TurnAroundRange.java
/* Copyright 2002-2018 CS Systèmes d'Information
* Licensed to CS Systèmes d'Information (CS) under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* CS licenses this file to You under the Apache License, Version 2.0
* (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package org.orekit.estimation.measurements;
import java.util.Arrays;
import java.util.HashMap;
import java.util.Map;
import org.hipparchus.Field;
import org.hipparchus.analysis.differentiation.DSFactory;
import org.hipparchus.analysis.differentiation.DerivativeStructure;
import org.hipparchus.geometry.euclidean.threed.FieldVector3D;
import org.orekit.errors.OrekitException;
import org.orekit.frames.FieldTransform;
import org.orekit.propagation.SpacecraftState;
import org.orekit.time.AbsoluteDate;
import org.orekit.time.FieldAbsoluteDate;
import org.orekit.utils.Constants;
import org.orekit.utils.FieldPVCoordinates;
import org.orekit.utils.PVCoordinates;
import org.orekit.utils.ParameterDriver;
import org.orekit.utils.TimeStampedFieldPVCoordinates;
import org.orekit.utils.TimeStampedPVCoordinates;
/** Class modeling a turn-around range measurement using a master ground station and a slave ground station.
* <p>
* The measurement is considered to be a signal:
* - Emitted from the master ground station
* - Reflected on the spacecraft
* - Reflected on the slave ground station
* - Reflected on the spacecraft again
* - Received on the master ground station
* Its value is the elapsed time between emission and reception
* divided by 2c were c is the speed of light.
* The motion of the stations and the spacecraft
* during the signal flight time are taken into account.
* The date of the measurement corresponds to the
* reception on ground of the reflected signal.
* </p>
* @author Thierry Ceolin
* @author Luc Maisonobe
* @author Maxime Journot
*
* @since 9.0
*/
public class TurnAroundRange extends AbstractMeasurement<TurnAroundRange> {
/** Master ground station from which measurement is performed. */
private final GroundStation masterStation;
/** Slave ground station reflecting the signal. */
private final GroundStation slaveStation;
/** Simple constructor.
* <p>
* This constructor uses 0 as the index of the propagator related
* to this measurement, thus being well suited for mono-satellite
* orbit determination.
* </p>
* @param masterStation ground station from which measurement is performed
* @param slaveStation ground station reflecting the signal
* @param date date of the measurement
* @param turnAroundRange observed value
* @param sigma theoretical standard deviation
* @param baseWeight base weight
* @exception OrekitException if a {@link org.orekit.utils.ParameterDriver}
* name conflict occurs
*/
public TurnAroundRange(final GroundStation masterStation, final GroundStation slaveStation,
final AbsoluteDate date, final double turnAroundRange,
final double sigma, final double baseWeight)
throws OrekitException {
this(masterStation, slaveStation, date, turnAroundRange, sigma, baseWeight, 0);
}
/** Simple constructor.
* @param masterStation ground station from which measurement is performed
* @param slaveStation ground station reflecting the signal
* @param date date of the measurement
* @param turnAroundRange observed value
* @param sigma theoretical standard deviation
* @param baseWeight base weight
* @param propagatorIndex index of the propagator related to this measurement
* @exception OrekitException if a {@link org.orekit.utils.ParameterDriver}
* name conflict occurs
* @since 9.0
*/
public TurnAroundRange(final GroundStation masterStation, final GroundStation slaveStation,
final AbsoluteDate date, final double turnAroundRange,
final double sigma, final double baseWeight,
final int propagatorIndex)
throws OrekitException {
super(date, turnAroundRange, sigma, baseWeight, Arrays.asList(propagatorIndex),
masterStation.getEastOffsetDriver(),
masterStation.getNorthOffsetDriver(),
masterStation.getZenithOffsetDriver(),
masterStation.getPrimeMeridianOffsetDriver(),
masterStation.getPrimeMeridianDriftDriver(),
masterStation.getPolarOffsetXDriver(),
masterStation.getPolarDriftXDriver(),
masterStation.getPolarOffsetYDriver(),
masterStation.getPolarDriftYDriver(),
slaveStation.getEastOffsetDriver(),
slaveStation.getNorthOffsetDriver(),
slaveStation.getZenithOffsetDriver(),
slaveStation.getPrimeMeridianOffsetDriver(),
slaveStation.getPrimeMeridianDriftDriver(),
slaveStation.getPolarOffsetXDriver(),
slaveStation.getPolarDriftXDriver(),
slaveStation.getPolarOffsetYDriver(),
slaveStation.getPolarDriftYDriver());
this.masterStation = masterStation;
this.slaveStation = slaveStation;
}
/** Get the master ground station from which measurement is performed.
* @return master ground station from which measurement is performed
*/
public GroundStation getMasterStation() {
return masterStation;
}
/** Get the slave ground station reflecting the signal.
* @return slave ground station reflecting the signal
*/
public GroundStation getSlaveStation() {
return slaveStation;
}
/** {@inheritDoc} */
@Override
protected EstimatedMeasurement<TurnAroundRange> theoreticalEvaluation(final int iteration, final int evaluation,
final SpacecraftState[] states)
throws OrekitException {
final SpacecraftState state = states[getPropagatorsIndices().get(0)];
// Turn around range derivatives are computed with respect to:
// - Spacecraft state in inertial frame
// - Master station parameters
// - Slave station parameters
// --------------------------
//
// - 0..2 - Position of the spacecraft in inertial frame
// - 3..5 - Velocity of the spacecraft in inertial frame
// - 6..n - stations' parameters (stations' offsets, pole, prime meridian...)
int nbParams = 6;
final Map<String, Integer> indices = new HashMap<>();
for (ParameterDriver driver : getParametersDrivers()) {
// we have to check for duplicate keys because master and slave station share
// pole and prime meridian parameters names that must be considered
// as one set only (they are combined together by the estimation engine)
if (driver.isSelected() && !indices.containsKey(driver.getName())) {
indices.put(driver.getName(), nbParams++);
}
}
final DSFactory factory = new DSFactory(nbParams, 1);
final Field<DerivativeStructure> field = factory.getDerivativeField();
final FieldVector3D<DerivativeStructure> zero = FieldVector3D.getZero(field);
// Place the derivative structures in a time-stamped PV
final TimeStampedFieldPVCoordinates<DerivativeStructure> pvaDS = getCoordinates(state, 0, factory);
// The path of the signal is divided in two legs.
// Leg1: Emission from master station to satellite in masterTauU seconds
// + Reflection from satellite to slave station in slaveTauD seconds
// Leg2: Reflection from slave station to satellite in slaveTauU seconds
// + Reflection from satellite to master station in masterTaudD seconds
// The measurement is considered to be time stamped at reception on ground
// by the master station. All times are therefore computed as backward offsets
// with respect to this reception time.
//
// Two intermediate spacecraft states are defined:
// - transitStateLeg2: State of the satellite when it bounced back the signal
// from slave station to master station during the 2nd leg
// - transitStateLeg1: State of the satellite when it bounced back the signal
// from master station to slave station during the 1st leg
// Compute propagation time for the 2nd leg of the signal path
// --
// Time difference between t (date of the measurement) and t' (date tagged in spacecraft state)
// (if state has already been set up to pre-compensate propagation delay,
// we will have delta = masterTauD + slaveTauU)
final AbsoluteDate measurementDate = getDate();
final FieldAbsoluteDate<DerivativeStructure> measurementDateDS = new FieldAbsoluteDate<>(field, measurementDate);
final double delta = measurementDate.durationFrom(state.getDate());
// transform between master station topocentric frame (east-north-zenith) and inertial frame expressed as DerivativeStructures
final FieldTransform<DerivativeStructure> masterToInert =
masterStation.getOffsetToInertial(state.getFrame(), measurementDateDS, factory, indices);
// Master station PV in inertial frame at measurement date
final TimeStampedFieldPVCoordinates<DerivativeStructure> masterArrival =
masterToInert.transformPVCoordinates(new TimeStampedPVCoordinates(measurementDate,
PVCoordinates.ZERO));
// Compute propagation times
final DerivativeStructure masterTauD = signalTimeOfFlight(pvaDS, masterArrival.getPosition(), measurementDateDS);
// Elapsed time between state date t' and signal arrival to the transit state of the 2nd leg
final DerivativeStructure dtLeg2 = masterTauD.negate().add(delta);
// Transit state where the satellite reflected the signal from slave to master station
final SpacecraftState transitStateLeg2 = state.shiftedBy(dtLeg2.getValue());
// Transit state pv of leg2 (re)computed with derivative structures
final TimeStampedFieldPVCoordinates<DerivativeStructure> transitStateLeg2PV = pvaDS.shiftedBy(dtLeg2);
// transform between slave station topocentric frame (east-north-zenith) and inertial frame expressed as DerivativeStructures
// The components of slave station's position in offset frame are the 3 last derivative parameters
final FieldAbsoluteDate<DerivativeStructure> approxReboundDate = measurementDateDS.shiftedBy(-delta);
final FieldTransform<DerivativeStructure> slaveToInertApprox =
slaveStation.getOffsetToInertial(state.getFrame(), approxReboundDate, factory, indices);
// Slave station PV in inertial frame at approximate rebound date on slave station
final TimeStampedFieldPVCoordinates<DerivativeStructure> QSlaveApprox =
slaveToInertApprox.transformPVCoordinates(new TimeStampedFieldPVCoordinates<>(approxReboundDate,
zero, zero, zero));
// Uplink time of flight from slave station to transit state of leg2
final DerivativeStructure slaveTauU = signalTimeOfFlight(QSlaveApprox,
transitStateLeg2PV.getPosition(),
transitStateLeg2PV.getDate());
// Total time of flight for leg 2
final DerivativeStructure tauLeg2 = masterTauD.add(slaveTauU);
// Compute propagation time for the 1st leg of the signal path
// --
// Absolute date of rebound of the signal to slave station
final FieldAbsoluteDate<DerivativeStructure> reboundDateDS = measurementDateDS.shiftedBy(tauLeg2.negate());
final FieldTransform<DerivativeStructure> slaveToInert =
slaveStation.getOffsetToInertial(state.getFrame(), reboundDateDS, factory, indices);
// Slave station PV in inertial frame at rebound date on slave station
final TimeStampedFieldPVCoordinates<DerivativeStructure> slaveRebound =
slaveToInert.transformPVCoordinates(new TimeStampedFieldPVCoordinates<>(reboundDateDS,
FieldPVCoordinates.getZero(field)));
// Downlink time of flight from transitStateLeg1 to slave station at rebound date
final DerivativeStructure slaveTauD = signalTimeOfFlight(transitStateLeg2PV,
slaveRebound.getPosition(),
reboundDateDS);
// Elapsed time between state date t' and signal arrival to the transit state of the 1st leg
final DerivativeStructure dtLeg1 = dtLeg2.subtract(slaveTauU).subtract(slaveTauD);
// Transit state pv of leg2 (re)computed with derivative structures
final TimeStampedFieldPVCoordinates<DerivativeStructure> transitStateLeg1PV = pvaDS.shiftedBy(dtLeg1);
// transform between master station topocentric frame (east-north-zenith) and inertial frame expressed as DerivativeStructures
// The components of master station's position in offset frame are the 3 third derivative parameters
final FieldAbsoluteDate<DerivativeStructure> approxEmissionDate =
measurementDateDS.shiftedBy(-2 * (slaveTauU.getValue() + masterTauD.getValue()));
final FieldTransform<DerivativeStructure> masterToInertApprox =
masterStation.getOffsetToInertial(state.getFrame(), approxEmissionDate, factory, indices);
// Master station PV in inertial frame at approximate emission date
final TimeStampedFieldPVCoordinates<DerivativeStructure> QMasterApprox =
masterToInertApprox.transformPVCoordinates(new TimeStampedFieldPVCoordinates<>(approxEmissionDate,
zero, zero, zero));
// Uplink time of flight from master station to transit state of leg1
final DerivativeStructure masterTauU = signalTimeOfFlight(QMasterApprox,
transitStateLeg1PV.getPosition(),
transitStateLeg1PV.getDate());
// Master station PV in inertial frame at exact emission date
final AbsoluteDate emissionDate = transitStateLeg1PV.getDate().toAbsoluteDate().shiftedBy(-masterTauU.getValue());
final TimeStampedPVCoordinates masterDeparture =
masterToInertApprox.shiftedBy(emissionDate.durationFrom(masterToInertApprox.getDate())).
transformPVCoordinates(new TimeStampedPVCoordinates(emissionDate, PVCoordinates.ZERO)).
toTimeStampedPVCoordinates();
// Total time of flight for leg 1
final DerivativeStructure tauLeg1 = slaveTauD.add(masterTauU);
// --
// Evaluate the turn-around range value and its derivatives
// --------------------------------------------------------
// The state we use to define the estimated measurement is a middle ground between the two transit states
// This is done to avoid calling "SpacecraftState.shiftedBy" function on long duration
// Thus we define the state at the date t" = date of rebound of the signal at the slave station
// Or t" = t -masterTauD -slaveTauU
// The iterative process in the estimation ensures that, after several iterations, the date stamped in the
// state S in input of this function will be close to t"
// Therefore we will shift state S by:
// - +slaveTauU to get transitStateLeg2
// - -slaveTauD to get transitStateLeg1
final EstimatedMeasurement<TurnAroundRange> estimated =
new EstimatedMeasurement<>(this, iteration, evaluation,
new SpacecraftState[] {
transitStateLeg2.shiftedBy(-slaveTauU.getValue())
},
new TimeStampedPVCoordinates[] {
masterDeparture,
transitStateLeg1PV.toTimeStampedPVCoordinates(),
slaveRebound.toTimeStampedPVCoordinates(),
transitStateLeg2.getPVCoordinates(),
masterArrival.toTimeStampedPVCoordinates()
});
// Turn-around range value = Total time of flight for the 2 legs divided by 2 and multiplied by c
final double cOver2 = 0.5 * Constants.SPEED_OF_LIGHT;
final DerivativeStructure turnAroundRange = (tauLeg2.add(tauLeg1)).multiply(cOver2);
estimated.setEstimatedValue(turnAroundRange.getValue());
// Turn-around range partial derivatives with respect to state
final double[] derivatives = turnAroundRange.getAllDerivatives();
estimated.setStateDerivatives(0, Arrays.copyOfRange(derivatives, 1, 7));
// set partial derivatives with respect to parameters
// (beware element at index 0 is the value, not a derivative)
for (final ParameterDriver driver : getParametersDrivers()) {
final Integer index = indices.get(driver.getName());
if (index != null) {
estimated.setParameterDerivatives(driver, derivatives[index + 1]);
}
}
return estimated;
}
}