RangeRate.java
- /* Copyright 2002-2018 CS Systèmes d'Information
- * Licensed to CS Systèmes d'Information (CS) under one or more
- * contributor license agreements. See the NOTICE file distributed with
- * this work for additional information regarding copyright ownership.
- * CS licenses this file to You under the Apache License, Version 2.0
- * (the "License"); you may not use this file except in compliance with
- * the License. You may obtain a copy of the License at
- *
- * http://www.apache.org/licenses/LICENSE-2.0
- *
- * Unless required by applicable law or agreed to in writing, software
- * distributed under the License is distributed on an "AS IS" BASIS,
- * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- * See the License for the specific language governing permissions and
- * limitations under the License.
- */
- package org.orekit.estimation.measurements;
- import java.util.Arrays;
- import java.util.HashMap;
- import java.util.Map;
- import org.hipparchus.Field;
- import org.hipparchus.analysis.differentiation.DSFactory;
- import org.hipparchus.analysis.differentiation.DerivativeStructure;
- import org.hipparchus.geometry.euclidean.threed.FieldVector3D;
- import org.orekit.errors.OrekitException;
- import org.orekit.frames.FieldTransform;
- import org.orekit.propagation.SpacecraftState;
- import org.orekit.time.AbsoluteDate;
- import org.orekit.time.FieldAbsoluteDate;
- import org.orekit.utils.ParameterDriver;
- import org.orekit.utils.TimeStampedFieldPVCoordinates;
- import org.orekit.utils.TimeStampedPVCoordinates;
- /** Class modeling one-way or two-way range rate measurement between two vehicles.
- * One-way range rate (or Doppler) measurements generally apply to specific satellites
- * (e.g. GNSS, DORIS), where a signal is transmitted from a satellite to a
- * measuring station.
- * Two-way range rate measurements are applicable to any system. The signal is
- * transmitted to the (non-spinning) satellite and returned by a transponder
- * (or reflected back)to the same measuring station.
- * The Doppler measurement can be obtained by multiplying the velocity by (fe/c), where
- * fe is the emission frequency.
- *
- * @author Thierry Ceolin
- * @author Joris Olympio
- * @since 8.0
- */
- public class RangeRate extends AbstractMeasurement<RangeRate> {
- /** Ground station from which measurement is performed. */
- private final GroundStation station;
- /** Flag indicating whether it is a two-way measurement. */
- private final boolean twoway;
- /** Simple constructor.
- * <p>
- * This constructor uses 0 as the index of the propagator related
- * to this measurement, thus being well suited for mono-satellite
- * orbit determination.
- * </p>
- * @param station ground station from which measurement is performed
- * @param date date of the measurement
- * @param rangeRate observed value, m/s
- * @param sigma theoretical standard deviation
- * @param baseWeight base weight
- * @param twoway if true, this is a two-way measurement
- * @exception OrekitException if a {@link org.orekit.utils.ParameterDriver}
- * name conflict occurs
- */
- public RangeRate(final GroundStation station, final AbsoluteDate date,
- final double rangeRate,
- final double sigma,
- final double baseWeight,
- final boolean twoway)
- throws OrekitException {
- this(station, date, rangeRate, sigma, baseWeight, twoway, 0);
- }
- /** Simple constructor.
- * @param station ground station from which measurement is performed
- * @param date date of the measurement
- * @param rangeRate observed value, m/s
- * @param sigma theoretical standard deviation
- * @param baseWeight base weight
- * @param twoway if true, this is a two-way measurement
- * @param propagatorIndex index of the propagator related to this measurement
- * @exception OrekitException if a {@link org.orekit.utils.ParameterDriver}
- * name conflict occurs
- * @since 9.0
- */
- public RangeRate(final GroundStation station, final AbsoluteDate date,
- final double rangeRate,
- final double sigma,
- final double baseWeight,
- final boolean twoway,
- final int propagatorIndex)
- throws OrekitException {
- super(date, rangeRate, sigma, baseWeight, Arrays.asList(propagatorIndex),
- station.getEastOffsetDriver(),
- station.getNorthOffsetDriver(),
- station.getZenithOffsetDriver(),
- station.getPrimeMeridianOffsetDriver(),
- station.getPrimeMeridianDriftDriver(),
- station.getPolarOffsetXDriver(),
- station.getPolarDriftXDriver(),
- station.getPolarOffsetYDriver(),
- station.getPolarDriftYDriver());
- this.station = station;
- this.twoway = twoway;
- }
- /** Check if the instance represents a two-way measurement.
- * @return true if the instance represents a two-way measurement
- */
- public boolean isTwoWay() {
- return twoway;
- }
- /** Get the ground station from which measurement is performed.
- * @return ground station from which measurement is performed
- */
- public GroundStation getStation() {
- return station;
- }
- /** {@inheritDoc} */
- @Override
- protected EstimatedMeasurement<RangeRate> theoreticalEvaluation(final int iteration, final int evaluation,
- final SpacecraftState[] states)
- throws OrekitException {
- final SpacecraftState state = states[getPropagatorsIndices().get(0)];
- // Range-rate derivatives are computed with respect to spacecraft state in inertial frame
- // and station position in station's offset frame
- // -------
- //
- // Parameters:
- // - 0..2 - Position of the spacecraft in inertial frame
- // - 3..5 - Velocity of the spacecraft in inertial frame
- // - 6..n - station parameters (station offsets, pole, prime meridian...)
- int nbParams = 6;
- final Map<String, Integer> indices = new HashMap<>();
- for (ParameterDriver driver : getParametersDrivers()) {
- if (driver.isSelected()) {
- indices.put(driver.getName(), nbParams++);
- }
- }
- final DSFactory factory = new DSFactory(nbParams, 1);
- final Field<DerivativeStructure> field = factory.getDerivativeField();
- final FieldVector3D<DerivativeStructure> zero = FieldVector3D.getZero(field);
- // Coordinates of the spacecraft expressed as a derivative structure
- final TimeStampedFieldPVCoordinates<DerivativeStructure> pvaDS = getCoordinates(state, 0, factory);
- // transform between station and inertial frame, expressed as a derivative structure
- // The components of station's position in offset frame are the 3 last derivative parameters
- final AbsoluteDate downlinkDate = getDate();
- final FieldAbsoluteDate<DerivativeStructure> downlinkDateDS =
- new FieldAbsoluteDate<>(field, downlinkDate);
- final FieldTransform<DerivativeStructure> offsetToInertialDownlink =
- station.getOffsetToInertial(state.getFrame(), downlinkDateDS, factory, indices);
- // Station position in inertial frame at end of the downlink leg
- final TimeStampedFieldPVCoordinates<DerivativeStructure> stationDownlink =
- offsetToInertialDownlink.transformPVCoordinates(new TimeStampedFieldPVCoordinates<>(downlinkDateDS,
- zero, zero, zero));
- // Compute propagation times
- // (if state has already been set up to pre-compensate propagation delay,
- // we will have delta == tauD and transitState will be the same as state)
- // Downlink delay
- final DerivativeStructure tauD = signalTimeOfFlight(pvaDS, stationDownlink.getPosition(), downlinkDateDS);
- // Transit state
- final double delta = downlinkDate.durationFrom(state.getDate());
- final DerivativeStructure deltaMTauD = tauD.negate().add(delta);
- final SpacecraftState transitState = state.shiftedBy(deltaMTauD.getValue());
- // Transit state (re)computed with derivative structures
- final TimeStampedFieldPVCoordinates<DerivativeStructure> transitPV = pvaDS.shiftedBy(deltaMTauD);
- // one-way (downlink) range-rate
- final EstimatedMeasurement<RangeRate> evalOneWay1 =
- oneWayTheoreticalEvaluation(iteration, evaluation, true,
- stationDownlink, transitPV, transitState, indices);
- final EstimatedMeasurement<RangeRate> estimated;
- if (twoway) {
- // one-way (uplink) light time correction
- final AbsoluteDate approxUplinkDate = downlinkDate.shiftedBy(-2 * tauD.getValue());
- final FieldAbsoluteDate<DerivativeStructure> approxUplinkDateDS = new FieldAbsoluteDate<>(field, approxUplinkDate);
- final FieldTransform<DerivativeStructure> offsetToInertialApproxUplink =
- station.getOffsetToInertial(state.getFrame(), approxUplinkDateDS, factory, indices);
- final TimeStampedFieldPVCoordinates<DerivativeStructure> stationApproxUplink =
- offsetToInertialApproxUplink.transformPVCoordinates(new TimeStampedFieldPVCoordinates<>(approxUplinkDateDS,
- zero, zero, zero));
- final DerivativeStructure tauU = signalTimeOfFlight(stationApproxUplink, transitPV.getPosition(), transitPV.getDate());
- final TimeStampedFieldPVCoordinates<DerivativeStructure> stationUplink =
- stationApproxUplink.shiftedBy(transitPV.getDate().durationFrom(approxUplinkDateDS).subtract(tauU));
- final EstimatedMeasurement<RangeRate> evalOneWay2 =
- oneWayTheoreticalEvaluation(iteration, evaluation, false,
- stationUplink, transitPV, transitState, indices);
- // combine uplink and downlink values
- estimated = new EstimatedMeasurement<>(this, iteration, evaluation,
- evalOneWay1.getStates(),
- new TimeStampedPVCoordinates[] {
- evalOneWay2.getParticipants()[0],
- evalOneWay1.getParticipants()[0],
- evalOneWay1.getParticipants()[1]
- });
- estimated.setEstimatedValue(0.5 * (evalOneWay1.getEstimatedValue()[0] + evalOneWay2.getEstimatedValue()[0]));
- // combine uplink and downlink partial derivatives with respect to state
- final double[][] sd1 = evalOneWay1.getStateDerivatives(0);
- final double[][] sd2 = evalOneWay2.getStateDerivatives(0);
- final double[][] sd = new double[sd1.length][sd1[0].length];
- for (int i = 0; i < sd.length; ++i) {
- for (int j = 0; j < sd[0].length; ++j) {
- sd[i][j] = 0.5 * (sd1[i][j] + sd2[i][j]);
- }
- }
- estimated.setStateDerivatives(0, sd);
- // combine uplink and downlink partial derivatives with respect to parameters
- evalOneWay1.getDerivativesDrivers().forEach(driver -> {
- final double[] pd1 = evalOneWay1.getParameterDerivatives(driver);
- final double[] pd2 = evalOneWay2.getParameterDerivatives(driver);
- final double[] pd = new double[pd1.length];
- for (int i = 0; i < pd.length; ++i) {
- pd[i] = 0.5 * (pd1[i] + pd2[i]);
- }
- estimated.setParameterDerivatives(driver, pd);
- });
- } else {
- estimated = evalOneWay1;
- }
- return estimated;
- }
- /** Evaluate measurement in one-way.
- * @param iteration iteration number
- * @param evaluation evaluations counter
- * @param downlink indicator for downlink leg
- * @param stationPV station coordinates when signal is at station
- * @param transitPV spacecraft coordinates at onboard signal transit
- * @param transitState orbital state at onboard signal transit
- * @param indices indices of the estimated parameters in derivatives computations
- * @return theoretical value
- * @exception OrekitException if value cannot be computed
- * @see #evaluate(SpacecraftStatet)
- */
- private EstimatedMeasurement<RangeRate> oneWayTheoreticalEvaluation(final int iteration, final int evaluation, final boolean downlink,
- final TimeStampedFieldPVCoordinates<DerivativeStructure> stationPV,
- final TimeStampedFieldPVCoordinates<DerivativeStructure> transitPV,
- final SpacecraftState transitState,
- final Map<String, Integer> indices)
- throws OrekitException {
- // prepare the evaluation
- final EstimatedMeasurement<RangeRate> estimated =
- new EstimatedMeasurement<RangeRate>(this, iteration, evaluation,
- new SpacecraftState[] {
- transitState
- }, new TimeStampedPVCoordinates[] {
- (downlink ? transitPV : stationPV).toTimeStampedPVCoordinates(),
- (downlink ? stationPV : transitPV).toTimeStampedPVCoordinates()
- });
- // range rate value
- final FieldVector3D<DerivativeStructure> stationPosition = stationPV.getPosition();
- final FieldVector3D<DerivativeStructure> relativePosition = stationPosition.subtract(transitPV.getPosition());
- final FieldVector3D<DerivativeStructure> stationVelocity = stationPV.getVelocity();
- final FieldVector3D<DerivativeStructure> relativeVelocity = stationVelocity.subtract(transitPV.getVelocity());
- // radial direction
- final FieldVector3D<DerivativeStructure> lineOfSight = relativePosition.normalize();
- // range rate
- final DerivativeStructure rangeRate = FieldVector3D.dotProduct(relativeVelocity, lineOfSight);
- estimated.setEstimatedValue(rangeRate.getValue());
- // compute partial derivatives of (rr) with respect to spacecraft state Cartesian coordinates
- final double[] derivatives = rangeRate.getAllDerivatives();
- estimated.setStateDerivatives(0, Arrays.copyOfRange(derivatives, 1, 7));
- // set partial derivatives with respect to parameters
- // (beware element at index 0 is the value, not a derivative)
- for (final ParameterDriver driver : getParametersDrivers()) {
- final Integer index = indices.get(driver.getName());
- if (index != null) {
- estimated.setParameterDerivatives(driver, derivatives[index + 1]);
- }
- }
- return estimated;
- }
- }