EarthITU453AtmosphereRefraction.java
- /* Copyright 2013 Applied Defense Solutions, Inc.
- * Licensed to CS Communication & Systèmes (CS) under one or more
- * contributor license agreements. See the NOTICE file distributed with
- * this work for additional information regarding copyright ownership.
- * CS licenses this file to You under the Apache License, Version 2.0
- * (the "License"); you may not use this file except in compliance with
- * the License. You may obtain a copy of the License at
- *
- * http://www.apache.org/licenses/LICENSE-2.0
- *
- * Unless required by applicable law or agreed to in writing, software
- * distributed under the License is distributed on an "AS IS" BASIS,
- * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- * See the License for the specific language governing permissions and
- * limitations under the License.
- */
- package org.orekit.models.earth;
- import org.hipparchus.analysis.UnivariateFunction;
- import org.hipparchus.optim.MaxEval;
- import org.hipparchus.optim.nonlinear.scalar.GoalType;
- import org.hipparchus.optim.univariate.BrentOptimizer;
- import org.hipparchus.optim.univariate.SearchInterval;
- import org.hipparchus.optim.univariate.UnivariateObjectiveFunction;
- import org.hipparchus.util.FastMath;
- import org.orekit.models.AtmosphericRefractionModel;
- /** Implementation of refraction model for Earth exponential atmosphere based on ITU-R P.834-7 recommendation.
- * <p>Refraction angle is computed according to the International Telecommunication Union recommendation formula.
- * For reference, see <b>ITU-R P.834-7</b> (October 2015).</p>
- *
- * @author Thierry Ceolin
- * @since 7.1
- */
- public class EarthITU453AtmosphereRefraction implements AtmosphericRefractionModel {
- /** Altitude conversion factor. */
- private static final double KM_TO_M = 1000.0;
- /** Coefficients conversion factor. */
- private static final double INV_DEG_TO_INV_RAD = 180.0 / FastMath.PI;
- /** Default a coefficients to compute refractive index for a typical atmosphere. */
- private static final double DEFAULT_CORRECTION_ACOEF = 0.000315;
- /** Default b coefficients to compute refractive index for a typical atmosphere. */
- private static final double DEFAULT_CORRECTION_BCOEF = 0.1361 / KM_TO_M;
- /** Earth ray as defined in ITU-R P.834-7 (m). */
- private static final double EARTH_RAY = 6370.0 * KM_TO_M;
- /** Default coefficients array for Tau function (formula number 9).
- * The coefficients have been converted to SI units
- */
- private static final double[] CCOEF = {
- INV_DEG_TO_INV_RAD * 1.314, INV_DEG_TO_INV_RAD * 0.6437, INV_DEG_TO_INV_RAD * 0.02869,
- INV_DEG_TO_INV_RAD * 0.2305 / KM_TO_M, INV_DEG_TO_INV_RAD * 0.09428 / KM_TO_M, INV_DEG_TO_INV_RAD * 0.01096 / KM_TO_M,
- INV_DEG_TO_INV_RAD * 0.008583 / (KM_TO_M * KM_TO_M)
- };
- /** Default coefficients array for TauZero function (formula number 14).
- * The coefficients have been converted to SI units
- */
- private static final double[] CCOEF0 = {
- INV_DEG_TO_INV_RAD * 1.728, INV_DEG_TO_INV_RAD * 0.5411, INV_DEG_TO_INV_RAD * 0.03723,
- INV_DEG_TO_INV_RAD * 0.1815 / KM_TO_M, INV_DEG_TO_INV_RAD * 0.06272 / KM_TO_M, INV_DEG_TO_INV_RAD * 0.011380 / KM_TO_M,
- INV_DEG_TO_INV_RAD * 0.01727 / (KM_TO_M * KM_TO_M), INV_DEG_TO_INV_RAD * 0.008288 / (KM_TO_M * KM_TO_M)
- };
- /** Serializable UID. */
- private static final long serialVersionUID = 20160118L;
- /** station altitude (m). */
- private final double altitude;
- /** minimal elevation angle for the station (rad). */
- private final double thetamin;
- /** minimal elevation angle under free-space propagation (rad). */
- private final double theta0;
- /** elevation where elevation+refraction correction is minimal (near inequality formula number 11 validity domain). */
- private final double elev_star;
- /** refraction correction value where elevation+refraction correction is minimal (near inequality 11 validity domain). */
- private final double refrac_star;
- /** Creates a new default instance.
- * @param altitude altitude of the ground station from which measurement is performed (m)
- */
- public EarthITU453AtmosphereRefraction(final double altitude) {
- this.altitude = altitude;
- thetamin = getMinimalElevation(altitude);
- theta0 = thetamin - getTau(thetamin);
- final UnivariateFunction refrac = new UnivariateFunction() {
- public double value (final double elev) {
- return elev + getBaseRefraction(elev);
- }
- };
- final double rel = 1.e-5;
- final double abs = 1.e-10;
- final BrentOptimizer optimizer = new BrentOptimizer(rel, abs);
- // Call optimizer
- elev_star = optimizer.optimize(new MaxEval(200),
- new UnivariateObjectiveFunction(refrac),
- GoalType.MINIMIZE,
- new SearchInterval(-FastMath.PI / 30., FastMath.PI / 4)).getPoint();
- refrac_star = getBaseRefraction(elev_star);
- }
- /** Compute the refractive index correction in the case of a typical atmosphere.
- * ITU-R P.834-7, formula number 8, page 3
- * @param alt altitude of the station at the Earth surface (m)
- * @return the refractive index
- */
- private double getRefractiveIndex(final double alt) {
- return 1.0 + DEFAULT_CORRECTION_ACOEF * FastMath.exp(-DEFAULT_CORRECTION_BCOEF * alt);
- }
- /** Compute the minimal elevation angle for a station.
- * ITU-R P.834-7, formula number 10, page 3
- * @param alt altitude of the station at the Earth surface (m)
- * @return the minimal elevation angle (rad)
- */
- private double getMinimalElevation(final double alt) {
- return -FastMath.acos( EARTH_RAY / (EARTH_RAY + alt) * getRefractiveIndex(0.0) / getRefractiveIndex(alt));
- }
- /** Compute the refraction correction in the case of a reference atmosphere.
- * ITU-R P.834-7, formula number 9, page 3
- * @param elevation elevation angle (rad)
- * @return the refraction correction angle (rad)
- */
- private double getTau(final double elevation) {
- final double eld = FastMath.toDegrees(elevation);
- final double tmp0 = CCOEF[0] + CCOEF[1] * eld + CCOEF[2] * eld * eld;
- final double tmp1 = altitude * (CCOEF[3] + CCOEF[4] * eld + CCOEF[5] * eld * eld);
- final double tmp2 = altitude * altitude * CCOEF[6];
- return 1.0 / (tmp0 + tmp1 + tmp2);
- }
- /** Compute the refraction correction in the case of a reference atmosphere.
- * ITU-R P.834-7, formula number 14, page 3
- * @param elevationZero elevation angle (rad)
- * @return the refraction correction angle (rad)
- */
- private double getTauZero(final double elevationZero) {
- final double eld = FastMath.toDegrees(elevationZero);
- final double tmp0 = CCOEF0[0] + CCOEF0[1] * eld + CCOEF0[2] * eld * eld;
- final double tmp1 = altitude * (CCOEF0[3] + CCOEF0[4] * eld + CCOEF0[5] * eld * eld);
- final double tmp2 = altitude * altitude * (CCOEF0[6] + CCOEF0[7] * eld);
- return 1.0 / (tmp0 + tmp1 + tmp2);
- }
- /** Compute the refraction correction in the case of a reference atmosphere without validity domain.
- * The computation is done even if the inequality (formula number 11) is not verified
- * ITU-R P.834-7, formula number 14, page 3
- * @param elevation elevation angle (rad)
- * @return the refraction correction angle (rad)
- */
- private double getBaseRefraction(final double elevation) {
- return getTauZero(elevation);
- }
- /** Get the station minimal elevation angle.
- * @return the minimal elevation angle (rad)
- */
- public double getThetaMin() {
- return thetamin;
- }
- /** Get the station elevation angle under free-space propagation .
- * @return the elevation angle under free-space propagation (rad)
- */
- public double getTheta0() {
- return theta0;
- }
- @Override
- /** {@inheritDoc} */
- // elevation (rad)
- // return refraction correction (rad)
- public double getRefraction(final double elevation) {
- if (elevation < elev_star ) {
- return refrac_star;
- }
- // The validity of the formula is extended for negative elevation,
- // ensuring that the refraction correction angle doesn't make visible a satellite with a too negative elevation
- // elev_star is used instead of thetam (minimal elevation angle).
- return getTauZero(elevation);
- }
- }