HarmonicParametricAcceleration.java
- /* Copyright 2002-2018 CS Systèmes d'Information
- * Licensed to CS Systèmes d'Information (CS) under one or more
- * contributor license agreements. See the NOTICE file distributed with
- * this work for additional information regarding copyright ownership.
- * CS licenses this file to You under the Apache License, Version 2.0
- * (the "License"); you may not use this file except in compliance with
- * the License. You may obtain a copy of the License at
- *
- * http://www.apache.org/licenses/LICENSE-2.0
- *
- * Unless required by applicable law or agreed to in writing, software
- * distributed under the License is distributed on an "AS IS" BASIS,
- * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- * See the License for the specific language governing permissions and
- * limitations under the License.
- */
- package org.orekit.forces;
- import org.hipparchus.RealFieldElement;
- import org.hipparchus.geometry.euclidean.threed.Vector3D;
- import org.hipparchus.util.FastMath;
- import org.hipparchus.util.MathUtils;
- import org.orekit.attitudes.AttitudeProvider;
- import org.orekit.errors.OrekitException;
- import org.orekit.errors.OrekitInternalError;
- import org.orekit.propagation.FieldSpacecraftState;
- import org.orekit.propagation.SpacecraftState;
- import org.orekit.time.AbsoluteDate;
- import org.orekit.utils.ParameterDriver;
- /** This class implements a {@link AbstractParametricAcceleration parametric acceleration}
- * with harmonic signed amplitude.
- * @since 9.0
- * @author Luc Maisonobe
- */
- public class HarmonicParametricAcceleration extends AbstractParametricAcceleration {
- /** Amplitude scaling factor.
- * <p>
- * 2⁻²⁰ is the order of magnitude of third body perturbing acceleration.
- * </p>
- * <p>
- * We use a power of 2 to avoid numeric noise introduction
- * in the multiplications/divisions sequences.
- * </p>
- */
- private static final double AMPLITUDE_SCALE = FastMath.scalb(1.0, -20);
- /** Phase scaling factor.
- * <p>
- * 2⁻²³ is the order of magnitude of an angle corresponding to one meter along
- * track for a Low Earth Orbiting satellite.
- * </p>
- * <p>
- * We use a power of 2 to avoid numeric noise introduction
- * in the multiplications/divisions sequences.
- * </p>
- */
- private static final double PHASE_SCALE = FastMath.scalb(1.0, -23);
- /** Drivers for the parameters. */
- private final ParameterDriver[] drivers;
- /** Reference date for computing phase. */
- private AbsoluteDate referenceDate;
- /** Angular frequency ω = 2kπ/T. */
- private final double omega;
- /** Simple constructor.
- * <p>
- * The signed amplitude of the acceleration is γ sin[2kπ(t-t₀)/T + φ], where
- * γ is parameter {@code 0} and represents the full amplitude, t is current
- * date, t₀ is reference date, {@code T} is fundamental period, {@code k} is
- * harmonic multiplier, and φ is parameter {@code 1} and represents phase at t₀.
- * The value t-t₀ is in seconds.
- * </p>
- * <p>
- * The fundamental period {@code T} is often set to the Keplerian period of the
- * orbit and the harmonic multiplier {@code k} is often set to 1 or 2. The model
- * has two parameters, one for the full amplitude and one for the phase at reference
- * date.
- * </p>
- * <p>
- * The two parameters for this model are the full amplitude (parameter 0) and the
- * phase at reference date (parameter 1). Their reference values (used also as the
- * initial values) are both set to 0. User can change them before starting the
- * propagation (or orbit determination) by calling {@link #getParametersDrivers()}
- * and {@link ParameterDriver#setValue(double)}.
- * </p>
- * @param direction acceleration direction in defining frame
- * @param isInertial if true, direction is defined in the same inertial
- * frame used for propagation (i.e. {@link SpacecraftState#getFrame()}),
- * otherwise direction is defined in spacecraft frame (i.e. using the
- * propagation {@link
- * org.orekit.propagation.Propagator#setAttitudeProvider(AttitudeProvider)
- * attitude law})
- * @param prefix prefix to use for parameter drivers
- * @param referenceDate reference date for computing phase, if null
- * the reference date will be automatically set at propagation start
- * @param fundamentalPeriod fundamental period (typically set to initial orbit
- * {@link org.orekit.orbits.Orbit#getKeplerianPeriod() Keplerian period})
- * @param harmonicMultiplier multiplier to compute harmonic period from
- * fundamental period)
- */
- public HarmonicParametricAcceleration(final Vector3D direction, final boolean isInertial,
- final String prefix, final AbsoluteDate referenceDate,
- final double fundamentalPeriod, final int harmonicMultiplier) {
- this(direction, isInertial, null, prefix, referenceDate,
- fundamentalPeriod, harmonicMultiplier);
- }
- /** Simple constructor.
- * <p>
- * The signed amplitude of the acceleration is γ sin[2kπ(t-t₀)/T + φ], where
- * γ is parameter {@code 0} and represents the full amplitude, t is current
- * date, t₀ is reference date, {@code T} is fundamental period, {@code k} is
- * harmonic multiplier, and φ is parameter {@code 1} and represents phase at t₀.
- * The value t-t₀ is in seconds.
- * </p>
- * <p>
- * The fundamental period {@code T} is often set to the Keplerian period of the
- * orbit and the harmonic multiplier {@code k} is often set to 1 or 2. The model
- * has two parameters, one for the full amplitude and one for the phase at reference
- * date.
- * </p>
- * <p>
- * The two parameters for this model are the full amplitude (parameter 0) and the
- * phase at reference date (parameter 1). Their reference values (used also as the
- * initial values) are both set to 0. User can change them before starting the
- * propagation (or orbit determination) by calling {@link #getParametersDrivers()}
- * and {@link ParameterDriver#setValue(double)}.
- * </p>
- * @param direction acceleration direction in overridden spacecraft frame
- * @param attitudeOverride provider for attitude used to compute acceleration
- * direction
- * @param prefix prefix to use for parameter drivers
- * @param referenceDate reference date for computing phase, if null
- * the reference date will be automatically set at propagation start
- * @param fundamentalPeriod fundamental period (typically set to initial orbit
- * {@link org.orekit.orbits.Orbit#getKeplerianPeriod() Keplerian period})
- * @param harmonicMultiplier multiplier to compute harmonic period from
- * fundamental period)
- */
- public HarmonicParametricAcceleration(final Vector3D direction, final AttitudeProvider attitudeOverride,
- final String prefix, final AbsoluteDate referenceDate,
- final double fundamentalPeriod, final int harmonicMultiplier) {
- this(direction, false, attitudeOverride, prefix, referenceDate,
- fundamentalPeriod, harmonicMultiplier);
- }
- /** Simple constructor.
- * @param direction acceleration direction in overridden spacecraft frame
- * @param isInertial if true, direction is defined in the same inertial
- * frame used for propagation (i.e. {@link SpacecraftState#getFrame()}),
- * otherwise direction is defined in spacecraft frame (i.e. using the
- * propagation {@link
- * org.orekit.propagation.Propagator#setAttitudeProvider(AttitudeProvider)
- * attitude law})
- * @param attitudeOverride provider for attitude used to compute acceleration
- * direction
- * @param prefix prefix to use for parameter drivers
- * @param referenceDate reference date for computing polynomials, if null
- * the reference date will be automatically set at propagation start
- * @param fundamentalPeriod fundamental period (typically set to initial orbit
- * {@link org.orekit.orbits.Orbit#getKeplerianPeriod() Keplerian period})
- * @param harmonicMultiplier multiplier to compute harmonic period from
- * fundamental period)
- */
- private HarmonicParametricAcceleration(final Vector3D direction, final boolean isInertial,
- final AttitudeProvider attitudeOverride,
- final String prefix, final AbsoluteDate referenceDate,
- final double fundamentalPeriod, final int harmonicMultiplier) {
- super(direction, isInertial, attitudeOverride);
- this.referenceDate = referenceDate;
- this.omega = harmonicMultiplier * MathUtils.TWO_PI / fundamentalPeriod;
- try {
- drivers = new ParameterDriver[] {
- new ParameterDriver(prefix + " γ",
- 0.0, AMPLITUDE_SCALE, Double.NEGATIVE_INFINITY, Double.POSITIVE_INFINITY),
- new ParameterDriver(prefix + " φ",
- 0.0, PHASE_SCALE, -MathUtils.TWO_PI, MathUtils.TWO_PI),
- };
- } catch (OrekitException oe) {
- // this should never happen as scales are hard-coded
- throw new OrekitInternalError(oe);
- }
- }
- /** {@inheritDoc} */
- @Override
- public boolean dependsOnPositionOnly() {
- return isInertial();
- }
- /** {@inheritDoc} */
- @Override
- public void init(final SpacecraftState initialState, final AbsoluteDate target)
- throws OrekitException {
- if (referenceDate == null) {
- referenceDate = initialState.getDate();
- }
- }
- /** {@inheritDoc}.
- * The signed amplitude of the acceleration is γ sin[2kπ(t-t₀)/T + φ], where
- * γ is parameter {@code 0} and represents the full amplitude, t is current
- * date, t₀ is reference date, {@code T} is fundamental period, {@code k} is
- * harmonic multiplier, and φ is parameter {@code 1} and represents phase at t₀.
- * The value t-t₀ is in seconds.
- */
- @Override
- protected double signedAmplitude(final SpacecraftState state, final double[] parameters) {
- final double dt = state.getDate().durationFrom(referenceDate);
- return parameters[0] * FastMath.sin(dt * omega + parameters[1]);
- }
- /** {@inheritDoc}
- * The signed amplitude of the acceleration is γ sin[2kπ(t-t₀)/T + φ], where
- * γ is parameter {@code 0} and represents the full amplitude, t is current
- * date, t₀ is reference date, {@code T} is fundamental period, {@code k} is
- * harmonic multiplier, and φ is parameter {@code 1} and represents phase at t₀.
- * The value t-t₀ is in seconds.
- */
- @Override
- protected <T extends RealFieldElement<T>> T signedAmplitude(final FieldSpacecraftState<T> state, final T[] parameters) {
- final T dt = state.getDate().durationFrom(referenceDate);
- return parameters[0].multiply(dt.multiply(omega).add(parameters[1]).sin());
- }
- /** {@inheritDoc} */
- @Override
- public ParameterDriver[] getParametersDrivers() {
- return drivers.clone();
- }
- }