StateMapper.java
/* Copyright 2002-2017 CS Systèmes d'Information
* Licensed to CS Systèmes d'Information (CS) under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* CS licenses this file to You under the Apache License, Version 2.0
* (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package org.orekit.propagation.integration;
import org.orekit.attitudes.AttitudeProvider;
import org.orekit.errors.OrekitException;
import org.orekit.frames.Frame;
import org.orekit.orbits.OrbitType;
import org.orekit.orbits.PositionAngle;
import org.orekit.propagation.SpacecraftState;
import org.orekit.time.AbsoluteDate;
/** This class maps between raw double elements and {@link SpacecraftState} instances.
* @author Luc Maisonobe
* @since 6.0
*/
public abstract class StateMapper {
/** Reference date. */
private final AbsoluteDate referenceDate;
/** Propagation orbit type. */
private final OrbitType orbitType;
/** Position angle type. */
private final PositionAngle angleType;
/** Attitude provider. */
private final AttitudeProvider attitudeProvider;
/** Central attraction coefficient. */
private final double mu;
/** Inertial frame. */
private final Frame frame;
/** Simple constructor.
* <p>
* The position parameter type is meaningful only if {@link
* #getOrbitType() propagation orbit type}
* support it. As an example, it is not meaningful for propagation
* in {@link OrbitType#CARTESIAN Cartesian} parameters.
* </p>
* @param referenceDate reference date
* @param mu central attraction coefficient (m³/s²)
* @param orbitType orbit type to use for mapping
* @param positionAngleType angle type to use for propagation
* @param attitudeProvider attitude provider
* @param frame inertial frame
*/
protected StateMapper(final AbsoluteDate referenceDate, final double mu,
final OrbitType orbitType, final PositionAngle positionAngleType,
final AttitudeProvider attitudeProvider, final Frame frame) {
this.referenceDate = referenceDate;
this.mu = mu;
this.orbitType = orbitType;
this.angleType = positionAngleType;
this.attitudeProvider = attitudeProvider;
this.frame = frame;
}
/** Get reference date.
* @return reference date
*/
public AbsoluteDate getReferenceDate() {
return referenceDate;
}
/** Get propagation parameter type.
* @return orbit type used for propagation
*/
public OrbitType getOrbitType() {
return orbitType;
}
/** Set position angle type.
*/
public void setPositionAngleType() {
}
/** Get propagation parameter type.
* @return angle type to use for propagation
*/
public PositionAngle getPositionAngleType() {
return angleType;
}
/** Get the central attraction coefficient μ.
* @return mu central attraction coefficient (m³/s²)
*/
public double getMu() {
return mu;
}
/** Get the inertial frame.
* @return inertial frame
*/
public Frame getFrame() {
return frame;
}
/** Get the attitude provider.
* @return attitude provider
*/
public AttitudeProvider getAttitudeProvider() {
return attitudeProvider;
}
/** Map the raw double time offset to a date.
* @param t date offset
* @return date
*/
public AbsoluteDate mapDoubleToDate(final double t) {
return referenceDate.shiftedBy(t);
}
/**
* Map the raw double time offset to a date.
*
* @param t date offset
* @param date The expected date.
* @return {@code date} if it is the same time as {@code t} to within the
* lower precision of the latter. Otherwise a new date is returned that
* corresponds to time {@code t}.
*/
public AbsoluteDate mapDoubleToDate(final double t,
final AbsoluteDate date) {
if (date.durationFrom(referenceDate) == t) {
return date;
} else {
return mapDoubleToDate(t);
}
}
/** Map a date to a raw double time offset.
* @param date date
* @return time offset
*/
public double mapDateToDouble(final AbsoluteDate date) {
return date.durationFrom(referenceDate);
}
/** Map the raw double components to a spacecraft state.
* @param t date offset
* @param y state components
* @param yDot time derivatives of the state components (null if unknown, in which case Keplerian motion is assumed)
* @param meanOnly use only the mean elements to build the state
* @return spacecraft state
* @exception OrekitException if array is inconsistent or cannot be mapped
*/
public SpacecraftState mapArrayToState(final double t, final double[] y, final double[] yDot, final boolean meanOnly)
throws OrekitException {
return mapArrayToState(mapDoubleToDate(t), y, yDot, meanOnly);
}
/** Map the raw double components to a spacecraft state.
* @param date of the state components
* @param y state components
* @param yDot time derivatives of the state components (null if unknown, in which case Keplerian motion is assumed)
* @param meanOnly use only the mean elements to build the state
* @return spacecraft state
* @exception OrekitException if array is inconsistent or cannot be mapped
*/
public abstract SpacecraftState mapArrayToState(AbsoluteDate date, double[] y, double[] yDot, boolean meanOnly)
throws OrekitException;
/** Map a spacecraft state to raw double components.
* @param state state to map
* @param y placeholder where to put the components
* @param yDot placeholder where to put the components derivatives
* @exception OrekitException if state is inconsistent or cannot be mapped
*/
public abstract void mapStateToArray(SpacecraftState state, double[] y, double[] yDot)
throws OrekitException;
}