OneDVariation.java

/* Copyright 2002-2018 CS Systèmes d'Information
 * Licensed to CS Systèmes d'Information (CS) under one or more
 * contributor license agreements.  See the NOTICE file distributed with
 * this work for additional information regarding copyright ownership.
 * CS licenses this file to You under the Apache License, Version 2.0
 * (the "License"); you may not use this file except in compliance with
 * the License.  You may obtain a copy of the License at
 *
 *   http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */
package org.orekit.gnss.antenna;

import org.hipparchus.util.FastMath;

/**
 * Interpolator for 1D phase center variation data.
 *
 * @author Luc Maisonobe
 * @since 9.2
 */
class OneDVariation implements PhaseCenterVariationFunction {

    /** Start polar angle. */
    private final double polarStart;

    /** Step between grid points. */
    private final double polarStep;

    /** Sampled phase center variations. */
    private final double[] variations;

    /** Simple constructor.
     * @param polarStart start polar angle
     * @param polarStep between grid points
     * @param variations sampled phase center variations
     */
    OneDVariation(final double polarStart, final double polarStep, final double[] variations) {
        this.polarStart = polarStart;
        this.polarStep  = polarStep;
        this.variations = variations.clone();
    }

    /** {@inheritDoc} */
    @Override
    public double value(final double polarAngle, final double azimuthAngle) {

        // find surrounding points
        final int    jBase = (int) FastMath.floor((polarAngle - polarStart) / polarStep);
        final int    j     = FastMath.max(0, FastMath.min(variations.length - 2, jBase));

        final double pInf  = polarStart + j * polarStep;
        final double pSup  = pInf + polarStep;

        final double vInf  = variations[j];
        final double vSup  = variations[j + 1];

        // linear interpolation
        return ((polarAngle - pInf) * vSup + (pSup - polarAngle) * vInf) / polarStep;

    }

}