Range.java
- /* Copyright 2002-2018 CS Systèmes d'Information
- * Licensed to CS Systèmes d'Information (CS) under one or more
- * contributor license agreements. See the NOTICE file distributed with
- * this work for additional information regarding copyright ownership.
- * CS licenses this file to You under the Apache License, Version 2.0
- * (the "License"); you may not use this file except in compliance with
- * the License. You may obtain a copy of the License at
- *
- * http://www.apache.org/licenses/LICENSE-2.0
- *
- * Unless required by applicable law or agreed to in writing, software
- * distributed under the License is distributed on an "AS IS" BASIS,
- * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- * See the License for the specific language governing permissions and
- * limitations under the License.
- */
- package org.orekit.estimation.measurements;
- import java.util.Arrays;
- import java.util.HashMap;
- import java.util.Map;
- import org.hipparchus.Field;
- import org.hipparchus.analysis.differentiation.DSFactory;
- import org.hipparchus.analysis.differentiation.DerivativeStructure;
- import org.hipparchus.geometry.euclidean.threed.FieldVector3D;
- import org.orekit.errors.OrekitException;
- import org.orekit.frames.FieldTransform;
- import org.orekit.propagation.SpacecraftState;
- import org.orekit.time.AbsoluteDate;
- import org.orekit.time.FieldAbsoluteDate;
- import org.orekit.utils.Constants;
- import org.orekit.utils.ParameterDriver;
- import org.orekit.utils.TimeStampedFieldPVCoordinates;
- import org.orekit.utils.TimeStampedPVCoordinates;
- /** Class modeling a range measurement from a ground station or
- * from a satellite.
- * <p>
- * For two-way measurements, the measurement is considered
- * to be a signal emitted from a ground station, reflected
- * on spacecraft, and received on the same ground station.
- * Its value is the elapsed time between emission and reception
- * divided by 2c were c is the speed of light.
- * </p>
- * <p>
- * For one-way measurements, a signal is emitted by the satellite
- * and received by the ground station. The measurement value
- * is the elapsed time between emission and reception divided by
- * the speed of light.
- * </p>
- * <p>
- * The motion of both the station and the
- * spacecraft during the signal flight time are taken into
- * account. The date of the measurement corresponds to the
- * reception on ground of the emitted or reflected signal.
- * </p>
- * @author Thierry Ceolin
- * @author Luc Maisonobe
- * @author Maxime Journot
- * @since 8.0
- */
- public class Range extends AbstractMeasurement<Range> {
- /** Ground station from which measurement is performed. */
- private final GroundStation station;
- /** Flag indicating whether it is a two-way measurement. */
- private final boolean twoway;
- /** Simple constructor.
- * <p>
- * This constructor uses 0 as the index of the propagator related
- * to this measurement, thus being well suited for mono-satellite
- * orbit determination.
- * </p>
- * @param station ground station from which measurement is performed
- * @param date date of the measurement
- * @param range observed value
- * @param sigma theoretical standard deviation
- * @param baseWeight base weight
- * @exception OrekitException if a {@link org.orekit.utils.ParameterDriver}
- * name conflict occurs
- */
- public Range(final GroundStation station, final AbsoluteDate date,
- final double range, final double sigma, final double baseWeight)
- throws OrekitException {
- this(station, true, date, range, sigma, baseWeight, 0);
- }
- /** Simple constructor.
- * <p>
- * This constructor uses 0 as the index of the propagator related
- * to this measurement, thus being well suited for mono-satellite
- * orbit determination.
- * </p>
- * @param station ground station from which measurement is performed
- * @param date date of the measurement
- * @param range observed value
- * @param sigma theoretical standard deviation
- * @param baseWeight base weight
- * @param twoWay flag indicating whether it is a two-way measurement
- * @exception OrekitException if a {@link org.orekit.utils.ParameterDriver}
- * name conflict occurs
- */
- public Range(final GroundStation station, final AbsoluteDate date, final double range,
- final double sigma, final double baseWeight, final boolean twoWay)
- throws OrekitException {
- this(station, twoWay, date, range, sigma, baseWeight, 0);
- }
- /** Simple constructor.
- * @param station ground station from which measurement is performed
- * @param date date of the measurement
- * @param range observed value
- * @param sigma theoretical standard deviation
- * @param baseWeight base weight
- * @param propagatorIndex index of the propagator related to this measurement
- * @exception OrekitException if a {@link org.orekit.utils.ParameterDriver}
- * name conflict occurs
- * @since 9.0
- */
- public Range(final GroundStation station, final AbsoluteDate date,
- final double range, final double sigma, final double baseWeight,
- final int propagatorIndex)
- throws OrekitException {
- this(station, true, date, range, sigma, baseWeight, 0);
- }
- /** Simple constructor.
- * @param station ground station from which measurement is performed
- * @param twoWay flag indicating whether it is a two-way measurement
- * @param date date of the measurement
- * @param range observed value
- * @param sigma theoretical standard deviation
- * @param baseWeight base weight
- * @param propagatorIndex index of the propagator related to this measurement
- * @exception OrekitException if a {@link org.orekit.utils.ParameterDriver}
- * name conflict occurs
- * @since 9.0
- */
- public Range(final GroundStation station, final boolean twoWay, final AbsoluteDate date,
- final double range, final double sigma, final double baseWeight,
- final int propagatorIndex)
- throws OrekitException {
- super(date, range, sigma, baseWeight, Arrays.asList(propagatorIndex),
- station.getEastOffsetDriver(),
- station.getNorthOffsetDriver(),
- station.getZenithOffsetDriver(),
- station.getPrimeMeridianOffsetDriver(),
- station.getPrimeMeridianDriftDriver(),
- station.getPolarOffsetXDriver(),
- station.getPolarDriftXDriver(),
- station.getPolarOffsetYDriver(),
- station.getPolarDriftYDriver());
- this.station = station;
- this.twoway = twoWay;
- }
- /** Get the ground station from which measurement is performed.
- * @return ground station from which measurement is performed
- */
- public GroundStation getStation() {
- return station;
- }
- /** Check if the instance represents a two-way measurement.
- * @return true if the instance represents a two-way measurement
- */
- public boolean isTwoWay() {
- return twoway;
- }
- /** {@inheritDoc} */
- @Override
- protected EstimatedMeasurement<Range> theoreticalEvaluation(final int iteration,
- final int evaluation,
- final SpacecraftState[] states)
- throws OrekitException {
- final SpacecraftState state = states[getPropagatorsIndices().get(0)];
- // Range derivatives are computed with respect to spacecraft state in inertial frame
- // and station parameters
- // ----------------------
- //
- // Parameters:
- // - 0..2 - Position of the spacecraft in inertial frame
- // - 3..5 - Velocity of the spacecraft in inertial frame
- // - 6..n - station parameters (station offsets, pole, prime meridian...)
- int nbParams = 6;
- final Map<String, Integer> indices = new HashMap<>();
- for (ParameterDriver driver : getParametersDrivers()) {
- if (driver.isSelected()) {
- indices.put(driver.getName(), nbParams++);
- }
- }
- final DSFactory factory = new DSFactory(nbParams, 1);
- final Field<DerivativeStructure> field = factory.getDerivativeField();
- final FieldVector3D<DerivativeStructure> zero = FieldVector3D.getZero(field);
- // Coordinates of the spacecraft expressed as a derivative structure
- final TimeStampedFieldPVCoordinates<DerivativeStructure> pvaDS = getCoordinates(state, 0, factory);
- // transform between station and inertial frame, expressed as a derivative structure
- // The components of station's position in offset frame are the 3 last derivative parameters
- final AbsoluteDate downlinkDate = getDate();
- final FieldAbsoluteDate<DerivativeStructure> downlinkDateDS =
- new FieldAbsoluteDate<>(field, downlinkDate);
- final FieldTransform<DerivativeStructure> offsetToInertialDownlink =
- station.getOffsetToInertial(state.getFrame(), downlinkDateDS, factory, indices);
- // Station position in inertial frame at end of the downlink leg
- final TimeStampedFieldPVCoordinates<DerivativeStructure> stationDownlink =
- offsetToInertialDownlink.transformPVCoordinates(new TimeStampedFieldPVCoordinates<>(downlinkDateDS,
- zero, zero, zero));
- // Compute propagation times
- // (if state has already been set up to pre-compensate propagation delay,
- // we will have delta == tauD and transitState will be the same as state)
- // Downlink delay
- final DerivativeStructure tauD = signalTimeOfFlight(pvaDS, stationDownlink.getPosition(), downlinkDateDS);
- // Transit state & Transit state (re)computed with derivative structures
- final double delta = downlinkDate.durationFrom(state.getDate());
- final DerivativeStructure deltaMTauD = tauD.negate().add(delta);
- final SpacecraftState transitState = state.shiftedBy(deltaMTauD.getValue());
- final TimeStampedFieldPVCoordinates<DerivativeStructure> transitStateDS = pvaDS.shiftedBy(deltaMTauD);
- // prepare the evaluation
- final EstimatedMeasurement<Range> estimated;
- final DerivativeStructure range;
- if (twoway) {
- // Station at transit state date (derivatives of tauD taken into account)
- final TimeStampedFieldPVCoordinates<DerivativeStructure> stationAtTransitDate =
- stationDownlink.shiftedBy(tauD.negate());
- // Uplink delay
- final DerivativeStructure tauU =
- signalTimeOfFlight(stationAtTransitDate, transitStateDS.getPosition(), transitStateDS.getDate());
- final TimeStampedFieldPVCoordinates<DerivativeStructure> stationUplink =
- stationDownlink.shiftedBy(-tauD.getValue() - tauU.getValue());
- // Prepare the evaluation
- estimated = new EstimatedMeasurement<Range>(this, iteration, evaluation,
- new SpacecraftState[] {
- transitState
- }, new TimeStampedPVCoordinates[] {
- stationUplink.toTimeStampedPVCoordinates(),
- transitStateDS.toTimeStampedPVCoordinates(),
- stationDownlink.toTimeStampedPVCoordinates()
- });
- // Range value
- final double cOver2 = 0.5 * Constants.SPEED_OF_LIGHT;
- final DerivativeStructure tau = tauD.add(tauU);
- range = tau.multiply(cOver2);
- } else {
- estimated = new EstimatedMeasurement<Range>(this, iteration, evaluation,
- new SpacecraftState[] {
- transitState
- }, new TimeStampedPVCoordinates[] {
- transitStateDS.toTimeStampedPVCoordinates(),
- stationDownlink.toTimeStampedPVCoordinates()
- });
- // Range value
- range = tauD.multiply(Constants.SPEED_OF_LIGHT);
- }
- estimated.setEstimatedValue(range.getValue());
- // Range partial derivatives with respect to state
- final double[] derivatives = range.getAllDerivatives();
- estimated.setStateDerivatives(0, Arrays.copyOfRange(derivatives, 1, 7));
- // set partial derivatives with respect to parameters
- // (beware element at index 0 is the value, not a derivative)
- for (final ParameterDriver driver : getParametersDrivers()) {
- final Integer index = indices.get(driver.getName());
- if (index != null) {
- estimated.setParameterDerivatives(driver, derivatives[index + 1]);
- }
- }
- return estimated;
- }
- }