FieldNumericalPropagator.java
- /* Copyright 2002-2018 CS Systèmes d'Information
- * Licensed to CS Systèmes d'Information (CS) under one or more
- * contributor license agreements. See the NOTICE file distributed with
- * this work for additional information regarding copyright ownership.
- * CS licenses this file to You under the Apache License, Version 2.0
- * (the "License"); you may not use this file except in compliance with
- * the License. You may obtain a copy of the License at
- *
- * http://www.apache.org/licenses/LICENSE-2.0
- *
- * Unless required by applicable law or agreed to in writing, software
- * distributed under the License is distributed on an "AS IS" BASIS,
- * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- * See the License for the specific language governing permissions and
- * limitations under the License.
- */
- package org.orekit.propagation.numerical;
- import java.util.ArrayList;
- import java.util.Arrays;
- import java.util.Collections;
- import java.util.List;
- import org.hipparchus.Field;
- import org.hipparchus.RealFieldElement;
- import org.hipparchus.geometry.euclidean.threed.FieldVector3D;
- import org.hipparchus.ode.FieldODEIntegrator;
- import org.hipparchus.util.MathArrays;
- import org.orekit.attitudes.AttitudeProvider;
- import org.orekit.attitudes.FieldAttitude;
- import org.orekit.errors.OrekitException;
- import org.orekit.errors.OrekitIllegalArgumentException;
- import org.orekit.errors.OrekitInternalError;
- import org.orekit.errors.OrekitMessages;
- import org.orekit.forces.ForceModel;
- import org.orekit.forces.gravity.NewtonianAttraction;
- import org.orekit.frames.Frame;
- import org.orekit.orbits.FieldOrbit;
- import org.orekit.orbits.OrbitType;
- import org.orekit.orbits.PositionAngle;
- import org.orekit.propagation.FieldSpacecraftState;
- import org.orekit.propagation.SpacecraftState;
- import org.orekit.propagation.events.FieldEventDetector;
- import org.orekit.propagation.integration.FieldAbstractIntegratedPropagator;
- import org.orekit.propagation.integration.FieldStateMapper;
- import org.orekit.time.AbsoluteDate;
- import org.orekit.time.FieldAbsoluteDate;
- import org.orekit.utils.FieldPVCoordinates;
- import org.orekit.utils.ParameterDriver;
- import org.orekit.utils.ParameterObserver;
- import org.orekit.utils.TimeStampedFieldPVCoordinates;
- /** This class propagates {@link org.orekit.orbits.FieldOrbit orbits} using
- * numerical integration.
- * <p>Numerical propagation is much more accurate than analytical propagation
- * like for example {@link org.orekit.propagation.analytical.KeplerianPropagator
- * Keplerian} or {@link org.orekit.propagation.analytical.EcksteinHechlerPropagator
- * Eckstein-Hechler}, but requires a few more steps to set up to be used properly.
- * Whereas analytical propagators are configured only thanks to their various
- * constructors and can be used immediately after construction, numerical propagators
- * configuration involve setting several parameters between construction time
- * and propagation time.</p>
- * <p>The configuration parameters that can be set are:</p>
- * <ul>
- * <li>the initial spacecraft state ({@link #setInitialState(FieldSpacecraftState)})</li>
- * <li>the central attraction coefficient ({@link #setMu(double)})</li>
- * <li>the various force models ({@link #addForceModel(ForceModel)},
- * {@link #removeForceModels()})</li>
- * <li>the {@link OrbitType type} of orbital parameters to be used for propagation
- * ({@link #setOrbitType(OrbitType)}),
- * <li>the {@link PositionAngle type} of position angle to be used in orbital parameters
- * to be used for propagation where it is relevant ({@link
- * #setPositionAngleType(PositionAngle)}),
- * <li>whether {@link org.orekit.propagation.integration.FieldAdditionalEquations additional equations}
- * should be propagated along with orbital state
- * ({@link #addAdditionalEquations(org.orekit.propagation.integration.FieldAdditionalEquations)}),
- * <li>the discrete events that should be triggered during propagation
- * ({@link #addEventDetector(FieldEventDetector)},
- * {@link #clearEventsDetectors()})</li>
- * <li>the binding logic with the rest of the application ({@link #setSlaveMode()},
- * {@link #setMasterMode(RealFieldElement, org.orekit.propagation.sampling.FieldOrekitFixedStepHandler)},
- * {@link #setMasterMode(org.orekit.propagation.sampling.FieldOrekitStepHandler)},
- * {@link #setEphemerisMode()}, {@link #getGeneratedEphemeris()})</li>
- * </ul>
- * <p>From these configuration parameters, only the initial state is mandatory. The default
- * propagation settings are in {@link OrbitType#EQUINOCTIAL equinoctial} parameters with
- * {@link PositionAngle#TRUE true} longitude argument. If the central attraction coefficient
- * is not explicitly specified, the one used to define the initial orbit will be used.
- * However, specifying only the initial state and perhaps the central attraction coefficient
- * would mean the propagator would use only Keplerian forces. In this case, the simpler {@link
- * org.orekit.propagation.analytical.KeplerianPropagator KeplerianPropagator} class would
- * perhaps be more effective.</p>
- * <p>The underlying numerical integrator set up in the constructor may also have its own
- * configuration parameters. Typical configuration parameters for adaptive stepsize integrators
- * are the min, max and perhaps start step size as well as the absolute and/or relative errors
- * thresholds.</p>
- * <p>The state that is seen by the integrator is a simple seven elements double array.
- * The six first elements are either:
- * <ul>
- * <li>the {@link org.orekit.orbits.FieldEquinoctialOrbit equinoctial orbit parameters} (a, e<sub>x</sub>,
- * e<sub>y</sub>, h<sub>x</sub>, h<sub>y</sub>, λ<sub>M</sub> or λ<sub>E</sub>
- * or λ<sub>v</sub>) in meters and radians,</li>
- * <li>the {@link org.orekit.orbits.FieldKeplerianOrbit Keplerian orbit parameters} (a, e, i, ω, Ω,
- * M or E or v) in meters and radians,</li>
- * <li>the {@link org.orekit.orbits.FieldCircularOrbit circular orbit parameters} (a, e<sub>x</sub>, e<sub>y</sub>, i,
- * Ω, α<sub>M</sub> or α<sub>E</sub> or α<sub>v</sub>) in meters
- * and radians,</li>
- * <li>the {@link org.orekit.orbits.FieldCartesianOrbit Cartesian orbit parameters} (x, y, z, v<sub>x</sub>,
- * v<sub>y</sub>, v<sub>z</sub>) in meters and meters per seconds.
- * </ul>
- * The last element is the mass in kilograms.
- * </p>
- * <p>The following code snippet shows a typical setting for Low Earth Orbit propagation in
- * equinoctial parameters and true longitude argument:</p>
- * <pre>
- * final T zero = field.getZero();
- * final T dP = zero.add(0.001);
- * final T minStep = zero.add(0.001);
- * final T maxStep = zero.add(500);
- * final T initStep = zero.add(60);
- * final double[][] tolerance = FieldNumericalPropagator.tolerances(dP, orbit, OrbitType.EQUINOCTIAL);
- * AdaptiveStepsizeFieldIntegrator<T> integrator = new DormandPrince853FieldIntegrator<>(field, minStep, maxStep, tolerance[0], tolerance[1]);
- * integrator.setInitialStepSize(initStep);
- * propagator = new FieldNumericalPropagator<>(field, integrator);
- * </pre>
- * <p>By default, at the end of the propagation, the propagator resets the initial state to the final state,
- * thus allowing a new propagation to be started from there without recomputing the part already performed.
- * This behaviour can be chenged by calling {@link #setResetAtEnd(boolean)}.
- * </p>
- * <p>Beware the same instance cannot be used simultaneously by different threads, the class is <em>not</em>
- * thread-safe.</p>
- * @see FieldSpacecraftState
- * @see ForceModel
- * @see org.orekit.propagation.sampling.FieldOrekitStepHandler
- * @see org.orekit.propagation.sampling.FieldOrekitFixedStepHandler
- * @see org.orekit.propagation.integration.FieldIntegratedEphemeris
- * @see FieldTimeDerivativesEquations
- *
- * @author Mathieu Roméro
- * @author Luc Maisonobe
- * @author Guylaine Prat
- * @author Fabien Maussion
- * @author Véronique Pommier-Maurussane
- */
- public class FieldNumericalPropagator<T extends RealFieldElement<T>> extends FieldAbstractIntegratedPropagator<T> {
- /** Force models used during the extrapolation of the FieldOrbit<T>, without Jacobians. */
- private final List<ForceModel> forceModels;
- /** Create a new instance of NumericalPropagator, based on orbit definition mu.
- * After creation, the instance is empty, i.e. the attitude provider is set to an
- * unspecified default law and there are no perturbing forces at all.
- * This means that if {@link #addForceModel addForceModel} is not
- * called after creation, the integrated orbit will follow a Keplerian
- * evolution only. The defaults are {@link OrbitType#EQUINOCTIAL}
- * for {@link #setOrbitType(OrbitType) propagation
- * orbit type} and {@link PositionAngle#TRUE} for {@link
- * #setPositionAngleType(PositionAngle) position angle type}.
- * @param integrator numerical integrator to use for propagation.
- * @param field Field used by default
- */
- public FieldNumericalPropagator(final Field<T> field, final FieldODEIntegrator<T> integrator) {
- super(field, integrator, true);
- forceModels = new ArrayList<ForceModel>();
- initMapper();
- setAttitudeProvider(DEFAULT_LAW);
- setMu(Double.NaN);
- setSlaveMode();
- setOrbitType(OrbitType.EQUINOCTIAL);
- setPositionAngleType(PositionAngle.TRUE);
- }
- /** Set the central attraction coefficient μ.
- * @param mu central attraction coefficient (m³/s²)
- * @see #addForceModel(ForceModel)
- */
- public void setMu(final double mu) {
- addForceModel(new NewtonianAttraction(mu));
- }
- /** Set the central attraction coefficient μ only in upper class.
- * @param mu central attraction coefficient (m³/s²)
- */
- private void superSetMu(final double mu) {
- super.setMu(mu);
- }
- /** Check if Newtonian attraction force model is available.
- * <p>
- * Newtonian attraction is always the last force model in the list.
- * </p>
- * @return true if Newtonian attraction force model is available
- */
- private boolean hasNewtonianAttraction() {
- final int last = forceModels.size() - 1;
- return last >= 0 && forceModels.get(last) instanceof NewtonianAttraction;
- }
- /** Add a force model to the global perturbation model.
- * <p>If this method is not called at all, the integrated orbit will follow
- * a Keplerian evolution only.</p>
- * @param model perturbing {@link ForceModel} to add
- * @see #removeForceModels()
- * @see #setMu(double)
- */
- public void addForceModel(final ForceModel model) {
- if (model instanceof NewtonianAttraction) {
- // we want to add the central attraction force model
- try {
- // ensure we are notified of any mu change
- model.getParametersDrivers()[0].addObserver(new ParameterObserver() {
- /** {@inheritDoc} */
- @Override
- public void valueChanged(final double previousValue, final ParameterDriver driver) {
- superSetMu(driver.getValue());
- }
- });
- } catch (OrekitException oe) {
- // this should never happen
- throw new OrekitInternalError(oe);
- }
- if (hasNewtonianAttraction()) {
- // there is already a central attraction model, replace it
- forceModels.set(forceModels.size() - 1, model);
- } else {
- // there are no central attraction model yet, add it at the end of the list
- forceModels.add(model);
- }
- } else {
- // we want to add a perturbing force model
- if (hasNewtonianAttraction()) {
- // insert the new force model before Newtonian attraction,
- // which should always be the last one in the list
- forceModels.add(forceModels.size() - 1, model);
- } else {
- // we only have perturbing force models up to now, just append at the end of the list
- forceModels.add(model);
- }
- }
- }
- /** Remove all perturbing force models from the global perturbation model.
- * <p>Once all perturbing forces have been removed (and as long as no new force
- * model is added), the integrated orbit will follow a Keplerian evolution
- * only.</p>
- * @see #addForceModel(ForceModel)
- */
- public void removeForceModels() {
- forceModels.clear();
- }
- /** Get all the force models, perturbing forces and Newtonian attraction included.
- * @return list of perturbing force models, with Newtonian attraction being the
- * last one
- * @see #addForceModel(ForceModel)
- * @see #setMu(double)
- * @since 9.1
- */
- public List<ForceModel> getAllForceModels() {
- return Collections.unmodifiableList(forceModels);
- }
- /** Get perturbing force models list.
- * @return list of perturbing force models
- * @deprecated as of 9.1, this method is deprecated, the perturbing
- * force models are retrieved together with the Newtonian attraction
- * by calling {@link #getAllForceModels()}
- */
- @Deprecated
- public List<ForceModel> getForceModels() {
- return hasNewtonianAttraction() ? forceModels.subList(0, forceModels.size() - 1) : forceModels;
- }
- /** Get the Newtonian attraction from the central body force model.
- * @return Newtonian attraction force model
- * @deprecated as of 9.1, this method is deprecated, the Newtonian
- * attraction force model (if any) is the last in the {@link #getAllForceModels()}
- */
- @Deprecated
- public NewtonianAttraction getNewtonianAttractionForceModel() {
- final int last = forceModels.size() - 1;
- if (last >= 0 && forceModels.get(last) instanceof NewtonianAttraction) {
- return (NewtonianAttraction) forceModels.get(last);
- } else {
- return null;
- }
- }
- /** Set propagation orbit type.
- * @param orbitType orbit type to use for propagation
- */
- public void setOrbitType(final OrbitType orbitType) {
- super.setOrbitType(orbitType);
- }
- /** Get propagation parameter type.
- * @return orbit type used for propagation
- */
- public OrbitType getOrbitType() {
- return super.getOrbitType();
- }
- /** Set position angle type.
- * <p>
- * The position parameter type is meaningful only if {@link
- * #getOrbitType() propagation orbit type}
- * support it. As an example, it is not meaningful for propagation
- * in {@link OrbitType#CARTESIAN Cartesian} parameters.
- * </p>
- * @param positionAngleType angle type to use for propagation
- */
- public void setPositionAngleType(final PositionAngle positionAngleType) {
- super.setPositionAngleType(positionAngleType);
- }
- /** Get propagation parameter type.
- * @return angle type to use for propagation
- */
- public PositionAngle getPositionAngleType() {
- return super.getPositionAngleType();
- }
- /** Set the initial state.
- * @param initialState initial state
- * @exception OrekitException if initial state cannot be set
- */
- public void setInitialState(final FieldSpacecraftState<T> initialState) throws OrekitException {
- resetInitialState(initialState);
- }
- /** {@inheritDoc} */
- public void resetInitialState(final FieldSpacecraftState<T> state) throws OrekitException {
- super.resetInitialState(state);
- if (!hasNewtonianAttraction()) {
- setMu(state.getMu());
- }
- setStartDate(state.getDate());
- }
- /** {@inheritDoc} */
- public TimeStampedFieldPVCoordinates<T> getPVCoordinates(final FieldAbsoluteDate<T> date, final Frame frame)
- throws OrekitException {
- return propagate(date).getPVCoordinates(frame);
- }
- /** {@inheritDoc} */
- protected FieldStateMapper<T> createMapper(final FieldAbsoluteDate<T> referenceDate, final double mu,
- final OrbitType orbitType, final PositionAngle positionAngleType,
- final AttitudeProvider attitudeProvider, final Frame frame) {
- return new FieldOsculatingMapper(referenceDate, mu, orbitType, positionAngleType, attitudeProvider, frame);
- }
- /** Internal mapper using directly osculating parameters. */
- private class FieldOsculatingMapper extends FieldStateMapper<T> {
- /** Simple constructor.
- * <p>
- * The position parameter type is meaningful only if {@link
- * #getOrbitType() propagation orbit type}
- * support it. As an example, it is not meaningful for propagation
- * in {@link OrbitType#CARTESIAN Cartesian} parameters.
- * </p>
- * @param referenceDate reference date
- * @param mu central attraction coefficient (m³/s²)
- * @param orbitType orbit type to use for mapping
- * @param positionAngleType angle type to use for propagation
- * @param attitudeProvider attitude provider
- * @param frame inertial frame
- */
- FieldOsculatingMapper(final FieldAbsoluteDate<T> referenceDate, final double mu,
- final OrbitType orbitType, final PositionAngle positionAngleType,
- final AttitudeProvider attitudeProvider, final Frame frame) {
- super(referenceDate, mu, orbitType, positionAngleType, attitudeProvider, frame);
- }
- /** {@inheritDoc} */
- public FieldSpacecraftState<T> mapArrayToState(final FieldAbsoluteDate<T> date, final T[] y, final T[] yDot,
- final boolean meanOnly)
- throws OrekitException {
- // the parameter meanOnly is ignored for the Numerical Propagator
- final T mass = y[6];
- if (mass.getReal() <= 0.0) {
- throw new OrekitException(OrekitMessages.SPACECRAFT_MASS_BECOMES_NEGATIVE, mass);
- }
- final FieldOrbit<T> orbit = super.getOrbitType().mapArrayToOrbit(y, yDot, super.getPositionAngleType(), date, getMu(), getFrame());
- final FieldAttitude<T> attitude = getAttitudeProvider().getAttitude(orbit, date, getFrame());
- return new FieldSpacecraftState<>(orbit, attitude, mass);
- }
- /** {@inheritDoc} */
- public void mapStateToArray(final FieldSpacecraftState<T> state, final T[] y, final T[] yDot) {
- super.getOrbitType().mapOrbitToArray(state.getOrbit(), super.getPositionAngleType(), y, yDot);
- y[6] = state.getMass();
- }
- }
- /** {@inheritDoc} */
- protected MainStateEquations<T> getMainStateEquations(final FieldODEIntegrator<T> integrator) {
- return new Main(integrator);
- }
- /** Internal class for osculating parameters integration. */
- private class Main implements MainStateEquations<T>, FieldTimeDerivativesEquations<T> {
- /** Derivatives array. */
- private final T[] yDot;
- /** Current orbit. */
- private FieldOrbit<T> orbit;
- /** Jacobian of the orbital parameters with respect to the Cartesian parameters. */
- private T[][] jacobian;
- /** Simple constructor.
- * @param integrator numerical integrator to use for propagation.
- */
- Main(final FieldODEIntegrator<T> integrator) {
- this.yDot = MathArrays.buildArray(getField(), 7);
- this.jacobian = MathArrays.buildArray(getField(), 6, 6);
- for (final ForceModel forceModel : forceModels) {
- forceModel.getFieldEventsDetectors(getField()).forEach(detector -> setUpEventDetector(integrator, detector));
- }
- }
- /** {@inheritDoc} */
- @Override
- public void init(final FieldSpacecraftState<T> initialState, final FieldAbsoluteDate<T> target)
- throws OrekitException {
- final SpacecraftState stateD = initialState.toSpacecraftState();
- final AbsoluteDate targetD = target.toAbsoluteDate();
- for (final ForceModel forceModel : forceModels) {
- forceModel.init(stateD, targetD);
- }
- }
- /** {@inheritDoc} */
- @Override
- public T[] computeDerivatives(final FieldSpacecraftState<T> state) throws OrekitException {
- final T zero = state.getA().getField().getZero();
- orbit = state.getOrbit();
- Arrays.fill(yDot, zero);
- orbit.getJacobianWrtCartesian(getPositionAngleType(), jacobian);
- // compute the contributions of all perturbing forces,
- // using the Kepler contribution at the end since
- // NewtonianAttraction is always the last instance in the list
- for (final ForceModel forceModel : forceModels) {
- forceModel.addContribution(state, this);
- }
- return yDot.clone();
- }
- /** {@inheritDoc} */
- @Override
- public void addKeplerContribution(final double mu) {
- orbit.addKeplerContribution(getPositionAngleType(), mu, yDot);
- }
- /** {@inheritDoc} */
- @Override
- public void addNonKeplerianAcceleration(final FieldVector3D<T> gamma)
- throws OrekitException {
- for (int i = 0; i < 6; ++i) {
- final T[] jRow = jacobian[i];
- yDot[i] = yDot[i].add(jRow[3].linearCombination(jRow[3], gamma.getX(),
- jRow[4], gamma.getY(),
- jRow[5], gamma.getZ()));
- }
- }
- /** {@inheritDoc} */
- @Override
- public void addMassDerivative(final T q) {
- if (q.getReal() > 0) {
- throw new OrekitIllegalArgumentException(OrekitMessages.POSITIVE_FLOW_RATE, q);
- }
- yDot[6] = yDot[6].add(q);
- }
- }
- /** Estimate tolerance vectors for integrators.
- * <p>
- * The errors are estimated from partial derivatives properties of orbits,
- * starting from a scalar position error specified by the user.
- * Considering the energy conservation equation V = sqrt(mu (2/r - 1/a)),
- * we get at constant energy (i.e. on a Keplerian trajectory):
- * <pre>
- * V² r |dV| = mu |dr|
- * </pre>
- * So we deduce a scalar velocity error consistent with the position error.
- * From here, we apply orbits Jacobians matrices to get consistent errors
- * on orbital parameters.
- * </p>
- * <p>
- * The tolerances are only <em>orders of magnitude</em>, and integrator tolerances
- * are only local estimates, not global ones. So some care must be taken when using
- * these tolerances. Setting 1mm as a position error does NOT mean the tolerances
- * will guarantee a 1mm error position after several orbits integration.
- * </p>
- * @param dP user specified position error
- * @param orbit reference orbit
- * @param type propagation type for the meaning of the tolerance vectors elements
- * (it may be different from {@code orbit.getType()})
- * @return a two rows array, row 0 being the absolute tolerance error and row 1
- * being the relative tolerance error
- * @exception OrekitException if Jacobian is singular
- * @param <T> elements type
- */
- public static <T extends RealFieldElement<T>> double[][] tolerances(final T dP, final FieldOrbit<T> orbit, final OrbitType type)
- throws OrekitException {
- // estimate the scalar velocity error
- final FieldPVCoordinates<T> pv = orbit.getPVCoordinates();
- final T r2 = pv.getPosition().getNormSq();
- final T v = pv.getVelocity().getNorm();
- final T dV = dP.multiply(orbit.getMu()).divide(v.multiply(r2));
- final double[] absTol = new double[7];
- final double[] relTol = new double[7];
- // we set the mass tolerance arbitrarily to 1.0e-6 kg, as mass evolves linearly
- // with trust, this often has no influence at all on propagation
- absTol[6] = 1.0e-6;
- if (type == OrbitType.CARTESIAN) {
- absTol[0] = dP.getReal();
- absTol[1] = dP.getReal();
- absTol[2] = dP.getReal();
- absTol[3] = dV.getReal();
- absTol[4] = dV.getReal();
- absTol[5] = dV.getReal();
- } else {
- // convert the orbit to the desired type
- final T[][] jacobian = MathArrays.buildArray(dP.getField(), 6, 6);
- final FieldOrbit<T> converted = type.convertType(orbit);
- converted.getJacobianWrtCartesian(PositionAngle.TRUE, jacobian);
- for (int i = 0; i < 6; ++i) {
- final T[] row = jacobian[i];
- absTol[i] = row[0].abs().multiply(dP).
- add(row[1].abs().multiply(dP)).
- add(row[2].abs().multiply(dP)).
- add(row[3].abs().multiply(dV)).
- add(row[4].abs().multiply(dV)).
- add(row[5].abs().multiply(dV)).
- getReal();
- if (Double.isNaN(absTol[i])) {
- throw new OrekitException(OrekitMessages.SINGULAR_JACOBIAN_FOR_ORBIT_TYPE, type);
- }
- }
- }
- Arrays.fill(relTol, dP.divide(r2.sqrt()).getReal());
- return new double[][]{
- absTol, relTol
- };
- }
- }