PulsatingSphericalHarmonics.java
/* Copyright 2002-2015 CS Systèmes d'Information
* Licensed to CS Systèmes d'Information (CS) under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* CS licenses this file to You under the Apache License, Version 2.0
* (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package org.orekit.forces.gravity.potential;
import org.apache.commons.math3.util.FastMath;
import org.apache.commons.math3.util.MathUtils;
import org.orekit.errors.OrekitException;
import org.orekit.time.AbsoluteDate;
/** Simple implementation of {@link RawSphericalHarmonicsProvider} for pulsating gravity fields.
* @author Luc Maisonobe
* @since 6.0
*/
class PulsatingSphericalHarmonics implements RawSphericalHarmonicsProvider {
/** Underlying part of the field. */
private final RawSphericalHarmonicsProvider provider;
/** Pulsation (rad/s). */
private final double pulsation;
/** Cosine component of the cosine coefficients. */
private final double[][] cosC;
/** Sine component of the cosine coefficients. */
private final double[][] sinC;
/** Cosine component of the sine coefficients. */
private final double[][] cosS;
/** Sine component of the sine coefficients. */
private final double[][] sinS;
/** Simple constructor.
* @param provider underlying part of the field
* @param period period of the pulsation (s)
* @param cosC cosine component of the cosine coefficients
* @param sinC sine component of the cosine coefficients
* @param cosS cosine component of the sine coefficients
* @param sinS sine component of the sine coefficients
*/
public PulsatingSphericalHarmonics(final RawSphericalHarmonicsProvider provider,
final double period,
final double[][] cosC, final double[][] sinC,
final double[][] cosS, final double[][] sinS) {
this.provider = provider;
this.pulsation = MathUtils.TWO_PI / period;
this.cosC = cosC;
this.sinC = sinC;
this.cosS = cosS;
this.sinS = sinS;
}
/** {@inheritDoc} */
public int getMaxDegree() {
return provider.getMaxDegree();
}
/** {@inheritDoc} */
public int getMaxOrder() {
return provider.getMaxOrder();
}
/** {@inheritDoc} */
public double getMu() {
return provider.getMu();
}
/** {@inheritDoc} */
public double getAe() {
return provider.getAe();
}
/** {@inheritDoc} */
public AbsoluteDate getReferenceDate() {
return provider.getReferenceDate();
}
/** {@inheritDoc} */
public double getOffset(final AbsoluteDate date) {
return provider.getOffset(date);
}
/** {@inheritDoc} */
public TideSystem getTideSystem() {
return provider.getTideSystem();
}
@Override
public RawSphericalHarmonics onDate(final AbsoluteDate date) throws OrekitException {
//raw (constant) harmonics
final RawSphericalHarmonics raw = provider.onDate(date);
//phase angle, will loose precision for large offsets
final double alpha = pulsation * getOffset(date);
//pre-compute transcendental functions
final double cAlpha = FastMath.cos(alpha);
final double sAlpha = FastMath.sin(alpha);
return new RawSphericalHarmonics() {
@Override
public AbsoluteDate getDate() {
return date;
}
/** {@inheritDoc} */
public double getRawCnm(final int n, final int m)
throws OrekitException {
// retrieve the underlying part of the coefficient
double cnm = raw.getRawCnm(n, m);
if (n < cosC.length && m < cosC[n].length) {
// add pulsation
cnm += cosC[n][m] * cAlpha + sinC[n][m] * sAlpha;
}
return cnm;
}
/** {@inheritDoc} */
public double getRawSnm(final int n, final int m)
throws OrekitException {
// retrieve the constant part of the coefficient
double snm = raw.getRawSnm(n, m);
if (n < cosS.length && m < cosS[n].length) {
// add pulsation
snm += cosS[n][m] * cAlpha + sinS[n][m] * sAlpha;
}
return snm;
}
};
}
}