TurnAroundRange.java
- /* Copyright 2002-2018 CS Systèmes d'Information
- * Licensed to CS Systèmes d'Information (CS) under one or more
- * contributor license agreements. See the NOTICE file distributed with
- * this work for additional information regarding copyright ownership.
- * CS licenses this file to You under the Apache License, Version 2.0
- * (the "License"); you may not use this file except in compliance with
- * the License. You may obtain a copy of the License at
- *
- * http://www.apache.org/licenses/LICENSE-2.0
- *
- * Unless required by applicable law or agreed to in writing, software
- * distributed under the License is distributed on an "AS IS" BASIS,
- * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- * See the License for the specific language governing permissions and
- * limitations under the License.
- */
- package org.orekit.estimation.measurements;
- import java.util.Arrays;
- import java.util.HashMap;
- import java.util.Map;
- import org.hipparchus.Field;
- import org.hipparchus.analysis.differentiation.DSFactory;
- import org.hipparchus.analysis.differentiation.DerivativeStructure;
- import org.hipparchus.geometry.euclidean.threed.FieldVector3D;
- import org.orekit.errors.OrekitException;
- import org.orekit.frames.FieldTransform;
- import org.orekit.propagation.SpacecraftState;
- import org.orekit.time.AbsoluteDate;
- import org.orekit.time.FieldAbsoluteDate;
- import org.orekit.utils.Constants;
- import org.orekit.utils.FieldPVCoordinates;
- import org.orekit.utils.PVCoordinates;
- import org.orekit.utils.ParameterDriver;
- import org.orekit.utils.TimeStampedFieldPVCoordinates;
- import org.orekit.utils.TimeStampedPVCoordinates;
- /** Class modeling a turn-around range measurement using a master ground station and a slave ground station.
- * <p>
- * The measurement is considered to be a signal:
- * - Emitted from the master ground station
- * - Reflected on the spacecraft
- * - Reflected on the slave ground station
- * - Reflected on the spacecraft again
- * - Received on the master ground station
- * Its value is the elapsed time between emission and reception
- * divided by 2c were c is the speed of light.
- * The motion of the stations and the spacecraft
- * during the signal flight time are taken into account.
- * The date of the measurement corresponds to the
- * reception on ground of the reflected signal.
- * </p>
- * @author Thierry Ceolin
- * @author Luc Maisonobe
- * @author Maxime Journot
- *
- * @since 9.0
- */
- public class TurnAroundRange extends AbstractMeasurement<TurnAroundRange> {
- /** Master ground station from which measurement is performed. */
- private final GroundStation masterStation;
- /** Slave ground station reflecting the signal. */
- private final GroundStation slaveStation;
- /** Simple constructor.
- * <p>
- * This constructor uses 0 as the index of the propagator related
- * to this measurement, thus being well suited for mono-satellite
- * orbit determination.
- * </p>
- * @param masterStation ground station from which measurement is performed
- * @param slaveStation ground station reflecting the signal
- * @param date date of the measurement
- * @param turnAroundRange observed value
- * @param sigma theoretical standard deviation
- * @param baseWeight base weight
- * @exception OrekitException if a {@link org.orekit.utils.ParameterDriver}
- * name conflict occurs
- */
- public TurnAroundRange(final GroundStation masterStation, final GroundStation slaveStation,
- final AbsoluteDate date, final double turnAroundRange,
- final double sigma, final double baseWeight)
- throws OrekitException {
- this(masterStation, slaveStation, date, turnAroundRange, sigma, baseWeight, 0);
- }
- /** Simple constructor.
- * @param masterStation ground station from which measurement is performed
- * @param slaveStation ground station reflecting the signal
- * @param date date of the measurement
- * @param turnAroundRange observed value
- * @param sigma theoretical standard deviation
- * @param baseWeight base weight
- * @param propagatorIndex index of the propagator related to this measurement
- * @exception OrekitException if a {@link org.orekit.utils.ParameterDriver}
- * name conflict occurs
- * @since 9.0
- */
- public TurnAroundRange(final GroundStation masterStation, final GroundStation slaveStation,
- final AbsoluteDate date, final double turnAroundRange,
- final double sigma, final double baseWeight,
- final int propagatorIndex)
- throws OrekitException {
- super(date, turnAroundRange, sigma, baseWeight, Arrays.asList(propagatorIndex),
- masterStation.getEastOffsetDriver(),
- masterStation.getNorthOffsetDriver(),
- masterStation.getZenithOffsetDriver(),
- masterStation.getPrimeMeridianOffsetDriver(),
- masterStation.getPrimeMeridianDriftDriver(),
- masterStation.getPolarOffsetXDriver(),
- masterStation.getPolarDriftXDriver(),
- masterStation.getPolarOffsetYDriver(),
- masterStation.getPolarDriftYDriver(),
- slaveStation.getEastOffsetDriver(),
- slaveStation.getNorthOffsetDriver(),
- slaveStation.getZenithOffsetDriver(),
- slaveStation.getPrimeMeridianOffsetDriver(),
- slaveStation.getPrimeMeridianDriftDriver(),
- slaveStation.getPolarOffsetXDriver(),
- slaveStation.getPolarDriftXDriver(),
- slaveStation.getPolarOffsetYDriver(),
- slaveStation.getPolarDriftYDriver());
- this.masterStation = masterStation;
- this.slaveStation = slaveStation;
- }
- /** Get the master ground station from which measurement is performed.
- * @return master ground station from which measurement is performed
- */
- public GroundStation getMasterStation() {
- return masterStation;
- }
- /** Get the slave ground station reflecting the signal.
- * @return slave ground station reflecting the signal
- */
- public GroundStation getSlaveStation() {
- return slaveStation;
- }
- /** {@inheritDoc} */
- @Override
- protected EstimatedMeasurement<TurnAroundRange> theoreticalEvaluation(final int iteration, final int evaluation,
- final SpacecraftState[] states)
- throws OrekitException {
- final SpacecraftState state = states[getPropagatorsIndices().get(0)];
- // Turn around range derivatives are computed with respect to:
- // - Spacecraft state in inertial frame
- // - Master station parameters
- // - Slave station parameters
- // --------------------------
- //
- // - 0..2 - Position of the spacecraft in inertial frame
- // - 3..5 - Velocity of the spacecraft in inertial frame
- // - 6..n - stations' parameters (stations' offsets, pole, prime meridian...)
- int nbParams = 6;
- final Map<String, Integer> indices = new HashMap<>();
- for (ParameterDriver driver : getParametersDrivers()) {
- // we have to check for duplicate keys because master and slave station share
- // pole and prime meridian parameters names that must be considered
- // as one set only (they are combined together by the estimation engine)
- if (driver.isSelected() && !indices.containsKey(driver.getName())) {
- indices.put(driver.getName(), nbParams++);
- }
- }
- final DSFactory factory = new DSFactory(nbParams, 1);
- final Field<DerivativeStructure> field = factory.getDerivativeField();
- final FieldVector3D<DerivativeStructure> zero = FieldVector3D.getZero(field);
- // Place the derivative structures in a time-stamped PV
- final TimeStampedFieldPVCoordinates<DerivativeStructure> pvaDS = getCoordinates(state, 0, factory);
- // The path of the signal is divided in two legs.
- // Leg1: Emission from master station to satellite in masterTauU seconds
- // + Reflection from satellite to slave station in slaveTauD seconds
- // Leg2: Reflection from slave station to satellite in slaveTauU seconds
- // + Reflection from satellite to master station in masterTaudD seconds
- // The measurement is considered to be time stamped at reception on ground
- // by the master station. All times are therefore computed as backward offsets
- // with respect to this reception time.
- //
- // Two intermediate spacecraft states are defined:
- // - transitStateLeg2: State of the satellite when it bounced back the signal
- // from slave station to master station during the 2nd leg
- // - transitStateLeg1: State of the satellite when it bounced back the signal
- // from master station to slave station during the 1st leg
- // Compute propagation time for the 2nd leg of the signal path
- // --
- // Time difference between t (date of the measurement) and t' (date tagged in spacecraft state)
- // (if state has already been set up to pre-compensate propagation delay,
- // we will have delta = masterTauD + slaveTauU)
- final AbsoluteDate measurementDate = getDate();
- final FieldAbsoluteDate<DerivativeStructure> measurementDateDS = new FieldAbsoluteDate<>(field, measurementDate);
- final double delta = measurementDate.durationFrom(state.getDate());
- // transform between master station topocentric frame (east-north-zenith) and inertial frame expressed as DerivativeStructures
- final FieldTransform<DerivativeStructure> masterToInert =
- masterStation.getOffsetToInertial(state.getFrame(), measurementDateDS, factory, indices);
- // Master station PV in inertial frame at measurement date
- final TimeStampedFieldPVCoordinates<DerivativeStructure> masterArrival =
- masterToInert.transformPVCoordinates(new TimeStampedPVCoordinates(measurementDate,
- PVCoordinates.ZERO));
- // Compute propagation times
- final DerivativeStructure masterTauD = signalTimeOfFlight(pvaDS, masterArrival.getPosition(), measurementDateDS);
- // Elapsed time between state date t' and signal arrival to the transit state of the 2nd leg
- final DerivativeStructure dtLeg2 = masterTauD.negate().add(delta);
- // Transit state where the satellite reflected the signal from slave to master station
- final SpacecraftState transitStateLeg2 = state.shiftedBy(dtLeg2.getValue());
- // Transit state pv of leg2 (re)computed with derivative structures
- final TimeStampedFieldPVCoordinates<DerivativeStructure> transitStateLeg2PV = pvaDS.shiftedBy(dtLeg2);
- // transform between slave station topocentric frame (east-north-zenith) and inertial frame expressed as DerivativeStructures
- // The components of slave station's position in offset frame are the 3 last derivative parameters
- final FieldAbsoluteDate<DerivativeStructure> approxReboundDate = measurementDateDS.shiftedBy(-delta);
- final FieldTransform<DerivativeStructure> slaveToInertApprox =
- slaveStation.getOffsetToInertial(state.getFrame(), approxReboundDate, factory, indices);
- // Slave station PV in inertial frame at approximate rebound date on slave station
- final TimeStampedFieldPVCoordinates<DerivativeStructure> QSlaveApprox =
- slaveToInertApprox.transformPVCoordinates(new TimeStampedFieldPVCoordinates<>(approxReboundDate,
- zero, zero, zero));
- // Uplink time of flight from slave station to transit state of leg2
- final DerivativeStructure slaveTauU = signalTimeOfFlight(QSlaveApprox,
- transitStateLeg2PV.getPosition(),
- transitStateLeg2PV.getDate());
- // Total time of flight for leg 2
- final DerivativeStructure tauLeg2 = masterTauD.add(slaveTauU);
- // Compute propagation time for the 1st leg of the signal path
- // --
- // Absolute date of rebound of the signal to slave station
- final FieldAbsoluteDate<DerivativeStructure> reboundDateDS = measurementDateDS.shiftedBy(tauLeg2.negate());
- final FieldTransform<DerivativeStructure> slaveToInert =
- slaveStation.getOffsetToInertial(state.getFrame(), reboundDateDS, factory, indices);
- // Slave station PV in inertial frame at rebound date on slave station
- final TimeStampedFieldPVCoordinates<DerivativeStructure> slaveRebound =
- slaveToInert.transformPVCoordinates(new TimeStampedFieldPVCoordinates<>(reboundDateDS,
- FieldPVCoordinates.getZero(field)));
- // Downlink time of flight from transitStateLeg1 to slave station at rebound date
- final DerivativeStructure slaveTauD = signalTimeOfFlight(transitStateLeg2PV,
- slaveRebound.getPosition(),
- reboundDateDS);
- // Elapsed time between state date t' and signal arrival to the transit state of the 1st leg
- final DerivativeStructure dtLeg1 = dtLeg2.subtract(slaveTauU).subtract(slaveTauD);
- // Transit state pv of leg2 (re)computed with derivative structures
- final TimeStampedFieldPVCoordinates<DerivativeStructure> transitStateLeg1PV = pvaDS.shiftedBy(dtLeg1);
- // transform between master station topocentric frame (east-north-zenith) and inertial frame expressed as DerivativeStructures
- // The components of master station's position in offset frame are the 3 third derivative parameters
- final FieldAbsoluteDate<DerivativeStructure> approxEmissionDate =
- measurementDateDS.shiftedBy(-2 * (slaveTauU.getValue() + masterTauD.getValue()));
- final FieldTransform<DerivativeStructure> masterToInertApprox =
- masterStation.getOffsetToInertial(state.getFrame(), approxEmissionDate, factory, indices);
- // Master station PV in inertial frame at approximate emission date
- final TimeStampedFieldPVCoordinates<DerivativeStructure> QMasterApprox =
- masterToInertApprox.transformPVCoordinates(new TimeStampedFieldPVCoordinates<>(approxEmissionDate,
- zero, zero, zero));
- // Uplink time of flight from master station to transit state of leg1
- final DerivativeStructure masterTauU = signalTimeOfFlight(QMasterApprox,
- transitStateLeg1PV.getPosition(),
- transitStateLeg1PV.getDate());
- // Master station PV in inertial frame at exact emission date
- final AbsoluteDate emissionDate = transitStateLeg1PV.getDate().toAbsoluteDate().shiftedBy(-masterTauU.getValue());
- final TimeStampedPVCoordinates masterDeparture =
- masterToInertApprox.shiftedBy(emissionDate.durationFrom(masterToInertApprox.getDate())).
- transformPVCoordinates(new TimeStampedPVCoordinates(emissionDate, PVCoordinates.ZERO)).
- toTimeStampedPVCoordinates();
- // Total time of flight for leg 1
- final DerivativeStructure tauLeg1 = slaveTauD.add(masterTauU);
- // --
- // Evaluate the turn-around range value and its derivatives
- // --------------------------------------------------------
- // The state we use to define the estimated measurement is a middle ground between the two transit states
- // This is done to avoid calling "SpacecraftState.shiftedBy" function on long duration
- // Thus we define the state at the date t" = date of rebound of the signal at the slave station
- // Or t" = t -masterTauD -slaveTauU
- // The iterative process in the estimation ensures that, after several iterations, the date stamped in the
- // state S in input of this function will be close to t"
- // Therefore we will shift state S by:
- // - +slaveTauU to get transitStateLeg2
- // - -slaveTauD to get transitStateLeg1
- final EstimatedMeasurement<TurnAroundRange> estimated =
- new EstimatedMeasurement<>(this, iteration, evaluation,
- new SpacecraftState[] {
- transitStateLeg2.shiftedBy(-slaveTauU.getValue())
- },
- new TimeStampedPVCoordinates[] {
- masterDeparture,
- transitStateLeg1PV.toTimeStampedPVCoordinates(),
- slaveRebound.toTimeStampedPVCoordinates(),
- transitStateLeg2.getPVCoordinates(),
- masterArrival.toTimeStampedPVCoordinates()
- });
- // Turn-around range value = Total time of flight for the 2 legs divided by 2 and multiplied by c
- final double cOver2 = 0.5 * Constants.SPEED_OF_LIGHT;
- final DerivativeStructure turnAroundRange = (tauLeg2.add(tauLeg1)).multiply(cOver2);
- estimated.setEstimatedValue(turnAroundRange.getValue());
- // Turn-around range partial derivatives with respect to state
- final double[] derivatives = turnAroundRange.getAllDerivatives();
- estimated.setStateDerivatives(0, Arrays.copyOfRange(derivatives, 1, 7));
- // set partial derivatives with respect to parameters
- // (beware element at index 0 is the value, not a derivative)
- for (final ParameterDriver driver : getParametersDrivers()) {
- final Integer index = indices.get(driver.getName());
- if (index != null) {
- estimated.setParameterDerivatives(driver, derivatives[index + 1]);
- }
- }
- return estimated;
- }
- }