FieldAngularCoordinates.java
- /* Copyright 2002-2013 CS Systèmes d'Information
- * Licensed to CS Systèmes d'Information (CS) under one or more
- * contributor license agreements. See the NOTICE file distributed with
- * this work for additional information regarding copyright ownership.
- * CS licenses this file to You under the Apache License, Version 2.0
- * (the "License"); you may not use this file except in compliance with
- * the License. You may obtain a copy of the License at
- *
- * http://www.apache.org/licenses/LICENSE-2.0
- *
- * Unless required by applicable law or agreed to in writing, software
- * distributed under the License is distributed on an "AS IS" BASIS,
- * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- * See the License for the specific language governing permissions and
- * limitations under the License.
- */
- package org.orekit.utils;
- import java.io.Serializable;
- import java.util.Collection;
- import org.apache.commons.math3.RealFieldElement;
- import org.apache.commons.math3.analysis.interpolation.FieldHermiteInterpolator;
- import org.apache.commons.math3.geometry.euclidean.threed.FieldRotation;
- import org.apache.commons.math3.geometry.euclidean.threed.FieldVector3D;
- import org.apache.commons.math3.util.FastMath;
- import org.apache.commons.math3.util.MathArrays;
- import org.apache.commons.math3.util.Pair;
- import org.orekit.errors.OrekitException;
- import org.orekit.time.AbsoluteDate;
- import org.orekit.time.TimeShiftable;
- /** Simple container for FieldRotation<T>/FieldRotation<T> rate pairs, using {@link RealFieldElement}.
- * <p>
- * The state can be slightly shifted to close dates. This shift is based on
- * a simple linear model. It is <em>not</em> intended as a replacement for
- * proper attitude propagation but should be sufficient for either small
- * time shifts or coarse accuracy.
- * </p>
- * <p>
- * This class is the angular counterpart to {@link FieldPVCoordinates}.
- * </p>
- * <p>Instances of this class are guaranteed to be immutable.</p>
- * @param <T> the type of the field elements
- * @author Luc Maisonobe
- * @since 6.0
- * @see AngularCoordinates
- */
- public class FieldAngularCoordinates<T extends RealFieldElement<T>>
- implements TimeShiftable<FieldAngularCoordinates<T>>, Serializable {
- /** Serializable UID. */
- private static final long serialVersionUID = 20130222L;
- /** FieldRotation<T>. */
- private final FieldRotation<T> rotation;
- /** FieldRotation<T> rate. */
- private final FieldVector3D<T> rotationRate;
- /** Builds a FieldRotation<T>/FieldRotation<T> rate pair.
- * @param rotation FieldRotation<T>
- * @param rotationRate FieldRotation<T> rate (rad/s)
- */
- public FieldAngularCoordinates(final FieldRotation<T> rotation, final FieldVector3D<T> rotationRate) {
- this.rotation = rotation;
- this.rotationRate = rotationRate;
- }
- /** Estimate FieldRotation<T> rate between two orientations.
- * <p>Estimation is based on a simple fixed rate FieldRotation<T>
- * during the time interval between the two orientations.</p>
- * @param start start orientation
- * @param end end orientation
- * @param dt time elapsed between the dates of the two orientations
- * @param <T> the type of the field elements
- * @return FieldRotation<T> rate allowing to go from start to end orientations
- */
- public static <T extends RealFieldElement<T>> FieldVector3D<T> estimateRate(final FieldRotation<T> start, final FieldRotation<T> end, final double dt) {
- final FieldRotation<T> evolution = start.applyTo(end.revert());
- return new FieldVector3D<T>(evolution.getAngle().divide(dt), evolution.getAxis());
- }
- /** Revert a FieldRotation<T>/FieldRotation<T> rate pair.
- * Build a pair which reverse the effect of another pair.
- * @return a new pair whose effect is the reverse of the effect
- * of the instance
- */
- public FieldAngularCoordinates<T> revert() {
- return new FieldAngularCoordinates<T>(rotation.revert(), rotation.applyInverseTo(rotationRate.negate()));
- }
- /** Get a time-shifted state.
- * <p>
- * The state can be slightly shifted to close dates. This shift is based on
- * a simple linear model. It is <em>not</em> intended as a replacement for
- * proper attitude propagation but should be sufficient for either small
- * time shifts or coarse accuracy.
- * </p>
- * @param dt time shift in seconds
- * @return a new state, shifted with respect to the instance (which is immutable)
- */
- public FieldAngularCoordinates<T> shiftedBy(final double dt) {
- final T rate = rotationRate.getNorm();
- if (rate.getReal() == 0.0) {
- // special case for fixed FieldRotation<T>s
- return this;
- }
- // BEWARE: there is really a minus sign here, because if
- // the target frame rotates in one direction, the vectors in the origin
- // frame seem to rotate in the opposite direction
- final FieldRotation<T> evolution = new FieldRotation<T>(rotationRate, rate.negate().multiply(dt));
- return new FieldAngularCoordinates<T>(evolution.applyTo(rotation), rotationRate);
- }
- /** Get the FieldRotation<T>.
- * @return the FieldRotation<T>.
- */
- public FieldRotation<T> getRotation() {
- return rotation;
- }
- /** Get the FieldRotation<T> rate.
- * @return the FieldRotation<T> rate vector (rad/s).
- */
- public FieldVector3D<T> getRotationRate() {
- return rotationRate;
- }
- /** Add an offset from the instance.
- * <p>
- * We consider here that the offset FieldRotation<T> is applied first and the
- * instance is applied afterward. Note that angular coordinates do <em>not</em>
- * commute under this operation, i.e. {@code a.addOffset(b)} and {@code
- * b.addOffset(a)} lead to <em>different</em> results in most cases.
- * </p>
- * <p>
- * The two methods {@link #addOffset(FieldAngularCoordinates) addOffset} and
- * {@link #subtractOffset(FieldAngularCoordinates) subtractOffset} are designed
- * so that round trip applications are possible. This means that both {@code
- * ac1.subtractOffset(ac2).addOffset(ac2)} and {@code
- * ac1.addOffset(ac2).subtractOffset(ac2)} return angular coordinates equal to ac1.
- * </p>
- * @param offset offset to subtract
- * @return new instance, with offset subtracted
- * @see #subtractOffset(FieldAngularCoordinates)
- */
- public FieldAngularCoordinates<T> addOffset(final FieldAngularCoordinates<T> offset) {
- return new FieldAngularCoordinates<T>(rotation.applyTo(offset.rotation),
- rotationRate.add(rotation.applyTo(offset.rotationRate)));
- }
- /** Subtract an offset from the instance.
- * <p>
- * We consider here that the offset Rotation is applied first and the
- * instance is applied afterward. Note that angular coordinates do <em>not</em>
- * commute under this operation, i.e. {@code a.subtractOffset(b)} and {@code
- * b.subtractOffset(a)} lead to <em>different</em> results in most cases.
- * </p>
- * <p>
- * The two methods {@link #addOffset(FieldAngularCoordinates) addOffset} and
- * {@link #subtractOffset(FieldAngularCoordinates) subtractOffset} are designed
- * so that round trip applications are possible. This means that both {@code
- * ac1.subtractOffset(ac2).addOffset(ac2)} and {@code
- * ac1.addOffset(ac2).subtractOffset(ac2)} return angular coordinates equal to ac1.
- * </p>
- * @param offset offset to subtract
- * @return new instance, with offset subtracted
- * @see #addOffset(FieldAngularCoordinates)
- */
- public FieldAngularCoordinates<T> subtractOffset(final FieldAngularCoordinates<T> offset) {
- return addOffset(offset.revert());
- }
- /** Convert to a constant angular coordinates without derivatives.
- * @return a constant angular coordinates
- */
- public AngularCoordinates toAngularCoordinates() {
- return new AngularCoordinates(rotation.toRotation(), rotationRate.toVector3D());
- }
- /** Interpolate angular coordinates.
- * <p>
- * The interpolated instance is created by polynomial Hermite interpolation
- * on Rodrigues vector ensuring FieldRotation<T> rate remains the exact derivative of FieldRotation<T>.
- * </p>
- * <p>
- * This method is based on Sergei Tanygin's paper <a
- * href="http://www.agi.com/downloads/resources/white-papers/Attitude-interpolation.pdf">Attitude
- * Interpolation</a>, changing the norm of the vector to match the modified Rodrigues
- * vector as described in Malcolm D. Shuster's paper <a
- * href="http://www.ladispe.polito.it/corsi/Meccatronica/02JHCOR/2011-12/Slides/Shuster_Pub_1993h_J_Repsurv_scan.pdf">A
- * Survey of Attitude Representations</a>. This change avoids the singularity at π.
- * There is still a singularity at 2π, which is handled by slightly offsetting all FieldRotation<T>s
- * when this singularity is detected.
- * </p>
- * <p>
- * Note that even if first time derivatives (FieldRotation<T> rates)
- * from sample can be ignored, the interpolated instance always includes
- * interpolated derivatives. This feature can be used explicitly to
- * compute these derivatives when it would be too complex to compute them
- * from an analytical formula: just compute a few sample points from the
- * explicit formula and set the derivatives to zero in these sample points,
- * then use interpolation to add derivatives consistent with the FieldRotation<T>s.
- * </p>
- * @param date interpolation date
- * @param useRotationRates if true, use sample points FieldRotation<T> rates,
- * otherwise ignore them and use only FieldRotation<T>s
- * @param sample sample points on which interpolation should be done
- * @param <T> the type of the field elements
- * @return a new position-velocity, interpolated at specified date
- */
- @SuppressWarnings("unchecked")
- public static <T extends RealFieldElement<T>> FieldAngularCoordinates<T> interpolate(final AbsoluteDate date, final boolean useRotationRates,
- final Collection<Pair<AbsoluteDate, FieldAngularCoordinates<T>>> sample) {
- // get field properties
- final T prototype = sample.iterator().next().getValue().getRotation().getQ0();
- final T zero = prototype.getField().getZero();
- final T one = prototype.getField().getOne();
- // set up safety elements for 2PI singularity avoidance
- final double epsilon = 2 * FastMath.PI / sample.size();
- final double threshold = FastMath.min(-(1.0 - 1.0e-4), -FastMath.cos(epsilon / 4));
- // set up a linear offset model canceling mean FieldRotation<T> rate
- final FieldVector3D<T> meanRate;
- if (useRotationRates) {
- FieldVector3D<T> sum = new FieldVector3D<T>(zero, zero, zero);
- for (final Pair<AbsoluteDate, FieldAngularCoordinates<T>> datedAC : sample) {
- sum = sum.add(datedAC.getValue().getRotationRate());
- }
- meanRate = new FieldVector3D<T>(1.0 / sample.size(), sum);
- } else {
- FieldVector3D<T> sum = new FieldVector3D<T>(zero, zero, zero);
- Pair<AbsoluteDate, FieldAngularCoordinates<T>> previous = null;
- for (final Pair<AbsoluteDate, FieldAngularCoordinates<T>> datedAC : sample) {
- if (previous != null) {
- sum = sum.add(estimateRate(previous.getValue().getRotation(),
- datedAC.getValue().getRotation(),
- datedAC.getKey().durationFrom(previous.getKey().getDate())));
- }
- previous = datedAC;
- }
- meanRate = new FieldVector3D<T>(1.0 / (sample.size() - 1), sum);
- }
- FieldAngularCoordinates<T> offset =
- new FieldAngularCoordinates<T>(new FieldRotation<T>(one, zero, zero, zero, false), meanRate);
- boolean restart = true;
- for (int i = 0; restart && i < sample.size() + 2; ++i) {
- // offset adaptation parameters
- restart = false;
- // set up an interpolator taking derivatives into account
- final FieldHermiteInterpolator<T> interpolator = new FieldHermiteInterpolator<T>();
- // add sample points
- if (useRotationRates) {
- // populate sample with FieldRotation<T> and FieldRotation<T> rate data
- for (final Pair<AbsoluteDate, FieldAngularCoordinates<T>> datedAC : sample) {
- final T[][] rodrigues = getModifiedRodrigues(datedAC.getKey(), datedAC.getValue(),
- date, offset, threshold);
- if (rodrigues == null) {
- // the sample point is close to a modified Rodrigues vector singularity
- // we need to change the linear offset model to avoid this
- restart = true;
- break;
- }
- interpolator.addSamplePoint(zero.add(datedAC.getKey().getDate().durationFrom(date)),
- rodrigues[0], rodrigues[1]);
- }
- } else {
- // populate sample with FieldRotation<T> data only, ignoring FieldRotation<T> rate
- for (final Pair<AbsoluteDate, FieldAngularCoordinates<T>> datedAC : sample) {
- final T[][] rodrigues = getModifiedRodrigues(datedAC.getKey(), datedAC.getValue(),
- date, offset, threshold);
- if (rodrigues == null) {
- // the sample point is close to a modified Rodrigues vector singularity
- // we need to change the linear offset model to avoid this
- restart = true;
- break;
- }
- interpolator.addSamplePoint(zero.add(datedAC.getKey().getDate().durationFrom(date)),
- rodrigues[0]);
- }
- }
- if (restart) {
- // interpolation failed, some intermediate FieldRotation<T> was too close to 2PI
- // we need to offset all FieldRotation<T>s to avoid the singularity
- offset = offset.addOffset(new FieldAngularCoordinates<T>(new FieldRotation<T>(new FieldVector3D<T>(one, zero, zero),
- zero.add(epsilon)),
- new FieldVector3D<T>(one, zero, zero)));
- } else {
- // interpolation succeeded with the current offset
- final T[][] p = interpolator.derivatives(zero, 1);
- return createFromModifiedRodrigues(p, offset);
- }
- }
- // this should never happen
- throw OrekitException.createInternalError(null);
- }
- /** Convert rotation and rate to modified Rodrigues vector and derivative.
- * <p>
- * The modified Rodrigues vector is tan(θ/4) u where θ and u are the
- * rotation angle and axis respectively.
- * </p>
- * @param date date of the angular coordinates
- * @param ac coordinates to convert
- * @param offsetDate date of the linear offset model to remove
- * @param offset linear offset model to remove
- * @param threshold threshold for rotations too close to 2π
- * @param <T> the type of the field elements
- * @return modified Rodrigues vector and derivative, or null if rotation is too close to 2π
- */
- private static <T extends RealFieldElement<T>> T[][] getModifiedRodrigues(final AbsoluteDate date, final FieldAngularCoordinates<T> ac,
- final AbsoluteDate offsetDate, final FieldAngularCoordinates<T> offset,
- final double threshold) {
- // remove linear offset from the current coordinates
- final double dt = date.durationFrom(offsetDate);
- final FieldAngularCoordinates<T> fixed = ac.subtractOffset(offset.shiftedBy(dt));
- // check modified Rodrigues vector singularity
- T q0 = fixed.getRotation().getQ0();
- T q1 = fixed.getRotation().getQ1();
- T q2 = fixed.getRotation().getQ2();
- T q3 = fixed.getRotation().getQ3();
- if (q0.getReal() < threshold && FastMath.abs(dt) * fixed.getRotationRate().getNorm().getReal() > 1.0e-3) {
- // this is an intermediate point that happens to be 2PI away from reference
- // we need to change the linear offset model to avoid this point
- return null;
- }
- // make sure all interpolated points will be on the same branch
- if (q0.getReal() < 0) {
- q0 = q0.negate();
- q1 = q1.negate();
- q2 = q2.negate();
- q3 = q3.negate();
- }
- final T x = fixed.getRotationRate().getX();
- final T y = fixed.getRotationRate().getY();
- final T z = fixed.getRotationRate().getZ();
- // derivatives of the quaternion
- final T q0Dot = q0.linearCombination(q1, x, q2, y, q3, z).multiply(-0.5);
- final T q1Dot = q1.linearCombination(q0, x, q2, z, q3.negate(), y).multiply(0.5);
- final T q2Dot = q2.linearCombination(q0, y, q3, x, q1.negate(), z).multiply(0.5);
- final T q3Dot = q3.linearCombination(q0, z, q1, y, q2.negate(), x).multiply(0.5);
- final T inv = q0.add(1).reciprocal();
- final T[][] rodrigues = MathArrays.buildArray(q0.getField(), 2, 3);
- rodrigues[0][0] = inv.multiply(q1);
- rodrigues[0][1] = inv.multiply(q2);
- rodrigues[0][2] = inv.multiply(q3);
- rodrigues[1][0] = inv.multiply(q1Dot.subtract(inv.multiply(q1).multiply(q0Dot)));
- rodrigues[1][1] = inv.multiply(q2Dot.subtract(inv.multiply(q2).multiply(q0Dot)));
- rodrigues[1][2] = inv.multiply(q3Dot.subtract(inv.multiply(q3).multiply(q0Dot)));
- return rodrigues;
- }
- /** Convert a modified Rodrigues vector and derivative to angular coordinates.
- * @param r modified Rodrigues vector (with first derivatives)
- * @param offset linear offset model to add (its date must be consistent with the modified Rodrigues vector)
- * @param <T> the type of the field elements
- * @return angular coordinates
- */
- private static <T extends RealFieldElement<T>> FieldAngularCoordinates<T> createFromModifiedRodrigues(final T[][] r,
- final FieldAngularCoordinates<T> offset) {
- // rotation
- final T rSquared = r[0][0].multiply(r[0][0]).add(r[0][1].multiply(r[0][1])).add(r[0][2].multiply(r[0][2]));
- final T inv = rSquared.add(1).reciprocal();
- final T ratio = inv.multiply(rSquared.subtract(1).negate());
- final FieldRotation<T> rotation = new FieldRotation<T>(ratio,
- inv.multiply(2).multiply(r[0][0]),
- inv.multiply(2).multiply(r[0][1]),
- inv.multiply(2).multiply(r[0][2]),
- false);
- // rotation rate
- final FieldVector3D<T> p = new FieldVector3D<T>(r[0]);
- final FieldVector3D<T> pDot = new FieldVector3D<T>(r[1]);
- final FieldVector3D<T> rate = new FieldVector3D<T>(inv.multiply(ratio).multiply(4), pDot,
- inv.multiply(inv).multiply(-8), FieldVector3D.crossProduct(p, pDot),
- inv.multiply(inv).multiply(8).multiply(FieldVector3D.dotProduct(p, pDot)), p);
- return new FieldAngularCoordinates<T>(rotation, rate).addOffset(offset);
- }
- }