FieldAbstractIntegratedPropagator.java
- /* Copyright 2002-2018 CS Systèmes d'Information
- * Licensed to CS Systèmes d'Information (CS) under one or more
- * contributor license agreements. See the NOTICE file distributed with
- * this work for additional information regarding copyright ownership.
- * CS licenses this file to You under the Apache License, Version 2.0
- * (the "License"); you may not use this file except in compliance with
- * the License. You may obtain a copy of the License at
- *
- * http://www.apache.org/licenses/LICENSE-2.0
- *
- * Unless required by applicable law or agreed to in writing, software
- * distributed under the License is distributed on an "AS IS" BASIS,
- * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- * See the License for the specific language governing permissions and
- * limitations under the License.
- */
- package org.orekit.propagation.integration;
- import java.util.ArrayList;
- import java.util.Collection;
- import java.util.Collections;
- import java.util.HashMap;
- import java.util.List;
- import java.util.Map;
- import org.hipparchus.Field;
- import org.hipparchus.RealFieldElement;
- import org.hipparchus.exception.MathIllegalArgumentException;
- import org.hipparchus.exception.MathIllegalStateException;
- import org.hipparchus.ode.FieldDenseOutputModel;
- import org.hipparchus.ode.FieldEquationsMapper;
- import org.hipparchus.ode.FieldExpandableODE;
- import org.hipparchus.ode.FieldODEIntegrator;
- import org.hipparchus.ode.FieldODEState;
- import org.hipparchus.ode.FieldODEStateAndDerivative;
- import org.hipparchus.ode.FieldOrdinaryDifferentialEquation;
- import org.hipparchus.ode.FieldSecondaryODE;
- import org.hipparchus.ode.events.Action;
- import org.hipparchus.ode.events.FieldODEEventHandler;
- import org.hipparchus.ode.sampling.FieldODEStateInterpolator;
- import org.hipparchus.ode.sampling.FieldODEStepHandler;
- import org.hipparchus.util.MathArrays;
- import org.hipparchus.util.Precision;
- import org.orekit.attitudes.AttitudeProvider;
- import org.orekit.errors.OrekitException;
- import org.orekit.errors.OrekitExceptionWrapper;
- import org.orekit.errors.OrekitIllegalStateException;
- import org.orekit.errors.OrekitMessages;
- import org.orekit.frames.Frame;
- import org.orekit.orbits.FieldOrbit;
- import org.orekit.orbits.OrbitType;
- import org.orekit.orbits.PositionAngle;
- import org.orekit.propagation.FieldAbstractPropagator;
- import org.orekit.propagation.FieldBoundedPropagator;
- import org.orekit.propagation.FieldSpacecraftState;
- import org.orekit.propagation.events.FieldEventDetector;
- import org.orekit.propagation.events.handlers.FieldEventHandler;
- import org.orekit.propagation.sampling.FieldOrekitStepHandler;
- import org.orekit.propagation.sampling.FieldOrekitStepInterpolator;
- import org.orekit.time.FieldAbsoluteDate;
- /** Common handling of {@link org.orekit.propagation.FieldPropagator FieldPropagator}
- * methods for both numerical and semi-analytical propagators.
- * @author Luc Maisonobe
- */
- public abstract class FieldAbstractIntegratedPropagator<T extends RealFieldElement<T>> extends FieldAbstractPropagator<T> {
- /** Event detectors not related to force models. */
- private final List<FieldEventDetector<T>> detectors;
- /** Integrator selected by the user for the orbital extrapolation process. */
- private final FieldODEIntegrator<T> integrator;
- /** Mode handler. */
- private FieldModeHandler<T> modeHandler;
- /** Additional equations. */
- private List<FieldAdditionalEquations<T>> additionalEquations;
- /** Counter for differential equations calls. */
- private int calls;
- /** Mapper between raw double components and space flight dynamics objects. */
- private FieldStateMapper<T> stateMapper;
- /** Equations mapper. */
- private FieldEquationsMapper<T> equationsMapper;
- /** Underlying raw rawInterpolator. */
- private FieldODEStateInterpolator<T> mathInterpolator;
- /** Flag for resetting the state at end of propagation. */
- private boolean resetAtEnd;
- /** Output only the mean orbit. <br/>
- * <p>
- * This is used only in the case of semianalitical propagators where there is a clear separation between
- * mean and short periodic elements. It is ignored by the Numerical propagator.
- * </p>
- */
- private boolean meanOrbit;
- /** Build a new instance.
- * @param integrator numerical integrator to use for propagation.
- * @param meanOrbit output only the mean orbit.
- * @param field Field used by default
- */
- protected FieldAbstractIntegratedPropagator(final Field<T> field, final FieldODEIntegrator<T> integrator, final boolean meanOrbit) {
- super(field);
- detectors = new ArrayList<FieldEventDetector<T>>();
- additionalEquations = new ArrayList<FieldAdditionalEquations<T>>();
- this.integrator = integrator;
- this.meanOrbit = meanOrbit;
- this.resetAtEnd = true;
- }
- /** Allow/disallow resetting the initial state at end of propagation.
- * <p>
- * By default, at the end of the propagation, the propagator resets the initial state
- * to the final state, thus allowing a new propagation to be started from there without
- * recomputing the part already performed. Calling this method with {@code resetAtEnd} set
- * to false changes prevents such reset.
- * </p>
- * @param resetAtEnd if true, at end of each propagation, the {@link
- * #getInitialState() initial state} will be reset to the final state of
- * the propagation, otherwise the initial state will be preserved
- * @since 9.0
- */
- public void setResetAtEnd(final boolean resetAtEnd) {
- this.resetAtEnd = resetAtEnd;
- }
- /** Initialize the mapper. */
- protected void initMapper() {
- stateMapper = createMapper(null, Double.NaN, null, null, null, null);
- }
- /** {@inheritDoc} */
- public void setAttitudeProvider(final AttitudeProvider attitudeProvider) {
- super.setAttitudeProvider(attitudeProvider);
- stateMapper = createMapper(stateMapper.getReferenceDate(), stateMapper.getMu(),
- stateMapper.getOrbitType(), stateMapper.getPositionAngleType(),
- attitudeProvider, stateMapper.getFrame());
- }
- /** Set propagation orbit type.
- * @param orbitType orbit type to use for propagation
- */
- protected void setOrbitType(final OrbitType orbitType) {
- stateMapper = createMapper(stateMapper.getReferenceDate(), stateMapper.getMu(),
- orbitType, stateMapper.getPositionAngleType(),
- stateMapper.getAttitudeProvider(), stateMapper.getFrame());
- }
- /** Get propagation parameter type.
- * @return orbit type used for propagation
- */
- protected OrbitType getOrbitType() {
- return stateMapper.getOrbitType();
- }
- /** Check if only the mean elements should be used in a semianalitical propagation.
- * @return true if only mean elements have to be used
- */
- protected boolean isMeanOrbit() {
- return meanOrbit;
- }
- /** Set position angle type.
- * <p>
- * The position parameter type is meaningful only if {@link
- * #getOrbitType() propagation orbit type}
- * support it. As an example, it is not meaningful for propagation
- * in {@link OrbitType#CARTESIAN Cartesian} parameters.
- * </p>
- * @param positionAngleType angle type to use for propagation
- */
- protected void setPositionAngleType(final PositionAngle positionAngleType) {
- stateMapper = createMapper(stateMapper.getReferenceDate(), stateMapper.getMu(),
- stateMapper.getOrbitType(), positionAngleType,
- stateMapper.getAttitudeProvider(), stateMapper.getFrame());
- }
- /** Get propagation parameter type.
- * @return angle type to use for propagation
- */
- protected PositionAngle getPositionAngleType() {
- return stateMapper.getPositionAngleType();
- }
- /** Set the central attraction coefficient μ.
- * @param mu central attraction coefficient (m³/s²)
- */
- public void setMu(final double mu) {
- stateMapper = createMapper(stateMapper.getReferenceDate(), mu,
- stateMapper.getOrbitType(), stateMapper.getPositionAngleType(),
- stateMapper.getAttitudeProvider(), stateMapper.getFrame());
- }
- /** Get the central attraction coefficient μ.
- * @return mu central attraction coefficient (m³/s²)
- * @see #setMu(double)
- */
- public double getMu() {
- return stateMapper.getMu();
- }
- /** Get the number of calls to the differential equations computation method.
- * <p>The number of calls is reset each time the {@link #propagate(FieldAbsoluteDate)}
- * method is called.</p>
- * @return number of calls to the differential equations computation method
- */
- public int getCalls() {
- return calls;
- }
- /** {@inheritDoc} */
- @Override
- public boolean isAdditionalStateManaged(final String name) {
- // first look at already integrated states
- if (super.isAdditionalStateManaged(name)) {
- return true;
- }
- // then look at states we integrate ourselves
- for (final FieldAdditionalEquations<T> equation : additionalEquations) {
- if (equation.getName().equals(name)) {
- return true;
- }
- }
- return false;
- }
- /** {@inheritDoc} */
- @Override
- public String[] getManagedAdditionalStates() {
- final String[] alreadyIntegrated = super.getManagedAdditionalStates();
- final String[] managed = new String[alreadyIntegrated.length + additionalEquations.size()];
- System.arraycopy(alreadyIntegrated, 0, managed, 0, alreadyIntegrated.length);
- for (int i = 0; i < additionalEquations.size(); ++i) {
- managed[i + alreadyIntegrated.length] = additionalEquations.get(i).getName();
- }
- return managed;
- }
- /** Add a set of user-specified equations to be integrated along with the orbit propagation.
- * @param additional additional equations
- * @exception OrekitException if a set of equations with the same name is already present
- */
- public void addAdditionalEquations(final FieldAdditionalEquations<T> additional)
- throws OrekitException {
- // check if the name is already used
- if (isAdditionalStateManaged(additional.getName())) {
- // this set of equations is already registered, complain
- throw new OrekitException(OrekitMessages.ADDITIONAL_STATE_NAME_ALREADY_IN_USE,
- additional.getName());
- }
- // this is really a new set of equations, add it
- additionalEquations.add(additional);
- }
- /** {@inheritDoc} */
- public <D extends FieldEventDetector<T>> void addEventDetector(final D detector) {
- detectors.add(detector);
- }
- /** {@inheritDoc} */
- public Collection<FieldEventDetector<T>> getEventsDetectors() {
- return Collections.unmodifiableCollection(detectors);
- }
- /** {@inheritDoc} */
- public void clearEventsDetectors() {
- detectors.clear();
- }
- /** Set up all user defined event detectors.
- */
- protected void setUpUserEventDetectors() {
- for (final FieldEventDetector<T> detector : detectors) {
- setUpEventDetector(integrator, detector);
- }
- }
- /** Wrap an Orekit event detector and register it to the integrator.
- * @param integ integrator into which event detector should be registered
- * @param detector event detector to wrap
- */
- protected void setUpEventDetector(final FieldODEIntegrator<T> integ, final FieldEventDetector<T> detector) {
- integ.addEventHandler(new FieldAdaptedEventDetector(detector),
- detector.getMaxCheckInterval().getReal(),
- detector.getThreshold().getReal(),
- detector.getMaxIterationCount());
- }
- /** {@inheritDoc}
- * <p>Note that this method has the side effect of replacing the step handlers
- * of the underlying integrator set up in the {@link
- * #FieldAbstractIntegratedPropagator(Field, FieldODEIntegrator, boolean) constructor}. So if a specific
- * step handler is needed, it should be added after this method has been callled.</p>
- */
- public void setSlaveMode() {
- super.setSlaveMode();
- if (integrator != null) {
- integrator.clearStepHandlers();
- }
- modeHandler = null;
- }
- /** {@inheritDoc}
- * <p>Note that this method has the side effect of replacing the step handlers
- * of the underlying integrator set up in the {@link
- * #FieldAbstractIntegratedPropagator(Field, FieldODEIntegrator, boolean) constructor}. So if a specific
- * step handler is needed, it should be added after this method has been called.</p>
- */
- public void setMasterMode(final FieldOrekitStepHandler<T> handler) {
- super.setMasterMode(handler);
- integrator.clearStepHandlers();
- final FieldAdaptedStepHandler wrapped = new FieldAdaptedStepHandler(handler);
- integrator.addStepHandler(wrapped);
- modeHandler = wrapped;
- }
- /** {@inheritDoc}
- * <p>Note that this method has the side effect of replacing the step handlers
- * of the underlying integrator set up in the {@link
- * #FieldAbstractIntegratedPropagator(Field, FieldODEIntegrator, boolean) constructor}. So if a specific
- * step handler is needed, it should be added after this method has been called.</p>
- */
- public void setEphemerisMode() {
- super.setEphemerisMode();
- integrator.clearStepHandlers();
- final FieldEphemerisModeHandler ephemeris = new FieldEphemerisModeHandler();
- modeHandler = ephemeris;
- integrator.addStepHandler(ephemeris);
- }
- /** {@inheritDoc} */
- public FieldBoundedPropagator<T> getGeneratedEphemeris()
- throws IllegalStateException {
- if (getMode() != EPHEMERIS_GENERATION_MODE) {
- throw new OrekitIllegalStateException(OrekitMessages.PROPAGATOR_NOT_IN_EPHEMERIS_GENERATION_MODE);
- }
- return ((FieldEphemerisModeHandler) modeHandler).getEphemeris();
- }
- /** Create a mapper between raw double components and spacecraft state.
- /** Simple constructor.
- * <p>
- * The position parameter type is meaningful only if {@link
- * #getOrbitType() propagation orbit type}
- * support it. As an example, it is not meaningful for propagation
- * in {@link OrbitType#CARTESIAN Cartesian} parameters.
- * </p>
- * @param referenceDate reference date
- * @param mu central attraction coefficient (m³/s²)
- * @param orbitType orbit type to use for mapping
- * @param positionAngleType angle type to use for propagation
- * @param attitudeProvider attitude provider
- * @param frame inertial frame
- * @return new mapper
- */
- protected abstract FieldStateMapper<T> createMapper(FieldAbsoluteDate<T> referenceDate, double mu,
- OrbitType orbitType, PositionAngle positionAngleType,
- AttitudeProvider attitudeProvider, Frame frame);
- /** Get the differential equations to integrate (for main state only).
- * @param integ numerical integrator to use for propagation.
- * @return differential equations for main state
- */
- protected abstract MainStateEquations<T> getMainStateEquations(FieldODEIntegrator<T> integ);
- /** {@inheritDoc} */
- public FieldSpacecraftState<T> propagate(final FieldAbsoluteDate<T> target) throws OrekitException {
- try {
- if (getStartDate() == null) {
- if (getInitialState() == null) {
- throw new OrekitException(OrekitMessages.INITIAL_STATE_NOT_SPECIFIED_FOR_ORBIT_PROPAGATION);
- }
- setStartDate(getInitialState().getDate());
- }
- return propagate(getStartDate(), target);
- } catch (OrekitException oe) {
- // recover a possible embedded OrekitException
- for (Throwable t = oe; t != null; t = t.getCause()) {
- if (t instanceof OrekitException) {
- throw (OrekitException) t;
- }
- }
- throw new OrekitException(oe);
- }
- }
- /** {@inheritDoc} */
- public FieldSpacecraftState<T> propagate(final FieldAbsoluteDate<T> tStart, final FieldAbsoluteDate<T> tEnd)
- throws OrekitException {
- try {
- if (getInitialState() == null) {
- throw new OrekitException(OrekitMessages.INITIAL_STATE_NOT_SPECIFIED_FOR_ORBIT_PROPAGATION);
- }
- if (!tStart.equals(getInitialState().getDate())) {
- // if propagation start date is not initial date,
- // propagate from initial to start date without event detection
- propagate(tStart, false);
- }
- // propagate from start date to end date with event detection
- return propagate(tEnd, true);
- } catch (OrekitException oe) {
- // recover a possible embedded OrekitException
- for (Throwable t = oe; t != null; t = t.getCause()) {
- if (t instanceof OrekitException) {
- throw (OrekitException) t;
- }
- }
- throw new OrekitException(oe);
- }
- }
- /** Propagation with or without event detection.
- * @param tEnd target date to which orbit should be propagated
- * @param activateHandlers if true, step and event handlers should be activated
- * @return state at end of propagation
- * @exception OrekitException if orbit cannot be propagated
- */
- protected FieldSpacecraftState<T> propagate(final FieldAbsoluteDate<T> tEnd, final boolean activateHandlers)
- throws OrekitException {
- try {
- if (getInitialState().getDate().equals(tEnd)) {
- // don't extrapolate
- return getInitialState();
- }
- // space dynamics view
- stateMapper = createMapper(getInitialState().getDate(), stateMapper.getMu(),
- stateMapper.getOrbitType(), stateMapper.getPositionAngleType(),
- stateMapper.getAttitudeProvider(), getInitialState().getFrame());
- // set propagation orbit type
- final FieldOrbit<T> initialOrbit = stateMapper.getOrbitType().convertType(getInitialState().getOrbit());
- if (Double.isNaN(getMu())) {
- setMu(initialOrbit.getMu());
- }
- if (getInitialState().getMass().getReal() <= 0.0) {
- throw new OrekitException(OrekitMessages.SPACECRAFT_MASS_BECOMES_NEGATIVE,
- getInitialState().getMass());
- }
- integrator.clearEventHandlers();
- // set up events added by user
- setUpUserEventDetectors();
- // convert space flight dynamics API to math API
- final FieldODEState<T> mathInitialState = createInitialState(getInitialIntegrationState());
- final FieldExpandableODE<T> mathODE = createODE(integrator, mathInitialState);
- equationsMapper = mathODE.getMapper();
- mathInterpolator = null;
- // initialize mode handler
- if (modeHandler != null) {
- modeHandler.initialize(activateHandlers, tEnd);
- }
- // mathematical integration
- final FieldODEStateAndDerivative<T> mathFinalState;
- try {
- beforeIntegration(getInitialState(), tEnd);
- mathFinalState = integrator.integrate(mathODE, mathInitialState,
- tEnd.durationFrom(getInitialState().getDate()));
- afterIntegration();
- } catch (OrekitExceptionWrapper oew) {
- throw oew.getException();
- }
- // get final state
- FieldSpacecraftState<T> finalState =
- stateMapper.mapArrayToState(stateMapper.mapDoubleToDate(mathFinalState.getTime(),
- tEnd),
- mathFinalState.getPrimaryState(),
- mathFinalState.getPrimaryDerivative(),
- meanOrbit);
- finalState = updateAdditionalStates(finalState);
- for (int i = 0; i < additionalEquations.size(); ++i) {
- final T[] secondary = mathFinalState.getSecondaryState(i + 1);
- finalState = finalState.addAdditionalState(additionalEquations.get(i).getName(),
- secondary);
- }
- if (resetAtEnd) {
- resetInitialState(finalState);
- setStartDate(finalState.getDate());
- }
- return finalState;
- } catch (OrekitException pe) {
- throw pe;
- } catch (MathIllegalArgumentException miae) {
- throw OrekitException.unwrap(miae);
- } catch (MathIllegalStateException mise) {
- throw OrekitException.unwrap(mise);
- }
- }
- /** Get the initial state for integration.
- * @return initial state for integration
- * @exception OrekitException if initial state cannot be retrieved
- */
- protected FieldSpacecraftState<T> getInitialIntegrationState() throws OrekitException {
- return getInitialState();
- }
- /** Create an initial state.
- * @param initialState initial state in flight dynamics world
- * @return initial state in mathematics world
- * @exception OrekitException if initial state cannot be mapped
- */
- private FieldODEState<T> createInitialState(final FieldSpacecraftState<T> initialState)
- throws OrekitException {
- // retrieve initial state
- final T[] primary = MathArrays.buildArray(initialState.getA().getField(), getBasicDimension());
- stateMapper.mapStateToArray(initialState, primary, null);
- // secondary part of the ODE
- final T[][] secondary = MathArrays.buildArray(initialState.getA().getField(), additionalEquations.size(), -1);
- for (int i = 0; i < additionalEquations.size(); ++i) {
- final FieldAdditionalEquations<T> additional = additionalEquations.get(i);
- final T[] addState = getInitialState().getAdditionalState(additional.getName());
- secondary[i] = MathArrays.buildArray(initialState.getA().getField(), addState.length);
- for (int j = 0; j < addState.length; j++) {
- secondary[i][j] = addState[j];
- }
- }
- return new FieldODEState<>(initialState.getA().getField().getZero(), primary, secondary);
- }
- /** Create an ODE with all equations.
- * @param integ numerical integrator to use for propagation.
- * @param mathInitialState initial state
- * @return a new ode
- * @exception OrekitException if initial state cannot be mapped
- */
- private FieldExpandableODE<T> createODE(final FieldODEIntegrator<T> integ,
- final FieldODEState<T> mathInitialState)
- throws OrekitException {
- final FieldExpandableODE<T> ode =
- new FieldExpandableODE<>(new ConvertedMainStateEquations(getMainStateEquations(integ)));
- // secondary part of the ODE
- for (int i = 0; i < additionalEquations.size(); ++i) {
- final FieldAdditionalEquations<T> additional = additionalEquations.get(i);
- final FieldSecondaryODE<T> secondary =
- new ConvertedSecondaryStateEquations(additional,
- mathInitialState.getSecondaryStateDimension(i + 1));
- ode.addSecondaryEquations(secondary);
- }
- return ode;
- }
- /** Method called just before integration.
- * <p>
- * The default implementation does nothing, it may be specialized in subclasses.
- * </p>
- * @param initialState initial state
- * @param tEnd target date at which state should be propagated
- * @exception OrekitException if hook cannot be run
- */
- protected void beforeIntegration(final FieldSpacecraftState<T> initialState,
- final FieldAbsoluteDate<T> tEnd)
- throws OrekitException {
- // do nothing by default
- }
- /** Method called just after integration.
- * <p>
- * The default implementation does nothing, it may be specialized in subclasses.
- * </p>
- * @exception OrekitException if hook cannot be run
- */
- protected void afterIntegration()
- throws OrekitException {
- // do nothing by default
- }
- /** Get state vector dimension without additional parameters.
- * @return state vector dimension without additional parameters.
- */
- public int getBasicDimension() {
- return 7;
- }
- /** Get the integrator used by the propagator.
- * @return the integrator.
- */
- protected FieldODEIntegrator<T> getIntegrator() {
- return integrator;
- }
- /** Get a complete state with all additional equations.
- * @param t current value of the independent <I>time</I> variable
- * @param ts array containing the current value of the state vector
- * @param tsDot array containing the current value of the state vector derivative
- * @return complete state
- * @exception OrekitException if state cannot be mapped
- */
- private FieldSpacecraftState<T> getCompleteState(final T t, final T[] ts, final T[] tsDot)
- throws OrekitException {
- // main state
- FieldSpacecraftState<T> state = stateMapper.mapArrayToState(t, ts, tsDot, true); //not sure of the mean orbit, should be true
- // pre-integrated additional states
- state = updateAdditionalStates(state);
- // additional states integrated here
- if (!additionalEquations.isEmpty()) {
- for (int i = 0; i < additionalEquations.size(); ++i) {
- state = state.addAdditionalState(additionalEquations.get(i).getName(),
- equationsMapper.extractEquationData(i + 1, ts));
- }
- }
- return state;
- }
- /** Differential equations for the main state (orbit, attitude and mass). */
- public interface MainStateEquations<T extends RealFieldElement<T>> {
- /**
- * Initialize the equations at the start of propagation. This method will be
- * called before any calls to {@link #computeDerivatives(FieldSpacecraftState)}.
- *
- * <p> The default implementation of this method does nothing.
- *
- * @param initialState initial state information at the start of propagation.
- * @param target date of propagation. Not equal to {@code
- * initialState.getDate()}.
- * @throws OrekitException if there is an Orekit related error during
- * initialization.
- */
- void init(FieldSpacecraftState<T> initialState, FieldAbsoluteDate<T> target)
- throws OrekitException;
- /** Compute differential equations for main state.
- * @param state current state
- * @return derivatives of main state
- * @throws OrekitException if differentials cannot be computed
- */
- T[] computeDerivatives(FieldSpacecraftState<T> state) throws OrekitException;
- }
- /** Differential equations for the main state (orbit, attitude and mass), with converted API. */
- private class ConvertedMainStateEquations implements FieldOrdinaryDifferentialEquation<T> {
- /** Main state equations. */
- private final MainStateEquations<T> main;
- /** Simple constructor.
- * @param main main state equations
- */
- ConvertedMainStateEquations(final MainStateEquations<T> main) {
- this.main = main;
- calls = 0;
- }
- /** {@inheritDoc} */
- public int getDimension() {
- return getBasicDimension();
- }
- @Override
- public void init(final T t0, final T[] y0, final T finalTime) {
- try {
- // update space dynamics view
- FieldSpacecraftState<T> initialState = stateMapper.mapArrayToState(t0, y0, null, true);
- initialState = updateAdditionalStates(initialState);
- final FieldAbsoluteDate<T> target = stateMapper.mapDoubleToDate(finalTime);
- main.init(initialState, target);
- } catch (OrekitException oe) {
- throw new OrekitExceptionWrapper(oe);
- }
- }
- /** {@inheritDoc} */
- public T[] computeDerivatives(final T t, final T[] y)
- throws OrekitExceptionWrapper {
- try {
- // increment calls counter
- ++calls;
- // update space dynamics view
- FieldSpacecraftState<T> currentState = stateMapper.mapArrayToState(t, y, null, true);
- currentState = updateAdditionalStates(currentState);
- // compute main state differentials
- return main.computeDerivatives(currentState);
- } catch (OrekitException oe) {
- throw new OrekitExceptionWrapper(oe);
- }
- }
- }
- /** Differential equations for the secondary state (Jacobians, user variables ...), with converted API. */
- private class ConvertedSecondaryStateEquations implements FieldSecondaryODE<T> {
- /** Additional equations. */
- private final FieldAdditionalEquations<T> equations;
- /** Dimension of the additional state. */
- private final int dimension;
- /** Simple constructor.
- * @param equations additional equations
- * @param dimension dimension of the additional state
- */
- ConvertedSecondaryStateEquations(final FieldAdditionalEquations<T> equations,
- final int dimension) {
- this.equations = equations;
- this.dimension = dimension;
- }
- /** {@inheritDoc} */
- @Override
- public int getDimension() {
- return dimension;
- }
- /** {@inheritDoc} */
- @Override
- public void init(final T t0, final T[] primary0,
- final T[] secondary0, final T finalTime) {
- try {
- // update space dynamics view
- FieldSpacecraftState<T> initialState = stateMapper.mapArrayToState(t0, primary0, null, true);
- initialState = updateAdditionalStates(initialState);
- initialState = initialState.addAdditionalState(equations.getName(), secondary0);
- final FieldAbsoluteDate<T> target = stateMapper.mapDoubleToDate(finalTime);
- equations.init(initialState, target);
- } catch (OrekitException oe) {
- throw new OrekitExceptionWrapper(oe);
- }
- }
- /** {@inheritDoc} */
- @Override
- public T[] computeDerivatives(final T t, final T[] primary,
- final T[] primaryDot, final T[] secondary)
- throws OrekitExceptionWrapper {
- try {
- // update space dynamics view
- FieldSpacecraftState<T> currentState = stateMapper.mapArrayToState(t, primary, primaryDot, true);
- currentState = updateAdditionalStates(currentState);
- currentState = currentState.addAdditionalState(equations.getName(), secondary);
- // compute additional derivatives
- final T[] secondaryDot = MathArrays.buildArray(getField(), secondary.length);
- final T[] additionalMainDot =
- equations.computeDerivatives(currentState, secondaryDot);
- if (additionalMainDot != null) {
- // the additional equations have an effect on main equations
- for (int i = 0; i < additionalMainDot.length; ++i) {
- primaryDot[i] = primaryDot[i].add(additionalMainDot[i]);
- }
- }
- return secondaryDot;
- } catch (OrekitException oe) {
- throw new OrekitExceptionWrapper(oe);
- }
- }
- }
- /** Adapt an {@link org.orekit.propagation.events.FieldEventDetector<T>}
- * to Hipparchus {@link org.hipparchus.ode.events.FieldODEEventHandler<T>} interface.
- * @param <T> class type for the generic version
- * @author Fabien Maussion
- */
- private class FieldAdaptedEventDetector implements FieldODEEventHandler<T> {
- /** Underlying event detector. */
- private final FieldEventDetector<T> detector;
- /** Time of the previous call to g. */
- private T lastT;
- /** Value from the previous call to g. */
- private T lastG;
- /** Build a wrapped event detector.
- * @param detector event detector to wrap
- */
- FieldAdaptedEventDetector(final FieldEventDetector<T> detector) {
- this.detector = detector;
- this.lastT = getField().getZero().add(Double.NaN);
- this.lastG = getField().getZero().add(Double.NaN);
- }
- /** {@inheritDoc} */
- public void init(final FieldODEStateAndDerivative<T> s0, final T t) {
- try {
- detector.init(getCompleteState(s0.getTime(), s0.getCompleteState(), s0.getCompleteDerivative()),
- stateMapper.mapDoubleToDate(t));
- this.lastT = getField().getZero().add(Double.NaN);
- this.lastG = getField().getZero().add(Double.NaN);
- } catch (OrekitException oe) {
- throw new OrekitExceptionWrapper(oe);
- }
- }
- /** {@inheritDoc} */
- public T g(final FieldODEStateAndDerivative<T> s) {
- try {
- if (!Precision.equals(lastT.getReal(), s.getTime().getReal(), 0)) {
- lastT = s.getTime();
- lastG = detector.g(getCompleteState(s.getTime(), s.getCompleteState(), s.getCompleteDerivative()));
- }
- return lastG;
- } catch (OrekitException oe) {
- throw new OrekitExceptionWrapper(oe);
- }
- }
- /** {@inheritDoc} */
- public Action eventOccurred(final FieldODEStateAndDerivative<T> s, final boolean increasing) {
- try {
- final FieldEventHandler.Action whatNext = detector.eventOccurred(getCompleteState(s.getTime(),
- s.getCompleteState(),
- s.getCompleteDerivative()),
- increasing);
- switch (whatNext) {
- case STOP :
- return Action.STOP;
- case RESET_STATE :
- return Action.RESET_STATE;
- case RESET_DERIVATIVES :
- return Action.RESET_DERIVATIVES;
- default :
- return Action.CONTINUE;
- }
- } catch (OrekitException oe) {
- throw new OrekitExceptionWrapper(oe);
- }
- }
- /** {@inheritDoc} */
- public FieldODEState<T> resetState(final FieldODEStateAndDerivative<T> s) {
- try {
- final FieldSpacecraftState<T> oldState = getCompleteState(s.getTime(), s.getCompleteState(), s.getCompleteDerivative());
- final FieldSpacecraftState<T> newState = detector.resetState(oldState);
- // main part
- final T[] primary = MathArrays.buildArray(getField(), s.getPrimaryStateDimension());
- stateMapper.mapStateToArray(newState, primary, null);
- // secondary part
- final T[][] secondary = MathArrays.buildArray(getField(), additionalEquations.size(), -1);
- for (int i = 0; i < additionalEquations.size(); ++i) {
- final FieldAdditionalEquations<T> additional = additionalEquations.get(i);
- final T[] NState = newState.getAdditionalState(additional.getName());
- secondary[i] = MathArrays.buildArray(getField(), NState.length);
- for (int j = 0; j < NState.length; j++)
- secondary[i][j] = NState[j];
- }
- return new FieldODEState<>(newState.getDate().durationFrom(getStartDate()),
- primary, secondary);
- } catch (OrekitException oe) {
- throw new OrekitExceptionWrapper(oe);
- }
- }
- }
- /** Adapt an {@link org.orekit.propagation.sampling.FieldOrekitStepHandler<T>}
- * to Hipparchus {@link FieldODEStepHandler<T>} interface.
- * @author Luc Maisonobe
- */
- private class FieldAdaptedStepHandler
- implements FieldOrekitStepInterpolator<T>, FieldODEStepHandler<T>, FieldModeHandler<T> {
- /** Underlying handler. */
- private final FieldOrekitStepHandler<T> handler;
- /** Flag for handler . */
- private boolean activate;
- /** Build an instance.
- * @param handler underlying handler to wrap
- */
- FieldAdaptedStepHandler(final FieldOrekitStepHandler<T> handler) {
- this.handler = handler;
- }
- /** {@inheritDoc} */
- public void initialize(final boolean activateHandlers,
- final FieldAbsoluteDate<T> targetDate) {
- this.activate = activateHandlers;
- }
- /** {@inheritDoc} */
- public void init(final FieldODEStateAndDerivative<T> s0, final T t) {
- try {
- handler.init(getCompleteState(s0.getTime(), s0.getCompleteState(), s0.getCompleteDerivative()),
- stateMapper.mapDoubleToDate(t));
- } catch (OrekitException oe) {
- throw new OrekitExceptionWrapper(oe);
- }
- }
- /** {@inheritDoc} */
- public void handleStep(final FieldODEStateInterpolator<T> interpolator, final boolean isLast) {
- try {
- mathInterpolator = interpolator;
- if (activate) {
- handler.handleStep(this, isLast);
- }
- } catch (OrekitException oe) {
- throw new OrekitExceptionWrapper(oe);
- }
- }
- /** {@inheritDoc}} */
- @Override
- public FieldSpacecraftState<T> getPreviousState()
- throws OrekitException {
- return convert(mathInterpolator.getPreviousState());
- }
- /** {@inheritDoc}} */
- @Override
- public FieldSpacecraftState<T> getCurrentState()
- throws OrekitException {
- return convert(mathInterpolator.getCurrentState());
- }
- /** {@inheritDoc}} */
- @Override
- public FieldSpacecraftState<T> getInterpolatedState(final FieldAbsoluteDate<T> date)
- throws OrekitException {
- return convert(mathInterpolator.getInterpolatedState(date.durationFrom(getStartDate())));
- }
- /** Get the interpolated state.
- * @param os mathematical state
- * @return interpolated state at the current interpolation date
- * @exception OrekitException if state cannot be interpolated or converted
- * @exception OrekitException if underlying interpolator cannot handle
- * the date
- * @see #getInterpolatedDate()
- * @see #setInterpolatedDate(FieldAbsoluteDate<T>)
- */
- private FieldSpacecraftState<T> convert(final FieldODEStateAndDerivative<T> os)
- throws OrekitException {
- try {
- FieldSpacecraftState<T> s =
- stateMapper.mapArrayToState(os.getTime(),
- os.getPrimaryState(),
- os.getPrimaryDerivative(),
- meanOrbit);
- s = updateAdditionalStates(s);
- for (int i = 0; i < additionalEquations.size(); ++i) {
- final T[] secondary = os.getSecondaryState(i + 1);
- s = s.addAdditionalState(additionalEquations.get(i).getName(), secondary);
- }
- return s;
- } catch (OrekitException oe) {
- throw new OrekitException(oe);
- } catch (OrekitExceptionWrapper oew) {
- throw new OrekitException(oew.getException());
- }
- }
- /** Check is integration direction is forward in date.
- * @return true if integration is forward in date
- */
- public boolean isForward() {
- return mathInterpolator.isForward();
- }
- }
- private class FieldEphemerisModeHandler implements FieldModeHandler<T>, FieldODEStepHandler<T> {
- /** Underlying raw mathematical model. */
- private FieldDenseOutputModel<T> model;
- /** Generated ephemeris. */
- private FieldBoundedPropagator<T> ephemeris;
- /** Flag for handler . */
- private boolean activate;
- /** the user supplied end date. Propagation may not end on this date. */
- private FieldAbsoluteDate<T> endDate;
- /** Creates a new instance of FieldEphemerisModeHandler which must be
- * filled by the propagator.
- */
- FieldEphemerisModeHandler() {
- }
- /** {@inheritDoc} */
- public void initialize(final boolean activateHandlers,
- final FieldAbsoluteDate<T> targetDate) {
- this.activate = activateHandlers;
- this.model = new FieldDenseOutputModel<>();
- this.endDate = targetDate;
- // ephemeris will be generated when last step is processed
- this.ephemeris = null;
- }
- /** Get the generated ephemeris.
- * @return a new instance of the generated ephemeris
- */
- public FieldBoundedPropagator<T> getEphemeris() {
- return ephemeris;
- }
- /** {@inheritDoc} */
- public void handleStep(final FieldODEStateInterpolator<T> interpolator, final boolean isLast)
- throws OrekitExceptionWrapper {
- try {
- if (activate) {
- model.handleStep(interpolator, isLast);
- if (isLast) {
- // set up the boundary dates
- final T tI = model.getInitialTime();
- final T tF = model.getFinalTime();
- // tI is almost? always zero
- final FieldAbsoluteDate<T> startDate =
- stateMapper.mapDoubleToDate(tI);
- final FieldAbsoluteDate<T> finalDate =
- stateMapper.mapDoubleToDate(tF, this.endDate);
- final FieldAbsoluteDate<T> minDate;
- final FieldAbsoluteDate<T> maxDate;
- if (tF.getReal() < tI.getReal()) {
- minDate = finalDate;
- maxDate = startDate;
- } else {
- minDate = startDate;
- maxDate = finalDate;
- }
- // get the initial additional states that are not managed
- final Map<String, T[]> unmanaged = new HashMap<String, T[]>();
- for (final Map.Entry<String, T[]> initial : getInitialState().getAdditionalStates().entrySet()) {
- if (!isAdditionalStateManaged(initial.getKey())) {
- // this additional state was in the initial state, but is unknown to the propagator
- // we simply copy its initial value as is
- unmanaged.put(initial.getKey(), initial.getValue());
- }
- }
- // get the names of additional states managed by differential equations
- final String[] names = new String[additionalEquations.size()];
- for (int i = 0; i < names.length; ++i) {
- names[i] = additionalEquations.get(i).getName();
- }
- // create the ephemeris
- ephemeris = new FieldIntegratedEphemeris<>(startDate, minDate, maxDate,
- stateMapper, meanOrbit, model, unmanaged,
- getAdditionalStateProviders(), names);
- }
- }
- } catch (OrekitException oe) {
- throw new OrekitExceptionWrapper(oe);
- }
- }
- /** {@inheritDoc} */
- public void init(final FieldODEStateAndDerivative<T> s0, final T t) {
- model.init(s0, t);
- }
- }
- }