PoissonSeriesParser.java
- /* Copyright 2002-2018 CS Systèmes d'Information
- * Licensed to CS Systèmes d'Information (CS) under one or more
- * contributor license agreements. See the NOTICE file distributed with
- * this work for additional information regarding copyright ownership.
- * CS licenses this file to You under the Apache License, Version 2.0
- * (the "License"); you may not use this file except in compliance with
- * the License. You may obtain a copy of the License at
- *
- * http://www.apache.org/licenses/LICENSE-2.0
- *
- * Unless required by applicable law or agreed to in writing, software
- * distributed under the License is distributed on an "AS IS" BASIS,
- * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- * See the License for the specific language governing permissions and
- * limitations under the License.
- */
- package org.orekit.data;
- import java.io.BufferedReader;
- import java.io.IOException;
- import java.io.InputStream;
- import java.io.InputStreamReader;
- import java.util.Arrays;
- import java.util.HashMap;
- import java.util.Map;
- import java.util.regex.Matcher;
- import java.util.regex.Pattern;
- import org.hipparchus.exception.DummyLocalizable;
- import org.hipparchus.util.FastMath;
- import org.hipparchus.util.Precision;
- import org.orekit.errors.OrekitException;
- import org.orekit.errors.OrekitMessages;
- /**
- * Parser for {@link PoissonSeries Poisson series} files.
- * <p>
- * A Poisson series is composed of a time polynomial part and a non-polynomial
- * part which consist in summation series. The {@link SeriesTerm series terms}
- * are harmonic functions (combination of sines and cosines) of polynomial
- * <em>arguments</em>. The polynomial arguments are combinations of luni-solar or
- * planetary {@link BodiesElements elements}.
- * </p>
- * <p>
- * The Poisson series files from IERS have various formats, with or without
- * polynomial part, with or without planetary components, with or without
- * period column, with terms of increasing degrees either in dedicated columns
- * or in successive sections of the file ... This class attempts to read all the
- * commonly found formats, by specifying the columns of interest.
- * </p>
- * <p>
- * The handling of increasing degrees terms (i.e. sin, cos, t sin, t cos, t^2 sin,
- * t^2 cos ...) is done as follows.
- * </p>
- * <ul>
- * <li>user must specify pairs of columns to be extracted at each line,
- * in increasing degree order</li>
- * <li>negative columns indices correspond to inexistent values that will be
- * replaced by 0.0)</li>
- * <li>file may provide section headers to specify a degree, which is added
- * to the current column degree</li>
- * </ul>
- * <p>
- * A file from an old convention, like table 5.1 in IERS conventions 1996, uses
- * separate columns for degree 0 and degree 1, and uses only sine for nutation in
- * longitude and cosine for nutation in obliquity. It reads as follows:
- * </p>
- * <pre>
- * ∆ψ = Σ (Ai+A'it) sin(ARGUMENT), ∆ε = Σ (Bi+B'it) cos(ARGUMENT)
- *
- * MULTIPLIERS OF PERIOD LONGITUDE OBLIQUITY
- * l l' F D Om days Ai A'i Bi B'i
- *
- * 0 0 0 0 1 -6798.4 -171996 -174.2 92025 8.9
- * 0 0 2 -2 2 182.6 -13187 -1.6 5736 -3.1
- * 0 0 2 0 2 13.7 -2274 -0.2 977 -0.5
- * 0 0 0 0 2 -3399.2 2062 0.2 -895 0.5
- * </pre>
- * <p>
- * In order to parse the nutation in longitude from the previous table, the
- * following settings should be used:
- * </p>
- * <ul>
- * <li>totalColumns = 10 (see {@link #PoissonSeriesParser(int)})</li>
- * <li>firstDelaunay = 1 (see {@link #withFirstDelaunay(int)})</li>
- * <li>no calls to {@link #withFirstPlanetary(int)} as there are no planetary columns in this table</li>
- * <li>sinCosColumns = 7, -1 for degree 0 for Ai (see {@link #withSinCos(int, int, double, int, double)})</li>
- * <li>sinCosColumns = 8, -1 for degree 1 for A'i (see {@link #withSinCos(int, int, double, int, double)})</li>
- * </ul>
- * <p>
- * In order to parse the nutation in obliquity from the previous table, the
- * following settings should be used:
- * </p>
- * <ul>
- * <li>totalColumns = 10 (see {@link #PoissonSeriesParser(int)})</li>
- * <li>firstDelaunay = 1 (see {@link #withFirstDelaunay(int)})</li>
- * <li>no calls to {@link #withFirstPlanetary(int)} as there are no planetary columns in this table</li>
- * <li>sinCosColumns = -1, 9 for degree 0 for Bi (see {@link #withSinCos(int, int, double, int, double)})</li>
- * <li>sinCosColumns = -1, 10 for degree 1 for B'i (see {@link #withSinCos(int, int, double, int, double)})</li>
- * </ul>
- * <p>
- * A file from a recent convention, like table 5.3a in IERS conventions 2010, uses
- * only two columns for sin and cos, and separate degrees in successive sections with
- * dedicated headers. It reads as follows:
- * </p>
- * <pre>
- * ---------------------------------------------------------------------------------------------------
- *
- * (unit microarcsecond; cut-off: 0.1 microarcsecond)
- * (ARG being for various combination of the fundamental arguments of the nutation theory)
- *
- * Sum_i[A_i * sin(ARG) + A"_i * cos(ARG)]
- *
- * + Sum_i[A'_i * sin(ARG) + A"'_i * cos(ARG)] * t (see Chapter 5, Eq. (35))
- *
- * The Table below provides the values for A_i and A"_i (j=0) and then A'_i and A"'_i (j=1)
- *
- * The expressions for the fundamental arguments appearing in columns 4 to 8 (luni-solar part)
- * and in columns 9 to 17 (planetary part) are those of the IERS Conventions 2003
- *
- * ----------------------------------------------------------------------------------------------------------
- * j = 0 Number of terms = 1320
- * ----------------------------------------------------------------------------------------------------------
- * i A_i A"_i l l' F D Om L_Me L_Ve L_E L_Ma L_J L_Sa L_U L_Ne p_A
- * ----------------------------------------------------------------------------------------------------------
- * 1 -17206424.18 3338.60 0 0 0 0 1 0 0 0 0 0 0 0 0 0
- * 2 -1317091.22 -1369.60 0 0 2 -2 2 0 0 0 0 0 0 0 0 0
- * 3 -227641.81 279.60 0 0 2 0 2 0 0 0 0 0 0 0 0 0
- * 4 207455.40 -69.80 0 0 0 0 2 0 0 0 0 0 0 0 0 0
- * 5 147587.70 1181.70 0 1 0 0 0 0 0 0 0 0 0 0 0 0
- *
- * ...
- *
- * 1319 -0.10 0.00 0 0 0 0 0 1 0 -3 0 0 0 0 0 -2
- * 1320 -0.10 0.00 0 0 0 0 0 0 0 1 0 1 -2 0 0 0
- *
- * --------------------------------------------------------------------------------------------------------------
- * j = 1 Number of terms = 38
- * --------------------------------------------------------------------------------------------------------------
- * i A'_i A"'_i l l' F D Om L_Me L_Ve L_E L_Ma L_J L_Sa L_U L_Ne p_A
- * --------------------------------------------------------------------------------------------------------------
- * 1321 -17418.82 2.89 0 0 0 0 1 0 0 0 0 0 0 0 0 0
- * 1322 -363.71 -1.50 0 1 0 0 0 0 0 0 0 0 0 0 0 0
- * 1323 -163.84 1.20 0 0 2 -2 2 0 0 0 0 0 0 0 0 0
- * 1324 122.74 0.20 0 1 2 -2 2 0 0 0 0 0 0 0 0 0
- * </pre>
- * <p>
- * In order to parse the nutation in longitude from the previous table, the
- * following settings should be used:
- * </p>
- * <ul>
- * <li>totalColumns = 17 (see {@link #PoissonSeriesParser(int)})</li>
- * <li>firstDelaunay = 4 (see {@link #withFirstDelaunay(int)})</li>
- * <li>firstPlanetary = 9 (see {@link #withFirstPlanetary(int)})</li>
- * <li>sinCosColumns = 2,3 (we specify only degree 0, so when we read
- * section j = 0 we read degree 0, when we read section j = 1 we read
- * degree 1, see {@link #withSinCos(int, int, double, int, double)} ...)</li>
- * </ul>
- * <p>
- * A file from a recent convention, like table 6.5a in IERS conventions 2010, contains
- * both Doodson arguments (τ, s, h, p, N', ps), Doodson numbers and Delaunay parameters.
- * In this case, the coefficients for the Delaunay parameters must be <em>subtracted</em>
- * from the τ = GMST + π tide parameter, so the signs in the files must be reversed
- * in order to match the Doodson arguments and Doodson numbers. This is done automatically
- * (and consistency is checked) only when the {@link #withDoodson(int, int)} method is
- * called at parser configuration time. Some other files use the γ = GMST + π tide parameter
- * rather than Doodson τ argument and the coefficients for the Delaunay parameters must be
- * <em>added</em> to the γ parameter, so no sign reversal is performed. In order to avoid
- * ambiguity as the two cases are incompatible with each other, trying to add a configuration
- * for τ by calling {@link #withDoodson(int, int)} and to also add a configuration for γ by
- * calling {@link #withGamma(int)} triggers an exception.
- * </p>
- * <p>The table 6.5a file also contains a column for the waves names (the Darwin's symbol)
- * which may be empty, so it must be identified explicitly by calling {@link
- * #withOptionalColumn(int)}. The 6.5a table reads as follows:
- * </p>
- * <pre>
- * The in-phase (ip) amplitudes (A₁ δkfR Hf) and the out-of-phase (op) amplitudes (A₁ δkfI Hf)
- * of the corrections for frequency dependence of k₂₁⁽⁰⁾, taking the nominal value k₂₁ for the
- * diurnal tides as (0.29830 − i 0.00144). Units: 10⁻¹² . The entries for δkfR and δkfI are in
- * units of 10⁻⁵. Multipliers of the Doodson arguments identifying the tidal terms are given,
- * as also those of the Delaunay variables characterizing the nutations produced by these
- * terms.
- *
- * Name deg/hr Doodson τ s h p N' ps l l' F D Ω δkfR δkfI Amp. Amp.
- * No. /10−5 /10−5 (ip) (op)
- * 2Q₁ 12.85429 125,755 1 -3 0 2 0 0 2 0 2 0 2 -29 3 -0.1 0.0
- * σ₁ 12.92714 127,555 1 -3 2 0 0 0 0 0 2 2 2 -30 3 -0.1 0.0
- * 13.39645 135,645 1 -2 0 1 -1 0 1 0 2 0 1 -45 5 -0.1 0.0
- * Q₁ 13.39866 135,655 1 -2 0 1 0 0 1 0 2 0 2 -46 5 -0.7 0.1
- * ρ₁ 13.47151 137,455 1 -2 2 -1 0 0 -1 0 2 2 2 -49 5 -0.1 0.0
- * </pre>
- * <ul>
- * <li>totalColumns = 18 (see {@link #PoissonSeriesParser(int)})</li>
- * <li>optionalColumn = 1 (see {@link #withOptionalColumn(int)})</li>
- * <li>firstDoodson, Doodson number = 4, 3 (see {@link #withDoodson(int, int)})</li>
- * <li>firstDelaunay = 10 (see {@link #withFirstDelaunay(int)})</li>
- * <li>sinCosColumns = 17, 18, see {@link #withSinCos(int, int, double, int, double)} ...)</li>
- * </ul>
- * <p>
- * Our parsing algorithm involves adding the section degree from the "j = 0, 1, 2 ..." header
- * to the column degree. A side effect of this algorithm is that it is theoretically possible
- * to mix both formats and have for example degree two term appear as degree 2 column in section
- * j=0 and as degree 1 column in section j=1 and as degree 0 column in section j=2. This case
- * is not expected to be encountered in practice. The real files use either several columns
- * <em>or</em> several sections, but not both at the same time.
- * </p>
- *
- * @author Luc Maisonobe
- * @see SeriesTerm
- * @see PolynomialNutation
- * @since 6.1
- */
- public class PoissonSeriesParser {
- /** Default pattern for fields with unknown type (non-space characters). */
- private static final String UNKNOWN_TYPE_PATTERN = "\\S+";
- /** Pattern for optional fields (either nothing or non-space characters). */
- private static final String OPTIONAL_FIELD_PATTERN = "\\S*";
- /** Pattern for fields with integer type. */
- private static final String INTEGER_TYPE_PATTERN = "[-+]?\\p{Digit}+";
- /** Pattern for fields with real type. */
- private static final String REAL_TYPE_PATTERN = "[-+]?(?:(?:\\p{Digit}+(?:\\.\\p{Digit}*)?)|(?:\\.\\p{Digit}+))(?:[eE][-+]?\\p{Digit}+)?";
- /** Pattern for fields with Doodson number. */
- private static final String DOODSON_TYPE_PATTERN = "\\p{Digit}{2,3}[.,]\\p{Digit}{3}";
- /** Parser for the polynomial part. */
- private final PolynomialParser polynomialParser;
- /** Fields patterns. */
- private final String[] fieldsPatterns;
- /** Optional column (counting from 1). */
- private final int optional;
- /** Column of the γ = GMST + π tide multiplier (counting from 1). */
- private final int gamma;
- /** Column of the first Doodson multiplier (counting from 1). */
- private final int firstDoodson;
- /** Column of the Doodson number (counting from 1). */
- private final int doodson;
- /** Column of the first Delaunay multiplier (counting from 1). */
- private final int firstDelaunay;
- /** Column of the first planetary multiplier (counting from 1). */
- private final int firstPlanetary;
- /** columns of the sine and cosine coefficients for successive degrees.
- * <p>
- * The ordering is: sin, cos, t sin, t cos, t^2 sin, t^2 cos ...
- * </p>
- */
- private final int[] sinCosColumns;
- /** Multiplicative factors to use for various columns. */
- private final double[] sinCosFactors;
- /** Build a parser for a Poisson series from an IERS table file.
- * @param polynomialParser polynomial parser to use
- * @param fieldsPatterns patterns for fields
- * @param optional optional column
- * @param gamma column of the GMST tide multiplier
- * @param firstDoodson column of the first Doodson multiplier
- * @param doodson column of the Doodson number
- * @param firstDelaunay column of the first Delaunay multiplier
- * @param firstPlanetary column of the first planetary multiplier
- * @param sinCosColumns columns of the sine and cosine coefficients
- * @param factors multiplicative factors to use for various columns
- */
- private PoissonSeriesParser(final PolynomialParser polynomialParser,
- final String[] fieldsPatterns, final int optional,
- final int gamma, final int firstDoodson,
- final int doodson, final int firstDelaunay,
- final int firstPlanetary, final int[] sinCosColumns,
- final double[] factors) {
- this.polynomialParser = polynomialParser;
- this.fieldsPatterns = fieldsPatterns;
- this.optional = optional;
- this.gamma = gamma;
- this.firstDoodson = firstDoodson;
- this.doodson = doodson;
- this.firstDelaunay = firstDelaunay;
- this.firstPlanetary = firstPlanetary;
- this.sinCosColumns = sinCosColumns;
- this.sinCosFactors = factors;
- }
- /** Build a parser for a Poisson series from an IERS table file.
- * @param totalColumns total number of columns in the non-polynomial sections
- */
- public PoissonSeriesParser(final int totalColumns) {
- this(null, createInitialFieldsPattern(totalColumns), -1,
- -1, -1, -1, -1, -1, new int[0], new double[0]);
- }
- /** Create an array with only non-space fields patterns.
- * @param totalColumns total number of columns
- * @return a new fields pattern array
- */
- private static String[] createInitialFieldsPattern(final int totalColumns) {
- final String[] patterns = new String[totalColumns];
- setPatterns(patterns, 1, totalColumns, UNKNOWN_TYPE_PATTERN);
- return patterns;
- }
- /** Set fields patterns.
- * @param array fields pattern array to modify
- * @param first first column to set (counting from 1), do nothing if non-positive
- * @param count number of columns to set
- * @param pattern pattern to use
- */
- private static void setPatterns(final String[] array, final int first, final int count,
- final String pattern) {
- if (first > 0) {
- Arrays.fill(array, first - 1, first - 1 + count, pattern);
- }
- }
- /** Set up polynomial part parsing.
- * @param freeVariable name of the free variable in the polynomial part
- * @param unit default unit for polynomial, if not explicit within the file
- * @return a new parser, with polynomial parser updated
- */
- public PoissonSeriesParser withPolynomialPart(final char freeVariable, final PolynomialParser.Unit unit) {
- return new PoissonSeriesParser(new PolynomialParser(freeVariable, unit), fieldsPatterns, optional,
- gamma, firstDoodson, doodson, firstDelaunay,
- firstPlanetary, sinCosColumns, sinCosFactors);
- }
- /** Set up optional column.
- * <p>
- * Optional columns typically appears in tides-related files, as some waves have
- * specific names (χ₁, M₂, ...) and other waves don't have names and hence are
- * replaced by spaces in the corresponding file line.
- * </p>
- * <p>
- * At most one column may be optional.
- * </p>
- * @param column optional column (counting from 1)
- * @return a new parser, with updated columns settings
- */
- public PoissonSeriesParser withOptionalColumn(final int column) {
- // update the fields pattern to expect 1 optional field at the right index
- final String[] newFieldsPatterns = fieldsPatterns.clone();
- setPatterns(newFieldsPatterns, optional, 1, UNKNOWN_TYPE_PATTERN);
- setPatterns(newFieldsPatterns, column, 1, OPTIONAL_FIELD_PATTERN);
- return new PoissonSeriesParser(polynomialParser, newFieldsPatterns, column,
- gamma, firstDoodson, doodson, firstDelaunay,
- firstPlanetary, sinCosColumns, sinCosFactors);
- }
- /** Set up column of GMST tide multiplier.
- * @param column column of the GMST tide multiplier (counting from 1)
- * @return a new parser, with updated columns settings
- * @exception OrekitException if τ has been configured by a previous call
- * to {@link #withDoodson(int, int)}
- * @see #withDoodson(int, int)
- */
- public PoissonSeriesParser withGamma(final int column) throws OrekitException {
- // check we don't try to have both τ and γ configured at the same time
- if (firstDoodson > 0 && column > 0) {
- throw new OrekitException(OrekitMessages.CANNOT_PARSE_BOTH_TAU_AND_GAMMA);
- }
- // update the fields pattern to expect 1 integer at the right index
- final String[] newFieldsPatterns = fieldsPatterns.clone();
- setPatterns(newFieldsPatterns, gamma, 1, UNKNOWN_TYPE_PATTERN);
- setPatterns(newFieldsPatterns, column, 1, INTEGER_TYPE_PATTERN);
- return new PoissonSeriesParser(polynomialParser, newFieldsPatterns, optional,
- column, firstDoodson, doodson, firstDelaunay,
- firstPlanetary, sinCosColumns, sinCosFactors);
- }
- /** Set up columns for Doodson multipliers and Doodson number.
- * @param firstMultiplierColumn column of the first Doodson multiplier which
- * corresponds to τ (counting from 1)
- * @param numberColumn column of the Doodson number (counting from 1)
- * @return a new parser, with updated columns settings
- * @exception OrekitException if γ has been configured by a previous call
- * to {@link #withGamma(int)}
- * @see #withGamma(int)
- * @see #withFirstDelaunay(int)
- */
- public PoissonSeriesParser withDoodson(final int firstMultiplierColumn, final int numberColumn)
- throws OrekitException {
- // check we don't try to have both τ and γ configured at the same time
- if (gamma > 0 && firstMultiplierColumn > 0) {
- throw new OrekitException(OrekitMessages.CANNOT_PARSE_BOTH_TAU_AND_GAMMA);
- }
- final String[] newFieldsPatterns = fieldsPatterns.clone();
- // update the fields pattern to expect 6 integers at the right indices
- setPatterns(newFieldsPatterns, firstDoodson, 6, UNKNOWN_TYPE_PATTERN);
- setPatterns(newFieldsPatterns, firstMultiplierColumn, 6, INTEGER_TYPE_PATTERN);
- // update the fields pattern to expect 1 Doodson number at the right index
- setPatterns(newFieldsPatterns, doodson, 1, UNKNOWN_TYPE_PATTERN);
- setPatterns(newFieldsPatterns, numberColumn, 1, DOODSON_TYPE_PATTERN);
- return new PoissonSeriesParser(polynomialParser, newFieldsPatterns, optional,
- gamma, firstMultiplierColumn, numberColumn, firstDelaunay,
- firstPlanetary, sinCosColumns, sinCosFactors);
- }
- /** Set up first column of Delaunay multiplier.
- * @param firstColumn column of the first Delaunay multiplier (counting from 1)
- * @return a new parser, with updated columns settings
- */
- public PoissonSeriesParser withFirstDelaunay(final int firstColumn) {
- // update the fields pattern to expect 5 integers at the right indices
- final String[] newFieldsPatterns = fieldsPatterns.clone();
- setPatterns(newFieldsPatterns, firstDelaunay, 5, UNKNOWN_TYPE_PATTERN);
- setPatterns(newFieldsPatterns, firstColumn, 5, INTEGER_TYPE_PATTERN);
- return new PoissonSeriesParser(polynomialParser, newFieldsPatterns, optional,
- gamma, firstDoodson, doodson, firstColumn,
- firstPlanetary, sinCosColumns, sinCosFactors);
- }
- /** Set up first column of planetary multiplier.
- * @param firstColumn column of the first planetary multiplier (counting from 1)
- * @return a new parser, with updated columns settings
- */
- public PoissonSeriesParser withFirstPlanetary(final int firstColumn) {
- // update the fields pattern to expect 9 integers at the right indices
- final String[] newFieldsPatterns = fieldsPatterns.clone();
- setPatterns(newFieldsPatterns, firstPlanetary, 9, UNKNOWN_TYPE_PATTERN);
- setPatterns(newFieldsPatterns, firstColumn, 9, INTEGER_TYPE_PATTERN);
- return new PoissonSeriesParser(polynomialParser, newFieldsPatterns, optional,
- gamma, firstDoodson, doodson, firstDelaunay,
- firstColumn, sinCosColumns, sinCosFactors);
- }
- /** Set up columns of the sine and cosine coefficients.
- * @param degree degree to set up
- * @param sinColumn column of the sine coefficient for t<sup>degree</sup> counting from 1
- * (may be -1 if there are no sine coefficients)
- * @param sinFactor multiplicative factor for the sine coefficient
- * @param cosColumn column of the cosine coefficient for t<sup>degree</sup> counting from 1
- * (may be -1 if there are no cosine coefficients)
- * @param cosFactor multiplicative factor for the cosine coefficient
- * @return a new parser, with updated columns settings
- */
- public PoissonSeriesParser withSinCos(final int degree,
- final int sinColumn, final double sinFactor,
- final int cosColumn, final double cosFactor) {
- // update the sin/cos columns array
- final int maxDegree = FastMath.max(degree, sinCosColumns.length / 2 - 1);
- final int[] newSinCosColumns = new int[2 * (maxDegree + 1)];
- Arrays.fill(newSinCosColumns, -1);
- System.arraycopy(sinCosColumns, 0, newSinCosColumns, 0, sinCosColumns.length);
- newSinCosColumns[2 * degree] = sinColumn;
- newSinCosColumns[2 * degree + 1] = cosColumn;
- final double[] newSinCosFactors = new double[2 * (maxDegree + 1)];
- Arrays.fill(newSinCosFactors, Double.NaN);
- System.arraycopy(sinCosFactors, 0, newSinCosFactors, 0, sinCosFactors.length);
- newSinCosFactors[2 * degree] = sinFactor;
- newSinCosFactors[2 * degree + 1] = cosFactor;
- // update the fields pattern to expect real numbers at the right indices
- final String[] newFieldsPatterns = fieldsPatterns.clone();
- if (2 * degree < sinCosColumns.length) {
- setPatterns(newFieldsPatterns, sinCosColumns[2 * degree], 1, UNKNOWN_TYPE_PATTERN);
- }
- setPatterns(newFieldsPatterns, sinColumn, 1, REAL_TYPE_PATTERN);
- if (2 * degree + 1 < sinCosColumns.length) {
- setPatterns(newFieldsPatterns, sinCosColumns[2 * degree + 1], 1, UNKNOWN_TYPE_PATTERN);
- }
- setPatterns(newFieldsPatterns, cosColumn, 1, REAL_TYPE_PATTERN);
- return new PoissonSeriesParser(polynomialParser, newFieldsPatterns, optional,
- gamma, firstDoodson, doodson, firstDelaunay,
- firstPlanetary, newSinCosColumns, newSinCosFactors);
- }
- /** Parse a stream.
- * @param stream stream containing the IERS table
- * @param name name of the resource file (for error messages only)
- * @return parsed Poisson series
- * @exception OrekitException if stream is null or the table cannot be parsed
- */
- public PoissonSeries parse(final InputStream stream, final String name) throws OrekitException {
- if (stream == null) {
- throw new OrekitException(OrekitMessages.UNABLE_TO_FIND_FILE, name);
- }
- // the degrees section header should read something like:
- // j = 0 Nb of terms = 1306
- // or something like:
- // j = 0 Number of terms = 1037
- final Pattern degreeSectionHeaderPattern =
- Pattern.compile("^\\p{Space}*j\\p{Space}*=\\p{Space}*(\\p{Digit}+)" +
- "[\\p{Alpha}\\p{Space}]+=\\p{Space}*(\\p{Digit}+)\\p{Space}*$");
- // regular lines are simply a space separated list of numbers
- final StringBuilder builder = new StringBuilder("^\\p{Space}*");
- for (int i = 0; i < fieldsPatterns.length; ++i) {
- builder.append("(");
- builder.append(fieldsPatterns[i]);
- builder.append(")");
- builder.append((i < fieldsPatterns.length - 1) ? "\\p{Space}+" : "\\p{Space}*$");
- }
- final Pattern regularLinePattern = Pattern.compile(builder.toString());
- try {
- // setup the reader
- final BufferedReader reader = new BufferedReader(new InputStreamReader(stream, "UTF-8"));
- int lineNumber = 0;
- int expectedIndex = -1;
- int nTerms = -1;
- int count = 0;
- int degree = 0;
- // prepare the container for the parsed data
- PolynomialNutation polynomial;
- if (polynomialParser == null) {
- // we don't expect any polynomial, we directly set the zero polynomial
- polynomial = new PolynomialNutation(new double[0]);
- } else {
- // the dedicated parser will fill in the polynomial later
- polynomial = null;
- }
- final Map<Long, SeriesTerm> series = new HashMap<Long, SeriesTerm>();
- for (String line = reader.readLine(); line != null; line = reader.readLine()) {
- // replace unicode minus sign ('−') by regular hyphen ('-') for parsing
- // such unicode characters occur in tables that are copy-pasted from PDF files
- line = line.replace('\u2212', '-');
- ++lineNumber;
- final Matcher regularMatcher = regularLinePattern.matcher(line);
- if (regularMatcher.matches()) {
- // we have found a regular data line
- if (expectedIndex > 0) {
- // we are in a file were terms are numbered, we check the index
- if (Integer.parseInt(regularMatcher.group(1)) != expectedIndex) {
- throw new OrekitException(OrekitMessages.UNABLE_TO_PARSE_LINE_IN_FILE,
- lineNumber, name, regularMatcher.group());
- }
- }
- // get the Doodson multipliers as well as the Doodson number
- final int cTau = (firstDoodson < 0) ? 0 : Integer.parseInt(regularMatcher.group(firstDoodson));
- final int cS = (firstDoodson < 0) ? 0 : Integer.parseInt(regularMatcher.group(firstDoodson + 1));
- final int cH = (firstDoodson < 0) ? 0 : Integer.parseInt(regularMatcher.group(firstDoodson + 2));
- final int cP = (firstDoodson < 0) ? 0 : Integer.parseInt(regularMatcher.group(firstDoodson + 3));
- final int cNprime = (firstDoodson < 0) ? 0 : Integer.parseInt(regularMatcher.group(firstDoodson + 4));
- final int cPs = (firstDoodson < 0) ? 0 : Integer.parseInt(regularMatcher.group(firstDoodson + 5));
- final int nDoodson = (doodson < 0) ? 0 : Integer.parseInt(regularMatcher.group(doodson).replaceAll("[.,]", ""));
- // get the tide multiplier
- int cGamma = (gamma < 0) ? 0 : Integer.parseInt(regularMatcher.group(gamma));
- // get the Delaunay multipliers
- int cL = Integer.parseInt(regularMatcher.group(firstDelaunay));
- int cLPrime = Integer.parseInt(regularMatcher.group(firstDelaunay + 1));
- int cF = Integer.parseInt(regularMatcher.group(firstDelaunay + 2));
- int cD = Integer.parseInt(regularMatcher.group(firstDelaunay + 3));
- int cOmega = Integer.parseInt(regularMatcher.group(firstDelaunay + 4));
- // get the planetary multipliers
- final int cMe = (firstPlanetary < 0) ? 0 : Integer.parseInt(regularMatcher.group(firstPlanetary));
- final int cVe = (firstPlanetary < 0) ? 0 : Integer.parseInt(regularMatcher.group(firstPlanetary + 1));
- final int cE = (firstPlanetary < 0) ? 0 : Integer.parseInt(regularMatcher.group(firstPlanetary + 2));
- final int cMa = (firstPlanetary < 0) ? 0 : Integer.parseInt(regularMatcher.group(firstPlanetary + 3));
- final int cJu = (firstPlanetary < 0) ? 0 : Integer.parseInt(regularMatcher.group(firstPlanetary + 4));
- final int cSa = (firstPlanetary < 0) ? 0 : Integer.parseInt(regularMatcher.group(firstPlanetary + 5));
- final int cUr = (firstPlanetary < 0) ? 0 : Integer.parseInt(regularMatcher.group(firstPlanetary + 6));
- final int cNe = (firstPlanetary < 0) ? 0 : Integer.parseInt(regularMatcher.group(firstPlanetary + 7));
- final int cPa = (firstPlanetary < 0) ? 0 : Integer.parseInt(regularMatcher.group(firstPlanetary + 8));
- if (nDoodson > 0) {
- // set up the traditional parameters corresponding to the Doodson arguments
- cGamma = cTau;
- cL = -cL;
- cLPrime = -cLPrime;
- cF = -cF;
- cD = -cD;
- cOmega = -cOmega;
- // check Doodson number, Doodson multipliers and Delaunay multipliers consistency
- if (nDoodson != doodsonToDoodsonNumber(cTau, cS, cH, cP, cNprime, cPs) ||
- nDoodson != delaunayToDoodsonNumber(cGamma, cL, cLPrime, cF, cD, cOmega)) {
- throw new OrekitException(OrekitMessages.UNABLE_TO_PARSE_LINE_IN_FILE,
- lineNumber, name, regularMatcher.group());
- }
- }
- final long key = NutationCodec.encode(cGamma, cL, cLPrime, cF, cD, cOmega,
- cMe, cVe, cE, cMa, cJu, cSa, cUr, cNe, cPa);
- // retrieved the term, or build it if it's the first time it is encountered in the file
- final SeriesTerm term;
- if (series.containsKey(key)) {
- // the term was already known, from another degree
- term = series.get(key);
- } else {
- // the term is a new one
- term = SeriesTerm.buildTerm(cGamma, cL, cLPrime, cF, cD, cOmega,
- cMe, cVe, cE, cMa, cJu, cSa, cUr, cNe, cPa);
- }
- boolean nonZero = false;
- for (int d = 0; d < sinCosColumns.length / 2; ++d) {
- final double sinCoeff =
- parseCoefficient(regularMatcher, sinCosColumns[2 * d], sinCosFactors[2 * d]);
- final double cosCoeff =
- parseCoefficient(regularMatcher, sinCosColumns[2 * d + 1], sinCosFactors[2 * d + 1]);
- if (!Precision.equals(sinCoeff, 0.0, 0) || !Precision.equals(cosCoeff, 0.0, 0)) {
- nonZero = true;
- term.add(0, degree + d, sinCoeff, cosCoeff);
- ++count;
- }
- }
- if (nonZero) {
- series.put(key, term);
- }
- if (expectedIndex > 0) {
- // we are in a file were terms are numbered
- // we must update the expected value for next term
- ++expectedIndex;
- }
- } else {
- final Matcher headerMatcher = degreeSectionHeaderPattern.matcher(line);
- if (headerMatcher.matches()) {
- // we have found a degree section header
- final int nextDegree = Integer.parseInt(headerMatcher.group(1));
- if ((nextDegree != degree + 1) && (degree != 0 || nextDegree != 0)) {
- throw new OrekitException(OrekitMessages.MISSING_SERIE_J_IN_FILE,
- degree + 1, name, lineNumber);
- }
- if (nextDegree == 0) {
- // in IERS files split in sections, all terms are numbered
- // we can check the indices
- expectedIndex = 1;
- }
- if (nextDegree > 0 && count != nTerms) {
- // the previous degree does not have the expected number of terms
- throw new OrekitException(OrekitMessages.NOT_A_SUPPORTED_IERS_DATA_FILE, name);
- }
- // remember the number of terms the upcoming sublist should have
- nTerms = Integer.parseInt(headerMatcher.group(2));
- count = 0;
- degree = nextDegree;
- } else if (polynomial == null) {
- // look for the polynomial part
- final double[] coefficients = polynomialParser.parse(line);
- if (coefficients != null) {
- polynomial = new PolynomialNutation(coefficients);
- }
- }
- }
- }
- if (polynomial == null || series.isEmpty()) {
- throw new OrekitException(OrekitMessages.NOT_A_SUPPORTED_IERS_DATA_FILE, name);
- }
- if (nTerms > 0 && count != nTerms) {
- // the last degree does not have the expected number of terms
- throw new OrekitException(OrekitMessages.NOT_A_SUPPORTED_IERS_DATA_FILE, name);
- }
- // build the series
- return new PoissonSeries(polynomial, series);
- } catch (IOException ioe) {
- throw new OrekitException(ioe, new DummyLocalizable(ioe.getMessage()));
- }
- }
- /** Parse a scaled coefficient.
- * @param matcher line matcher holding the coefficient
- * @param group group number of the coefficient, or -1 if line does not contain coefficient
- * @param scale scaling factor to apply
- * @return scaled factor, or 0.0 if group is -1
- */
- private double parseCoefficient(final Matcher matcher, final int group, final double scale) {
- if (group < 0) {
- return 0.0;
- } else {
- return scale * Double.parseDouble(matcher.group(group));
- }
- }
- /** Compute Doodson number from Delaunay multipliers.
- * @param cGamma coefficient for γ = GMST + π tide parameter
- * @param cL coefficient for mean anomaly of the Moon
- * @param cLPrime coefficient for mean anomaly of the Sun
- * @param cF coefficient for L - Ω where L is the mean longitude of the Moon
- * @param cD coefficient for mean elongation of the Moon from the Sun
- * @param cOmega coefficient for mean longitude of the ascending node of the Moon
- * @return computed Doodson number
- */
- private int delaunayToDoodsonNumber(final int cGamma,
- final int cL, final int cLPrime, final int cF,
- final int cD, final int cOmega) {
- // reconstruct Doodson multipliers from gamma and Delaunay multipliers
- final int cTau = cGamma;
- final int cS = cGamma + (cL + cF + cD);
- final int cH = cLPrime - cD;
- final int cP = -cL;
- final int cNprime = cF - cOmega;
- final int cPs = -cLPrime;
- return doodsonToDoodsonNumber(cTau, cS, cH, cP, cNprime, cPs);
- }
- /** Compute Doodson number from Doodson multipliers.
- * @param cTau coefficient for mean lunar time
- * @param cS coefficient for mean longitude of the Moon
- * @param cH coefficient for mean longitude of the Sun
- * @param cP coefficient for longitude of Moon mean perigee
- * @param cNprime negative of the longitude of the Moon's mean ascending node on the ecliptic
- * @param cPs coefficient for longitude of Sun mean perigee
- * @return computed Doodson number
- */
- private int doodsonToDoodsonNumber(final int cTau,
- final int cS, final int cH, final int cP,
- final int cNprime, final int cPs) {
- return ((((cTau * 10 + (cS + 5)) * 10 + (cH + 5)) * 10 + (cP + 5)) * 10 + (cNprime + 5)) * 10 + (cPs + 5);
- }
- }