GPSBlockIIR.java
/* Copyright 2002-2018 CS Systèmes d'Information
* Licensed to CS Systèmes d'Information (CS) under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* CS licenses this file to You under the Apache License, Version 2.0
* (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package org.orekit.gnss.attitude;
import org.hipparchus.Field;
import org.hipparchus.RealFieldElement;
import org.hipparchus.util.FastMath;
import org.orekit.frames.Frame;
import org.orekit.time.AbsoluteDate;
import org.orekit.utils.ExtendedPVCoordinatesProvider;
import org.orekit.utils.TimeStampedAngularCoordinates;
import org.orekit.utils.TimeStampedFieldAngularCoordinates;
/**
* Attitude providers for GPS block IIF navigation satellites.
* <p>
* This class is based on the May 2017 version of J. Kouba eclips.f
* subroutine available at <a href="http://acc.igs.org/orbits">IGS Analysis
* Center Coordinator site</a>. The eclips.f code itself is not used ; its
* hard-coded data are used and its low level models are used, but the
* structure of the code and the API have been completely rewritten.
* </p>
* <p>
* WARNING: as of release 9.2, this feature is still considered experimental
* </p>
* @author J. Kouba original fortran routine
* @author Luc Maisonobe Java translation
* @since 9.2
*/
public class GPSBlockIIR extends AbstractGNSSAttitudeProvider {
/** Serializable UID. */
private static final long serialVersionUID = 20171114L;
/** Yaw rates for all spacecrafts. */
private static final double YAW_RATE = FastMath.toRadians(0.2);
/** Margin on turn end. */
private final double END_MARGIN = 1800.0;
/** Simple constructor.
* @param validityStart start of validity for this provider
* @param validityEnd end of validity for this provider
* @param sun provider for Sun position
* @param inertialFrame inertial frame where velocity are computed
*/
public GPSBlockIIR(final AbsoluteDate validityStart, final AbsoluteDate validityEnd,
final ExtendedPVCoordinatesProvider sun, final Frame inertialFrame) {
super(validityStart, validityEnd, sun, inertialFrame);
}
/** {@inheritDoc} */
@Override
protected TimeStampedAngularCoordinates correctedYaw(final GNSSAttitudeContext context) {
// noon beta angle limit from yaw rate
final double aNoon = FastMath.atan(context.getMuRate() / YAW_RATE);
final double cNoon = FastMath.cos(aNoon);
final double cNight = -cNoon;
if (context.setUpTurnRegion(cNight, cNoon)) {
final double absBeta = FastMath.abs(context.getBeta());
context.setHalfSpan(absBeta * FastMath.sqrt(aNoon / absBeta - 1.0));
if (context.inTurnTimeRange(context.getDate(), END_MARGIN)) {
// we need to ensure beta sign does not change during the turn
final double beta = context.getSecuredBeta();
final double phiStart = context.getYawStart(beta);
final double dtStart = context.timeSinceTurnStart(context.getDate());
final double phiDot;
final double linearPhi;
if (context.inSunSide()) {
// noon turn
phiDot = -FastMath.copySign(YAW_RATE, beta);
linearPhi = phiStart + phiDot * dtStart;
} else {
// midnight turn
phiDot = FastMath.copySign(YAW_RATE, beta);
linearPhi = phiStart + phiDot * dtStart;
final double phiEnd = context.getYawEnd(beta);
if (phiEnd / linearPhi < 0 || phiEnd / linearPhi > 1) {
return context.getNominalYaw();
}
}
return context.turnCorrectedAttitude(linearPhi, phiDot);
}
}
// in nominal yaw mode
return context.getNominalYaw();
}
/** {@inheritDoc} */
@Override
protected <T extends RealFieldElement<T>> TimeStampedFieldAngularCoordinates<T> correctedYaw(final GNSSFieldAttitudeContext<T> context) {
final Field<T> field = context.getDate().getField();
// noon beta angle limit from yaw rate
final T aNoon = FastMath.atan(context.getMuRate().divide(YAW_RATE));
final double cNoon = FastMath.cos(aNoon.getReal());
final double cNight = -cNoon;
if (context.setUpTurnRegion(cNight, cNoon)) {
final T absBeta = FastMath.abs(context.getBeta());
context.setHalfSpan(absBeta.multiply(FastMath.sqrt(aNoon.divide(absBeta).subtract(1.0))));
if (context.inTurnTimeRange(context.getDate(), END_MARGIN)) {
// we need to ensure beta sign does not change during the turn
final T beta = context.getSecuredBeta();
final T phiStart = context.getYawStart(beta);
final T dtStart = context.timeSinceTurnStart(context.getDate());
final T phiDot;
final T linearPhi;
if (context.inSunSide()) {
// noon turn
phiDot = field.getZero().add(-FastMath.copySign(YAW_RATE, beta.getReal()));
linearPhi = phiStart.add(phiDot.multiply(dtStart));
} else {
// midnight turn
phiDot = field.getZero().add(FastMath.copySign(YAW_RATE, beta.getReal()));
linearPhi = phiStart.add(phiDot.multiply(dtStart));
final T phiEnd = context.getYawEnd(beta);
if (phiEnd.getReal() / linearPhi.getReal() < 0 || phiEnd.getReal() / linearPhi.getReal() > 1) {
return context.getNominalYaw();
}
}
return context.turnCorrectedAttitude(linearPhi, phiDot);
}
}
// in nominal yaw mode
return context.getNominalYaw();
}
}