Range.java

/* Copyright 2002-2018 CS Systèmes d'Information
 * Licensed to CS Systèmes d'Information (CS) under one or more
 * contributor license agreements.  See the NOTICE file distributed with
 * this work for additional information regarding copyright ownership.
 * CS licenses this file to You under the Apache License, Version 2.0
 * (the "License"); you may not use this file except in compliance with
 * the License.  You may obtain a copy of the License at
 *
 *   http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */
package org.orekit.estimation.measurements;

import java.util.Arrays;
import java.util.HashMap;
import java.util.Map;

import org.hipparchus.Field;
import org.hipparchus.analysis.differentiation.DSFactory;
import org.hipparchus.analysis.differentiation.DerivativeStructure;
import org.hipparchus.geometry.euclidean.threed.FieldVector3D;
import org.orekit.errors.OrekitException;
import org.orekit.frames.FieldTransform;
import org.orekit.propagation.SpacecraftState;
import org.orekit.time.AbsoluteDate;
import org.orekit.time.FieldAbsoluteDate;
import org.orekit.utils.Constants;
import org.orekit.utils.ParameterDriver;
import org.orekit.utils.TimeStampedFieldPVCoordinates;
import org.orekit.utils.TimeStampedPVCoordinates;

/** Class modeling a range measurement from a ground station or
 * from a satellite.
 * <p>
 * For two-way measurements, the measurement is considered
 * to be a signal emitted from a ground station, reflected
 * on spacecraft, and received on the same ground station.
 * Its value is the elapsed time between emission and reception
 * divided by 2c were c is the speed of light.
 * </p>
 * <p>
 * For one-way measurements, a signal is emitted by the satellite
 * and received by the ground station. The measurement value
 * is the elapsed time between emission and reception divided by
 * the speed of light.
 * </p>
 * <p>
 * The motion of both the station and the
 * spacecraft during the signal flight time are taken into
 * account. The date of the measurement corresponds to the
 * reception on ground of the emitted or reflected signal.
 * </p>
 * @author Thierry Ceolin
 * @author Luc Maisonobe
 * @author Maxime Journot
 * @since 8.0
 */
public class Range extends AbstractMeasurement<Range> {

    /** Ground station from which measurement is performed. */
    private final GroundStation station;

    /** Flag indicating whether it is a two-way measurement. */
    private final boolean twoway;

    /** Simple constructor.
     * <p>
     * This constructor uses 0 as the index of the propagator related
     * to this measurement, thus being well suited for mono-satellite
     * orbit determination.
     * </p>
     * @param station ground station from which measurement is performed
     * @param date date of the measurement
     * @param range observed value
     * @param sigma theoretical standard deviation
     * @param baseWeight base weight
     * @exception OrekitException if a {@link org.orekit.utils.ParameterDriver}
     * name conflict occurs
     */
    public Range(final GroundStation station, final AbsoluteDate date,
                 final double range, final double sigma, final double baseWeight)
        throws OrekitException {
        this(station, true, date, range, sigma, baseWeight, 0);
    }

    /** Simple constructor.
     * <p>
     * This constructor uses 0 as the index of the propagator related
     * to this measurement, thus being well suited for mono-satellite
     * orbit determination.
     * </p>
     * @param station ground station from which measurement is performed
     * @param date date of the measurement
     * @param range observed value
     * @param sigma theoretical standard deviation
     * @param baseWeight base weight
     * @param twoWay flag indicating whether it is a two-way measurement
     * @exception OrekitException if a {@link org.orekit.utils.ParameterDriver}
     * name conflict occurs
     */
    public Range(final GroundStation station, final AbsoluteDate date, final double range,
                 final double sigma, final double baseWeight, final boolean twoWay)
        throws OrekitException {
        this(station, twoWay, date, range, sigma, baseWeight, 0);
    }

    /** Simple constructor.
     * @param station ground station from which measurement is performed
     * @param date date of the measurement
     * @param range observed value
     * @param sigma theoretical standard deviation
     * @param baseWeight base weight
     * @param propagatorIndex index of the propagator related to this measurement
     * @exception OrekitException if a {@link org.orekit.utils.ParameterDriver}
     * name conflict occurs
     * @since 9.0
     */
    public Range(final GroundStation station, final AbsoluteDate date,
                 final double range, final double sigma, final double baseWeight,
                 final int propagatorIndex)
        throws OrekitException {
        this(station, true, date, range, sigma, baseWeight, 0);
    }

    /** Simple constructor.
     * @param station ground station from which measurement is performed
     * @param twoWay flag indicating whether it is a two-way measurement
     * @param date date of the measurement
     * @param range observed value
     * @param sigma theoretical standard deviation
     * @param baseWeight base weight
     * @param propagatorIndex index of the propagator related to this measurement
     * @exception OrekitException if a {@link org.orekit.utils.ParameterDriver}
     * name conflict occurs
     * @since 9.0
     */
    public Range(final GroundStation station, final boolean twoWay, final AbsoluteDate date,
                 final double range, final double sigma, final double baseWeight,
                 final int propagatorIndex)
        throws OrekitException {
        super(date, range, sigma, baseWeight, Arrays.asList(propagatorIndex),
              station.getEastOffsetDriver(),
              station.getNorthOffsetDriver(),
              station.getZenithOffsetDriver(),
              station.getPrimeMeridianOffsetDriver(),
              station.getPrimeMeridianDriftDriver(),
              station.getPolarOffsetXDriver(),
              station.getPolarDriftXDriver(),
              station.getPolarOffsetYDriver(),
              station.getPolarDriftYDriver());
        this.station = station;
        this.twoway = twoWay;
    }

    /** Get the ground station from which measurement is performed.
     * @return ground station from which measurement is performed
     */
    public GroundStation getStation() {
        return station;
    }

    /** Check if the instance represents a two-way measurement.
     * @return true if the instance represents a two-way measurement
     */
    public boolean isTwoWay() {
        return twoway;
    }

    /** {@inheritDoc} */
    @Override
    protected EstimatedMeasurement<Range> theoreticalEvaluation(final int iteration,
                                                                final int evaluation,
                                                                final SpacecraftState[] states)
        throws OrekitException {

        final SpacecraftState state = states[getPropagatorsIndices().get(0)];

        // Range derivatives are computed with respect to spacecraft state in inertial frame
        // and station parameters
        // ----------------------
        //
        // Parameters:
        //  - 0..2 - Position of the spacecraft in inertial frame
        //  - 3..5 - Velocity of the spacecraft in inertial frame
        //  - 6..n - station parameters (station offsets, pole, prime meridian...)
        int nbParams = 6;
        final Map<String, Integer> indices = new HashMap<>();
        for (ParameterDriver driver : getParametersDrivers()) {
            if (driver.isSelected()) {
                indices.put(driver.getName(), nbParams++);
            }
        }
        final DSFactory                          factory = new DSFactory(nbParams, 1);
        final Field<DerivativeStructure>         field   = factory.getDerivativeField();
        final FieldVector3D<DerivativeStructure> zero    = FieldVector3D.getZero(field);

        // Coordinates of the spacecraft expressed as a derivative structure
        final TimeStampedFieldPVCoordinates<DerivativeStructure> pvaDS = getCoordinates(state, 0, factory);

        // transform between station and inertial frame, expressed as a derivative structure
        // The components of station's position in offset frame are the 3 last derivative parameters
        final AbsoluteDate downlinkDate = getDate();
        final FieldAbsoluteDate<DerivativeStructure> downlinkDateDS =
                        new FieldAbsoluteDate<>(field, downlinkDate);
        final FieldTransform<DerivativeStructure> offsetToInertialDownlink =
                        station.getOffsetToInertial(state.getFrame(), downlinkDateDS, factory, indices);

        // Station position in inertial frame at end of the downlink leg
        final TimeStampedFieldPVCoordinates<DerivativeStructure> stationDownlink =
                        offsetToInertialDownlink.transformPVCoordinates(new TimeStampedFieldPVCoordinates<>(downlinkDateDS,
                                                                                                            zero, zero, zero));

        // Compute propagation times
        // (if state has already been set up to pre-compensate propagation delay,
        //  we will have delta == tauD and transitState will be the same as state)

        // Downlink delay
        final DerivativeStructure tauD = signalTimeOfFlight(pvaDS, stationDownlink.getPosition(), downlinkDateDS);

        // Transit state & Transit state (re)computed with derivative structures
        final double                delta        = downlinkDate.durationFrom(state.getDate());
        final DerivativeStructure   deltaMTauD   = tauD.negate().add(delta);
        final SpacecraftState       transitState = state.shiftedBy(deltaMTauD.getValue());
        final TimeStampedFieldPVCoordinates<DerivativeStructure> transitStateDS = pvaDS.shiftedBy(deltaMTauD);

        // prepare the evaluation
        final EstimatedMeasurement<Range> estimated;
        final DerivativeStructure range;

        if (twoway) {

            // Station at transit state date (derivatives of tauD taken into account)
            final TimeStampedFieldPVCoordinates<DerivativeStructure> stationAtTransitDate =
                            stationDownlink.shiftedBy(tauD.negate());
            // Uplink delay
            final DerivativeStructure tauU =
                            signalTimeOfFlight(stationAtTransitDate, transitStateDS.getPosition(), transitStateDS.getDate());
            final TimeStampedFieldPVCoordinates<DerivativeStructure> stationUplink =
                            stationDownlink.shiftedBy(-tauD.getValue() - tauU.getValue());

            // Prepare the evaluation
            estimated = new EstimatedMeasurement<Range>(this, iteration, evaluation,
                                                            new SpacecraftState[] {
                                                                transitState
                                                            }, new TimeStampedPVCoordinates[] {
                                                                stationUplink.toTimeStampedPVCoordinates(),
                                                                transitStateDS.toTimeStampedPVCoordinates(),
                                                                stationDownlink.toTimeStampedPVCoordinates()
                                                            });

            // Range value
            final double              cOver2 = 0.5 * Constants.SPEED_OF_LIGHT;
            final DerivativeStructure tau    = tauD.add(tauU);
            range                            = tau.multiply(cOver2);

        } else {

            estimated = new EstimatedMeasurement<Range>(this, iteration, evaluation,
                            new SpacecraftState[] {
                                transitState
                            }, new TimeStampedPVCoordinates[] {
                                transitStateDS.toTimeStampedPVCoordinates(),
                                stationDownlink.toTimeStampedPVCoordinates()
                            });

            // Range value
            range = tauD.multiply(Constants.SPEED_OF_LIGHT);
        }

        estimated.setEstimatedValue(range.getValue());

        // Range partial derivatives with respect to state
        final double[] derivatives = range.getAllDerivatives();
        estimated.setStateDerivatives(0, Arrays.copyOfRange(derivatives, 1, 7));

        // set partial derivatives with respect to parameters
        // (beware element at index 0 is the value, not a derivative)
        for (final ParameterDriver driver : getParametersDrivers()) {
            final Integer index = indices.get(driver.getName());
            if (index != null) {
                estimated.setParameterDerivatives(driver, derivatives[index + 1]);
            }
        }

        return estimated;

    }

}