps) - cjsjalbe.getSj(s) * cjsjkh.getDcjDk(jps);
- coefBandDeriv[2] = cjsjalbe.getCj(s) * cjsjkh.getDsjDh(jps) - cjsjalbe.getSj(s) * cjsjkh.getDcjDh(jps);
- coefBandDeriv[3] = cjsjalbe.getDcjDk(s) * cjsjkh.getSj(jps) - cjsjalbe.getDsjDk(s) * cjsjkh.getCj(jps);
- coefBandDeriv[4] = cjsjalbe.getDcjDh(s) * cjsjkh.getSj(jps) - cjsjalbe.getDsjDh(s) * cjsjkh.getCj(jps);
- //Compute the coefficient D and its derivatives
- coefDandDeriv[0] = cjsjalbe.getCj(s) * cjsjkh.getCj(absJmS) - sign * cjsjalbe.getSj(s) * cjsjkh.getSj(absJmS);
- coefDandDeriv[1] = cjsjalbe.getCj(s) * cjsjkh.getDcjDk(absJmS) - sign * cjsjalbe.getSj(s) * cjsjkh.getDsjDk(absJmS);
- coefDandDeriv[2] = cjsjalbe.getCj(s) * cjsjkh.getDcjDh(absJmS) - sign * cjsjalbe.getSj(s) * cjsjkh.getDsjDh(absJmS);
- coefDandDeriv[3] = cjsjalbe.getDcjDk(s) * cjsjkh.getCj(absJmS) - sign * cjsjalbe.getDsjDk(s) * cjsjkh.getSj(absJmS);
- coefDandDeriv[4] = cjsjalbe.getDcjDh(s) * cjsjkh.getCj(absJmS) - sign * cjsjalbe.getDsjDh(s) * cjsjkh.getSj(absJmS);
- //Compute the coefficient E and its derivatives
- coefEandDeriv[0] = cjsjalbe.getCj(s) * cjsjkh.getCj(jps) + cjsjalbe.getSj(s) * cjsjkh.getSj(jps);
- coefEandDeriv[1] = cjsjalbe.getCj(s) * cjsjkh.getDcjDk(jps) + cjsjalbe.getSj(s) * cjsjkh.getDsjDk(jps);
- coefEandDeriv[2] = cjsjalbe.getCj(s) * cjsjkh.getDcjDh(jps) + cjsjalbe.getSj(s) * cjsjkh.getDsjDh(jps);
- coefEandDeriv[3] = cjsjalbe.getDcjDk(s) * cjsjkh.getCj(jps) + cjsjalbe.getDsjDk(s) * cjsjkh.getSj(jps);
- coefEandDeriv[4] = cjsjalbe.getDcjDh(s) * cjsjkh.getCj(jps) + cjsjalbe.getDsjDh(s) * cjsjkh.getSj(jps);
- }
- /** Get the value of coefficient A<sub>j,s</sub>.
- *
- * @return the coefficient A<sub>j,s</sub>
- */
- public double getCoefA() {
- return coefAandDeriv[0];
- }
- /** Get the value of coefficient dA<sub>j,s</sub>/dk.
- *
- * @return the coefficient dA<sub>j,s</sub>/dk
- */
- public double getdCoefAdk() {
- return coefAandDeriv[1];
- }
- /** Get the value of coefficient dA<sub>j,s</sub>/dh.
- *
- * @return the coefficient dA<sub>j,s</sub>/dh
- */
- public double getdCoefAdh() {
- return coefAandDeriv[2];
- }
- /** Get the value of coefficient dA<sub>j,s</sub>/dα.
- *
- * @return the coefficient dA<sub>j,s</sub>/dα
- */
- public double getdCoefAdalpha() {
- return coefAandDeriv[3];
- }
- /** Get the value of coefficient dA<sub>j,s</sub>/dβ.
- *
- * @return the coefficient dA<sub>j,s</sub>/dβ
- */
- public double getdCoefAdbeta() {
- return coefAandDeriv[4];
- }
- /** Get the value of coefficient B<sub>j,s</sub>.
- *
- * @return the coefficient B<sub>j,s</sub>
- */
- public double getCoefB() {
- return coefBandDeriv[0];
- }
- /** Get the value of coefficient dB<sub>j,s</sub>/dk.
- *
- * @return the coefficient dB<sub>j,s</sub>/dk
- */
- public double getdCoefBdk() {
- return coefBandDeriv[1];
- }
- /** Get the value of coefficient dB<sub>j,s</sub>/dh.
- *
- * @return the coefficient dB<sub>j,s</sub>/dh
- */
- public double getdCoefBdh() {
- return coefBandDeriv[2];
- }
- /** Get the value of coefficient dB<sub>j,s</sub>/dα.
- *
- * @return the coefficient dB<sub>j,s</sub>/dα
- */
- public double getdCoefBdalpha() {
- return coefBandDeriv[3];
- }
- /** Get the value of coefficient dB<sub>j,s</sub>/dβ.
- *
- * @return the coefficient dB<sub>j,s</sub>/dβ
- */
- public double getdCoefBdbeta() {
- return coefBandDeriv[4];
- }
- /** Get the value of coefficient D<sub>j,s</sub>.
- *
- * @return the coefficient D<sub>j,s</sub>
- */
- public double getCoefD() {
- return coefDandDeriv[0];
- }
- /** Get the value of coefficient dD<sub>j,s</sub>/dk.
- *
- * @return the coefficient dD<sub>j,s</sub>/dk
- */
- public double getdCoefDdk() {
- return coefDandDeriv[1];
- }
- /** Get the value of coefficient dD<sub>j,s</sub>/dh.
- *
- * @return the coefficient dD<sub>j,s</sub>/dh
- */
- public double getdCoefDdh() {
- return coefDandDeriv[2];
- }
- /** Get the value of coefficient dD<sub>j,s</sub>/dα.
- *
- * @return the coefficient dD<sub>j,s</sub>/dα
- */
- public double getdCoefDdalpha() {
- return coefDandDeriv[3];
- }
- /** Get the value of coefficient dD<sub>j,s</sub>/dβ.
- *
- * @return the coefficient dD<sub>j,s</sub>/dβ
- */
- public double getdCoefDdbeta() {
- return coefDandDeriv[4];
- }
- /** Get the value of coefficient E<sub>j,s</sub>.
- *
- * @return the coefficient E<sub>j,s</sub>
- */
- public double getCoefE() {
- return coefEandDeriv[0];
- }
- /** Get the value of coefficient dE<sub>j,s</sub>/dk.
- *
- * @return the coefficient dE<sub>j,s</sub>/dk
- */
- public double getdCoefEdk() {
- return coefEandDeriv[1];
- }
- /** Get the value of coefficient dE<sub>j,s</sub>/dh.
- *
- * @return the coefficient dE<sub>j,s</sub>/dh
- */
- public double getdCoefEdh() {
- return coefEandDeriv[2];
- }
- /** Get the value of coefficient dE<sub>j,s</sub>/dα.
- *
- * @return the coefficient dE<sub>j,s</sub>/dα
- */
- public double getdCoefEdalpha() {
- return coefEandDeriv[3];
- }
- /** Get the value of coefficient dE<sub>j,s</sub>/dβ.
- *
- * @return the coefficient dE<sub>j,s</sub>/dβ
- */
- public double getdCoefEdbeta() {
- return coefEandDeriv[4];
- }
- }
- /** This class computes the coefficients for the generating function S and its derivatives.
- * <p>
- * The form of the generating functions is: <br>
- * S = C⁰ + Σ<sub>j=1</sub><sup>N+1</sup>(C<sup>j</sup> * cos(jF) + S<sup>j</sup> * sin(jF)) <br>
- * The coefficients C⁰, C<sup>j</sup>, S<sup>j</sup> are the Fourrier coefficients
- * presented in Danielson 4.2-14,15 except for the case j=1 where
- * C¹ = C¹<sub>Fourier</sub> - hU and
- * S¹ = S¹<sub>Fourier</sub> + kU <br>
- * Also the coefficients of the derivatives of S by a, k, h, α, β, γ and λ
- * are computed end expressed in a similar manner. The formulas used are 4.2-19, 20, 23, 24
- * </p>
- * @author Lucian Barbulescu
- */
- private class GeneratingFunctionCoefficients {
- /** The Fourier coefficients as presented in Danielson 4.2-14,15. */
- private final FourierCjSjCoefficients cjsjFourier;
- /** Maximum value of j index. */
- private final int jMax;
- /** The coefficients C<sup>j</sup> of the function S and its derivatives.
- * <p>
- * The index j belongs to the interval [0,jMax]. The coefficient C⁰ is the free coefficient.<br>
- * Each column of the matrix contains the coefficient corresponding to the following functions: <br/>
- * - S <br/>
- * - dS / da <br/>
- * - dS / dk <br/>
- * - dS / dh <br/>
- * - dS / dα <br/>
- * - dS / dβ <br/>
- * - dS / dγ <br/>
- * - dS / dλ
- * </p>
- */
- private final double[][] cjCoefs;
- /** The coefficients S<sup>j</sup> of the function S and its derivatives.
- * <p>
- * The index j belongs to the interval [0,jMax].<br>
- * Each column of the matrix contains the coefficient corresponding to the following functions: <br/>
- * - S <br/>
- * - dS / da <br/>
- * - dS / dk <br/>
- * - dS / dh <br/>
- * - dS / dα <br/>
- * - dS / dβ <br/>
- * - dS / dγ <br/>
- * - dS / dλ
- * </p>
- */
- private final double[][] sjCoefs;
- /**
- * Standard constructor.
- *
- * @param nMax maximum value of n index
- * @param sMax maximum value of s index
- * @param jMax maximum value of j index
- */
- GeneratingFunctionCoefficients(final int nMax, final int sMax, final int jMax) {
- this.jMax = jMax;
- this.cjsjFourier = new FourierCjSjCoefficients(nMax, sMax, jMax);
- this.cjCoefs = new double[8][jMax + 1];
- this.sjCoefs = new double[8][jMax + 1];
- computeGeneratingFunctionCoefficients();
- }
- /**
- * Compute the coefficients for the generating function S and its derivatives.
- */
- private void computeGeneratingFunctionCoefficients() {
- // Compute potential U and derivatives
- final double[] dU = computeUDerivatives();
- //Compute the C<sup>j</sup> coefficients
- for (int j = 1; j <= jMax; j++) {
- //Compute the C<sup>j</sup> coefficients
- cjCoefs[0][j] = cjsjFourier.getCj(j);
- cjCoefs[1][j] = cjsjFourier.getdCjda(j);
- cjCoefs[2][j] = cjsjFourier.getdCjdk(j) - (cjsjFourier.getSjLambda(j - 1) - cjsjFourier.getSjLambda(j + 1)) / 2;
- cjCoefs[3][j] = cjsjFourier.getdCjdh(j) - (cjsjFourier.getCjLambda(j - 1) + cjsjFourier.getCjLambda(j + 1)) / 2;
- cjCoefs[4][j] = cjsjFourier.getdCjdalpha(j);
- cjCoefs[5][j] = cjsjFourier.getdCjdbeta(j);
- cjCoefs[6][j] = cjsjFourier.getdCjdgamma(j);
- cjCoefs[7][j] = cjsjFourier.getCjLambda(j);
- //Compute the S<sup>j</sup> coefficients
- sjCoefs[0][j] = cjsjFourier.getSj(j);
- sjCoefs[1][j] = cjsjFourier.getdSjda(j);
- sjCoefs[2][j] = cjsjFourier.getdSjdk(j) + (cjsjFourier.getCjLambda(j - 1) - cjsjFourier.getCjLambda(j + 1)) / 2;
- sjCoefs[3][j] = cjsjFourier.getdSjdh(j) - (cjsjFourier.getSjLambda(j - 1) + cjsjFourier.getSjLambda(j + 1)) / 2;
- sjCoefs[4][j] = cjsjFourier.getdSjdalpha(j);
- sjCoefs[5][j] = cjsjFourier.getdSjdbeta(j);
- sjCoefs[6][j] = cjsjFourier.getdSjdgamma(j);
- sjCoefs[7][j] = cjsjFourier.getSjLambda(j);
- //In the special case j == 1 there are some additional terms to be added
- if (j == 1) {
- //Additional terms for C<sup>j</sup> coefficients
- cjCoefs[0][j] += -h * U;
- cjCoefs[1][j] += -h * dU[0];
- cjCoefs[2][j] += -h * dU[1];
- cjCoefs[3][j] += -(h * dU[2] + U + cjsjFourier.getC0Lambda());
- cjCoefs[4][j] += -h * dU[3];
- cjCoefs[5][j] += -h * dU[4];
- cjCoefs[6][j] += -h * dU[5];
- //Additional terms for S<sup>j</sup> coefficients
- sjCoefs[0][j] += k * U;
- sjCoefs[1][j] += k * dU[0];
- sjCoefs[2][j] += k * dU[1] + U + cjsjFourier.getC0Lambda();
- sjCoefs[3][j] += k * dU[2];
- sjCoefs[4][j] += k * dU[3];
- sjCoefs[5][j] += k * dU[4];
- sjCoefs[6][j] += k * dU[5];
- }
- }
- }
- /** Get the coefficient C<sup>j</sup> for the function S.
- * <br>
- * Possible values for j are within the interval [0,jMax].
- * The value 0 is used to obtain the free coefficient C⁰
- * @param j j index
- * @return C<sup>j</sup> for the function S
- */
- public double getSCj(final int j) {
- return cjCoefs[0][j];
- }
- /** Get the coefficient S<sup>j</sup> for the function S.
- * <br>
- * Possible values for j are within the interval [1,jMax].
- * @param j j index
- * @return S<sup>j</sup> for the function S
- */
- public double getSSj(final int j) {
- return sjCoefs[0][j];
- }
- /** Get the coefficient C<sup>j</sup> for the derivative dS/da.
- * <br>
- * Possible values for j are within the interval [0,jMax].
- * The value 0 is used to obtain the free coefficient C⁰
- * @param j j index
- * @return C<sup>j</sup> for the function dS/da
- */
- public double getdSdaCj(final int j) {
- return cjCoefs[1][j];
- }
- /** Get the coefficient S<sup>j</sup> for the derivative dS/da.
- * <br>
- * Possible values for j are within the interval [1,jMax].
- * @param j j index
- * @return S<sup>j</sup> for the derivative dS/da
- */
- public double getdSdaSj(final int j) {
- return sjCoefs[1][j];
- }
- /** Get the coefficient C<sup>j</sup> for the derivative dS/dk
- * <br>
- * Possible values for j are within the interval [0,jMax].
- * The value 0 is used to obtain the free coefficient C⁰
- * @param j j index
- * @return C<sup>j</sup> for the function dS/dk
- */
- public double getdSdkCj(final int j) {
- return cjCoefs[2][j];
- }
- /** Get the coefficient S<sup>j</sup> for the derivative dS/dk.
- * <br>
- * Possible values for j are within the interval [1,jMax].
- * @param j j index
- * @return S<sup>j</sup> for the derivative dS/dk
- */
- public double getdSdkSj(final int j) {
- return sjCoefs[2][j];
- }
- /** Get the coefficient C<sup>j</sup> for the derivative dS/dh
- * <br>
- * Possible values for j are within the interval [0,jMax].
- * The value 0 is used to obtain the free coefficient C⁰
- * @param j j index
- * @return C<sup>j</sup> for the function dS/dh
- */
- public double getdSdhCj(final int j) {
- return cjCoefs[3][j];
- }
- /** Get the coefficient S<sup>j</sup> for the derivative dS/dh.
- * <br>
- * Possible values for j are within the interval [1,jMax].
- * @param j j index
- * @return S<sup>j</sup> for the derivative dS/dh
- */
- public double getdSdhSj(final int j) {
- return sjCoefs[3][j];
- }
- /** Get the coefficient C<sup>j</sup> for the derivative dS/dα
- * <br>
- * Possible values for j are within the interval [0,jMax].
- * The value 0 is used to obtain the free coefficient C⁰
- * @param j j index
- * @return C<sup>j</sup> for the function dS/dα
- */
- public double getdSdalphaCj(final int j) {
- return cjCoefs[4][j];
- }
- /** Get the coefficient S<sup>j</sup> for the derivative dS/dα.
- * <br>
- * Possible values for j are within the interval [1,jMax].
- * @param j j index
- * @return S<sup>j</sup> for the derivative dS/dα
- */
- public double getdSdalphaSj(final int j) {
- return sjCoefs[4][j];
- }
- /** Get the coefficient C<sup>j</sup> for the derivative dS/dβ
- * <br>
- * Possible values for j are within the interval [0,jMax].
- * The value 0 is used to obtain the free coefficient C⁰
- * @param j j index
- * @return C<sup>j</sup> for the function dS/dβ
- */
- public double getdSdbetaCj(final int j) {
- return cjCoefs[5][j];
- }
- /** Get the coefficient S<sup>j</sup> for the derivative dS/dβ.
- * <br>
- * Possible values for j are within the interval [1,jMax].
- * @param j j index
- * @return S<sup>j</sup> for the derivative dS/dβ
- */
- public double getdSdbetaSj(final int j) {
- return sjCoefs[5][j];
- }
- /** Get the coefficient C<sup>j</sup> for the derivative dS/dγ
- * <br>
- * Possible values for j are within the interval [0,jMax].
- * The value 0 is used to obtain the free coefficient C⁰
- * @param j j index
- * @return C<sup>j</sup> for the function dS/dγ
- */
- public double getdSdgammaCj(final int j) {
- return cjCoefs[6][j];
- }
- /** Get the coefficient S<sup>j</sup> for the derivative dS/dγ.
- * <br>
- * Possible values for j are within the interval [1,jMax].
- * @param j j index
- * @return S<sup>j</sup> for the derivative dS/dγ
- */
- public double getdSdgammaSj(final int j) {
- return sjCoefs[6][j];
- }
- /** Get the coefficient C<sup>j</sup> for the derivative dS/dλ
- * <br>
- * Possible values for j are within the interval [0,jMax].
- * The value 0 is used to obtain the free coefficient C⁰
- * @param j j index
- * @return C<sup>j</sup> for the function dS/dλ
- */
- public double getdSdlambdaCj(final int j) {
- return cjCoefs[7][j];
- }
- /** Get the coefficient S<sup>j</sup> for the derivative dS/dλ.
- * <br>
- * Possible values for j are within the interval [1,jMax].
- * @param j j index
- * @return S<sup>j</sup> for the derivative dS/dλ
- */
- public double getdSdlambdaSj(final int j) {
- return sjCoefs[7][j];
- }
- }
- /**
- * The coefficients used to compute the short periodic contribution for the Third body perturbation.
- * <p>
- * The short periodic contribution for the Third Body is expressed in Danielson 4.2-25.<br>
- * The coefficients C<sub>i</sub>⁰, C<sub>i</sub><sup>j</sup>, S<sub>i</sub><sup>j</sup>
- * are computed by replacing the corresponding values in formula 2.5.5-10.
- * </p>
- * @author Lucian Barbulescu
- */
- private static class ThirdBodyShortPeriodicCoefficients implements ShortPeriodTerms {
- /** Serializable UID. */
- private static final long serialVersionUID = 20151119L;
- /** Maximal value for j. */
- private final int jMax;
- /** Number of points used in the interpolation process. */
- private final int interpolationPoints;
- /** Max frequency of F. */
- private final int maxFreqF;
- /** Coefficients prefix. */
- private final String prefix;
- /** All coefficients slots. */
- private final transient TimeSpanMap<Slot> slots;
- /**
- * Standard constructor.
- * @param interpolationPoints number of points used in the interpolation process
- * @param jMax maximal value for j
- * @param maxFreqF Max frequency of F
- * @param bodyName third body name
- * @param slots all coefficients slots
- */
- ThirdBodyShortPeriodicCoefficients(final int jMax, final int interpolationPoints,
- final int maxFreqF, final String bodyName,
- final TimeSpanMap<Slot> slots) {
- this.jMax = jMax;
- this.interpolationPoints = interpolationPoints;
- this.maxFreqF = maxFreqF;
- this.prefix = "DSST-3rd-body-" + bodyName + "-";
- this.slots = slots;
- }
- /** Get the slot valid for some date.
- * @param meanStates mean states defining the slot
- * @return slot valid at the specified date
- */
- public Slot createSlot(final SpacecraftState... meanStates) {
- final Slot slot = new Slot(jMax, interpolationPoints);
- final AbsoluteDate first = meanStates[0].getDate();
- final AbsoluteDate last = meanStates[meanStates.length - 1].getDate();
- if (first.compareTo(last) <= 0) {
- slots.addValidAfter(slot, first);
- } else {
- slots.addValidBefore(slot, first);
- }
- return slot;
- }
- /** {@inheritDoc} */
- @Override
- public double[] value(final Orbit meanOrbit) {
- // select the coefficients slot
- final Slot slot = slots.get(meanOrbit.getDate());
- // the current eccentric longitude
- final double F = meanOrbit.getLE();
- //initialize the short periodic contribution with the corresponding C⁰ coeficient
- final double[] shortPeriodic = slot.cij[0].value(meanOrbit.getDate());
- // Add the cos and sin dependent terms
- for (int j = 1; j <= maxFreqF; j++) {
- //compute cos and sin
- final double cosjF = FastMath.cos(j * F);
- final double sinjF = FastMath.sin(j * F);
- final double[] c = slot.cij[j].value(meanOrbit.getDate());
- final double[] s = slot.sij[j].value(meanOrbit.getDate());
- for (int i = 0; i < 6; i++) {
- shortPeriodic[i] += c[i] * cosjF + s[i] * sinjF;
- }
- }
- return shortPeriodic;
- }
- /** {@inheritDoc} */
- @Override
- public String getCoefficientsKeyPrefix() {
- return prefix;
- }
- /** {@inheritDoc}
- * <p>
- * For third body attraction forces,there are maxFreqF + 1 cj coefficients,
- * maxFreqF sj coefficients where maxFreqF depends on the orbit.
- * The j index is the integer multiplier for the eccentric longitude argument
- * in the cj and sj coefficients.
- * </p>
- */
- @Override
- public Map<String, double[]> getCoefficients(final AbsoluteDate date, final Set<String> selected)
- throws OrekitException {
- // select the coefficients slot
- final Slot slot = slots.get(date);
- final Map<String, double[]> coefficients = new HashMap<String, double[]>(2 * maxFreqF + 1);
- storeIfSelected(coefficients, selected, slot.cij[0].value(date), "c", 0);
- for (int j = 1; j <= maxFreqF; j++) {
- storeIfSelected(coefficients, selected, slot.cij[j].value(date), "c", j);
- storeIfSelected(coefficients, selected, slot.sij[j].value(date), "s", j);
- }
- return coefficients;
- }
- /** Put a coefficient in a map if selected.
- * @param map map to populate
- * @param selected set of coefficients that should be put in the map
- * (empty set means all coefficients are selected)
- * @param value coefficient value
- * @param id coefficient identifier
- * @param indices list of coefficient indices
- */
- private void storeIfSelected(final Map<String, double[]> map, final Set<String> selected,
- final double[] value, final String id, final int... indices) {
- final StringBuilder keyBuilder = new StringBuilder(getCoefficientsKeyPrefix());
- keyBuilder.append(id);
- for (int index : indices) {
- keyBuilder.append('[').append(index).append(']');
- }
- final String key = keyBuilder.toString();
- if (selected.isEmpty() || selected.contains(key)) {
- map.put(key, value);
- }
- }
- /** Replace the instance with a data transfer object for serialization.
- * @return data transfer object that will be serialized
- * @exception NotSerializableException if an additional state provider is not serializable
- */
- private Object writeReplace() throws NotSerializableException {
- // slots transitions
- final SortedSet<TimeSpanMap.Transition<Slot>> transitions = slots.getTransitions();
- final AbsoluteDate[] transitionDates = new AbsoluteDate[transitions.size()];
- final Slot[] allSlots = new Slot[transitions.size() + 1];
- int i = 0;
- for (final TimeSpanMap.Transition<Slot> transition : transitions) {
- if (i == 0) {
- // slot before the first transition
- allSlots[i] = transition.getBefore();
- }
- if (i < transitionDates.length) {
- transitionDates[i] = transition.getDate();
- allSlots[++i] = transition.getAfter();
- }
- }
- return new DataTransferObject(jMax, interpolationPoints, maxFreqF, prefix,
- transitionDates, allSlots);
- }
- /** Internal class used only for serialization. */
- private static class DataTransferObject implements Serializable {
- /** Serializable UID. */
- private static final long serialVersionUID = 20160319L;
- /** Maximum value for j index. */
- private final int jMax;
- /** Number of points used in the interpolation process. */
- private final int interpolationPoints;
- /** Max frequency of F. */
- private final int maxFreqF;
- /** Coefficients prefix. */
- private final String prefix;
- /** Transitions dates. */
- private final AbsoluteDate[] transitionDates;
- /** All slots. */
- private final Slot[] allSlots;
- /** Simple constructor.
- * @param jMax maximum value for j index
- * @param interpolationPoints number of points used in the interpolation process
- * @param maxFreqF max frequency of F
- * @param prefix prefix for coefficients keys
- * @param transitionDates transitions dates
- * @param allSlots all slots
- */
- DataTransferObject(final int jMax, final int interpolationPoints,
- final int maxFreqF, final String prefix,
- final AbsoluteDate[] transitionDates, final Slot[] allSlots) {
- this.jMax = jMax;
- this.interpolationPoints = interpolationPoints;
- this.maxFreqF = maxFreqF;
- this.prefix = prefix;
- this.transitionDates = transitionDates;
- this.allSlots = allSlots;
- }
- /** Replace the deserialized data transfer object with a {@link ThirdBodyShortPeriodicCoefficients}.
- * @return replacement {@link ThirdBodyShortPeriodicCoefficients}
- */
- private Object readResolve() {
- final TimeSpanMap<Slot> slots = new TimeSpanMap<Slot>(allSlots[0]);
- for (int i = 0; i < transitionDates.length; ++i) {
- slots.addValidAfter(allSlots[i + 1], transitionDates[i]);
- }
- return new ThirdBodyShortPeriodicCoefficients(jMax, interpolationPoints, maxFreqF, prefix, slots);
- }
- }
- }
- /** Coefficients valid for one time slot. */
- private static class Slot implements Serializable {
- /** Serializable UID. */
- private static final long serialVersionUID = 20160319L;
- /** The coefficients C<sub>i</sub><sup>j</sup>.
- * <p>
- * The index order is cij[j][i] <br/>
- * i corresponds to the equinoctial element, as follows: <br/>
- * - i=0 for a <br/>
- * - i=1 for k <br/>
- * - i=2 for h <br/>
- * - i=3 for q <br/>
- * - i=4 for p <br/>
- * - i=5 for λ <br/>
- * </p>
- */
- private final ShortPeriodicsInterpolatedCoefficient[] cij;
- /** The coefficients S<sub>i</sub><sup>j</sup>.
- * <p>
- * The index order is sij[j][i] <br/>
- * i corresponds to the equinoctial element, as follows: <br/>
- * - i=0 for a <br/>
- * - i=1 for k <br/>
- * - i=2 for h <br/>
- * - i=3 for q <br/>
- * - i=4 for p <br/>
- * - i=5 for λ <br/>
- * </p>
- */
- private final ShortPeriodicsInterpolatedCoefficient[] sij;
- /** Simple constructor.
- * @param jMax maximum value for j index
- * @param interpolationPoints number of points used in the interpolation process
- */
- Slot(final int jMax, final int interpolationPoints) {
- // allocate the coefficients arrays
- cij = new ShortPeriodicsInterpolatedCoefficient[jMax + 1];
- sij = new ShortPeriodicsInterpolatedCoefficient[jMax + 1];
- for (int j = 0; j <= jMax; j++) {
- cij[j] = new ShortPeriodicsInterpolatedCoefficient(interpolationPoints);
- sij[j] = new ShortPeriodicsInterpolatedCoefficient(interpolationPoints);
- }
- }
- }
- }