AbsoluteDate.java
- /* Copyright 2002-2013 CS Systèmes d'Information
- * Licensed to CS Systèmes d'Information (CS) under one or more
- * contributor license agreements. See the NOTICE file distributed with
- * this work for additional information regarding copyright ownership.
- * CS licenses this file to You under the Apache License, Version 2.0
- * (the "License"); you may not use this file except in compliance with
- * the License. You may obtain a copy of the License at
- *
- * http://www.apache.org/licenses/LICENSE-2.0
- *
- * Unless required by applicable law or agreed to in writing, software
- * distributed under the License is distributed on an "AS IS" BASIS,
- * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- * See the License for the specific language governing permissions and
- * limitations under the License.
- */
- package org.orekit.time;
- import java.io.Serializable;
- import java.util.Date;
- import org.apache.commons.math3.util.FastMath;
- import org.apache.commons.math3.util.MathArrays;
- import org.orekit.errors.OrekitException;
- import org.orekit.errors.OrekitMessages;
- import org.orekit.utils.Constants;
- /** This class represents a specific instant in time.
- * <p>Instances of this class are considered to be absolute in the sense
- * that each one represent the occurrence of some event and can be compared
- * to other instances or located in <em>any</em> {@link TimeScale time scale}. In
- * other words the different locations of an event with respect to two different
- * time scales (say {@link TAIScale TAI} and {@link UTCScale UTC} for example) are
- * simply different perspective related to a single object. Only one
- * <code>AbsoluteDate</code> instance is needed, both representations being available
- * from this single instance by specifying the time scales as parameter when calling
- * the ad-hoc methods.</p>
- *
- * <p>Since an instance is not bound to a specific time-scale, all methods related
- * to the location of the date within some time scale require to provide the time
- * scale as an argument. It is therefore possible to define a date in one time scale
- * and to use it in another one. An example of such use is to read a date from a file
- * in UTC and write it in another file in TAI. This can be done as follows:</p>
- * <pre>
- * DateTimeComponents utcComponents = readNextDate();
- * AbsoluteDate date = new AbsoluteDate(utcComponents, TimeScalesFactory.getUTC());
- * writeNextDate(date.getComponents(TimeScalesFactory.getTAI()));
- * </pre>
- *
- * <p>Two complementary views are available:</p>
- * <ul>
- * <li><p>location view (mainly for input/output or conversions)</p>
- * <p>locations represent the coordinate of one event with respect to a
- * {@link TimeScale time scale}. The related methods are {@link
- * #AbsoluteDate(DateComponents, TimeComponents, TimeScale)}, {@link
- * #AbsoluteDate(int, int, int, int, int, double, TimeScale)}, {@link
- * #AbsoluteDate(int, int, int, TimeScale)}, {@link #AbsoluteDate(Date,
- * TimeScale)}, {@link #createGPSDate(int, double)}, {@link
- * #parseCCSDSCalendarSegmentedTimeCode(byte, byte[])}, toString(){@link
- * #toDate(TimeScale)}, {@link #toString(TimeScale) toString(timeScale)},
- * {@link #toString()}, and {@link #timeScalesOffset}.</p>
- * </li>
- * <li><p>offset view (mainly for physical computation)</p>
- * <p>offsets represent either the flow of time between two events
- * (two instances of the class) or durations. They are counted in seconds,
- * are continuous and could be measured using only a virtually perfect stopwatch.
- * The related methods are {@link #AbsoluteDate(AbsoluteDate, double)},
- * {@link #parseCCSDSUnsegmentedTimeCode(byte, byte, byte[], AbsoluteDate)},
- * {@link #parseCCSDSDaySegmentedTimeCode(byte, byte[], DateComponents)},
- * {@link #durationFrom(AbsoluteDate)}, {@link #compareTo(AbsoluteDate)}, {@link #equals(Object)}
- * and {@link #hashCode()}.</p>
- * </li>
- * </ul>
- * <p>
- * A few reference epochs which are commonly used in space systems have been defined. These
- * epochs can be used as the basis for offset computation. The supported epochs are:
- * {@link #JULIAN_EPOCH}, {@link #MODIFIED_JULIAN_EPOCH}, {@link #FIFTIES_EPOCH},
- * {@link #CCSDS_EPOCH}, {@link #GALILEO_EPOCH}, {@link #GPS_EPOCH}, {@link #J2000_EPOCH},
- * {@link #JAVA_EPOCH}. There are also two factory methods {@link #createJulianEpoch(double)}
- * and {@link #createBesselianEpoch(double)} that can be used to compute other reference
- * epochs like J1900.0 or B1950.0.
- * In addition to these reference epochs, two other constants are defined for convenience:
- * {@link #PAST_INFINITY} and {@link #FUTURE_INFINITY}, which can be used either as dummy
- * dates when a date is not yet initialized, or for initialization of loops searching for
- * a min or max date.
- * </p>
- * <p>
- * Instances of the <code>AbsoluteDate</code> class are guaranteed to be immutable.
- * </p>
- * @author Luc Maisonobe
- * @see TimeScale
- * @see TimeStamped
- * @see ChronologicalComparator
- */
- public class AbsoluteDate
- implements TimeStamped, TimeShiftable<AbsoluteDate>, Comparable<AbsoluteDate>, Serializable {
- /** Reference epoch for julian dates: -4712-01-01T12:00:00 Terrestrial Time.
- * <p>Both <code>java.util.Date</code> and {@link DateComponents} classes
- * follow the astronomical conventions and consider a year 0 between
- * years -1 and +1, hence this reference date lies in year -4712 and not
- * in year -4713 as can be seen in other documents or programs that obey
- * a different convention (for example the <code>convcal</code> utility).</p>
- */
- public static final AbsoluteDate JULIAN_EPOCH =
- new AbsoluteDate(DateComponents.JULIAN_EPOCH, TimeComponents.H12, TimeScalesFactory.getTT());
- /** Reference epoch for modified julian dates: 1858-11-17T00:00:00 Terrestrial Time. */
- public static final AbsoluteDate MODIFIED_JULIAN_EPOCH =
- new AbsoluteDate(DateComponents.MODIFIED_JULIAN_EPOCH, TimeComponents.H00, TimeScalesFactory.getTT());
- /** Reference epoch for 1950 dates: 1950-01-01T00:00:00 Terrestrial Time. */
- public static final AbsoluteDate FIFTIES_EPOCH =
- new AbsoluteDate(DateComponents.FIFTIES_EPOCH, TimeComponents.H00, TimeScalesFactory.getTT());
- /** Reference epoch for CCSDS Time Code Format (CCSDS 301.0-B-4):
- * 1958-01-01T00:00:00 International Atomic Time (<em>not</em> UTC). */
- public static final AbsoluteDate CCSDS_EPOCH =
- new AbsoluteDate(DateComponents.CCSDS_EPOCH, TimeComponents.H00, TimeScalesFactory.getTAI());
- /** Reference epoch for Galileo System Time: 1999-08-22T00:00:00 UTC. */
- public static final AbsoluteDate GALILEO_EPOCH =
- new AbsoluteDate(DateComponents.GALILEO_EPOCH, new TimeComponents(0, 0, 32),
- TimeScalesFactory.getTAI());
- /** Reference epoch for GPS weeks: 1980-01-06T00:00:00 GPS time. */
- public static final AbsoluteDate GPS_EPOCH =
- new AbsoluteDate(DateComponents.GPS_EPOCH, TimeComponents.H00, TimeScalesFactory.getGPS());
- /** J2000.0 Reference epoch: 2000-01-01T12:00:00 Terrestrial Time (<em>not</em> UTC).
- * @see #createJulianEpoch(double)
- * @see #createBesselianEpoch(double)
- */
- public static final AbsoluteDate J2000_EPOCH =
- new AbsoluteDate(DateComponents.J2000_EPOCH, TimeComponents.H12, TimeScalesFactory.getTT());
- /** Java Reference epoch: 1970-01-01T00:00:00 Universal Time Coordinate.
- * <p>
- * Between 1968-02-01 and 1972-01-01, UTC-TAI = 4.213 170 0s + (MJD - 39 126) x 0.002 592s.
- * As on 1970-01-01 MJD = 40587, UTC-TAI = 8.000082s
- * </p>
- */
- public static final AbsoluteDate JAVA_EPOCH =
- new AbsoluteDate(DateComponents.JAVA_EPOCH, TimeScalesFactory.getTAI()).shiftedBy(8.000082);
- /** Dummy date at infinity in the past direction. */
- public static final AbsoluteDate PAST_INFINITY = JAVA_EPOCH.shiftedBy(Double.NEGATIVE_INFINITY);
- /** Dummy date at infinity in the future direction. */
- public static final AbsoluteDate FUTURE_INFINITY = JAVA_EPOCH.shiftedBy(Double.POSITIVE_INFINITY);
- /** Serializable UID. */
- private static final long serialVersionUID = 617061803741806846L;
- /** Reference epoch in seconds from 2000-01-01T12:00:00 TAI.
- * <p>Beware, it is not {@link #J2000_EPOCH} since it is in TAI and not in TT.</p> */
- private final long epoch;
- /** Offset from the reference epoch in seconds. */
- private final double offset;
- /** Create an instance with a default value ({@link #J2000_EPOCH}).
- */
- public AbsoluteDate() {
- epoch = J2000_EPOCH.epoch;
- offset = J2000_EPOCH.offset;
- }
- /** Build an instance from a location (parsed from a string) in a {@link TimeScale time scale}.
- * <p>
- * The supported formats for location are mainly the ones defined in ISO-8601 standard,
- * the exact subset is explained in {@link DateTimeComponents#parseDateTime(String)},
- * {@link DateComponents#parseDate(String)} and {@link TimeComponents#parseTime(String)}.
- * </p>
- * <p>
- * As CCSDS ASCII calendar segmented time code is a trimmed down version of ISO-8601,
- * it is also supported by this constructor.
- * </p>
- * @param location location in the time scale, must be in a supported format
- * @param timeScale time scale
- * @exception IllegalArgumentException if location string is not in a supported format
- */
- public AbsoluteDate(final String location, final TimeScale timeScale) {
- this(DateTimeComponents.parseDateTime(location), timeScale);
- }
- /** Build an instance from a location in a {@link TimeScale time scale}.
- * @param location location in the time scale
- * @param timeScale time scale
- */
- public AbsoluteDate(final DateTimeComponents location, final TimeScale timeScale) {
- this(location.getDate(), location.getTime(), timeScale);
- }
- /** Build an instance from a location in a {@link TimeScale time scale}.
- * @param date date location in the time scale
- * @param time time location in the time scale
- * @param timeScale time scale
- */
- public AbsoluteDate(final DateComponents date, final TimeComponents time,
- final TimeScale timeScale) {
- final double seconds = time.getSecond();
- final double tsOffset = timeScale.offsetToTAI(date, time);
- // compute sum exactly, using Møller-Knuth TwoSum algorithm without branching
- // the following statements must NOT be simplified, they rely on floating point
- // arithmetic properties (rounding and representable numbers)
- // at the end, the EXACT result of addition seconds + tsOffset
- // is sum + residual, where sum is the closest representable number to the exact
- // result and residual is the missing part that does not fit in the first number
- final double sum = seconds + tsOffset;
- final double sPrime = sum - tsOffset;
- final double tPrime = sum - sPrime;
- final double deltaS = seconds - sPrime;
- final double deltaT = tsOffset - tPrime;
- final double residual = deltaS + deltaT;
- final long dl = (long) FastMath.floor(sum);
- offset = (sum - dl) + residual;
- epoch = 60l * ((date.getJ2000Day() * 24l + time.getHour()) * 60l + time.getMinute() - 720l) + dl;
- }
- /** Build an instance from a location in a {@link TimeScale time scale}.
- * @param year year number (may be 0 or negative for BC years)
- * @param month month number from 1 to 12
- * @param day day number from 1 to 31
- * @param hour hour number from 0 to 23
- * @param minute minute number from 0 to 59
- * @param second second number from 0.0 to 60.0 (excluded)
- * @param timeScale time scale
- * @exception IllegalArgumentException if inconsistent arguments
- * are given (parameters out of range)
- */
- public AbsoluteDate(final int year, final int month, final int day,
- final int hour, final int minute, final double second,
- final TimeScale timeScale) throws IllegalArgumentException {
- this(new DateComponents(year, month, day), new TimeComponents(hour, minute, second), timeScale);
- }
- /** Build an instance from a location in a {@link TimeScale time scale}.
- * @param year year number (may be 0 or negative for BC years)
- * @param month month enumerate
- * @param day day number from 1 to 31
- * @param hour hour number from 0 to 23
- * @param minute minute number from 0 to 59
- * @param second second number from 0.0 to 60.0 (excluded)
- * @param timeScale time scale
- * @exception IllegalArgumentException if inconsistent arguments
- * are given (parameters out of range)
- */
- public AbsoluteDate(final int year, final Month month, final int day,
- final int hour, final int minute, final double second,
- final TimeScale timeScale) throws IllegalArgumentException {
- this(new DateComponents(year, month, day), new TimeComponents(hour, minute, second), timeScale);
- }
- /** Build an instance from a location in a {@link TimeScale time scale}.
- * <p>The hour is set to 00:00:00.000.</p>
- * @param date date location in the time scale
- * @param timeScale time scale
- * @exception IllegalArgumentException if inconsistent arguments
- * are given (parameters out of range)
- */
- public AbsoluteDate(final DateComponents date, final TimeScale timeScale)
- throws IllegalArgumentException {
- this(date, TimeComponents.H00, timeScale);
- }
- /** Build an instance from a location in a {@link TimeScale time scale}.
- * <p>The hour is set to 00:00:00.000.</p>
- * @param year year number (may be 0 or negative for BC years)
- * @param month month number from 1 to 12
- * @param day day number from 1 to 31
- * @param timeScale time scale
- * @exception IllegalArgumentException if inconsistent arguments
- * are given (parameters out of range)
- */
- public AbsoluteDate(final int year, final int month, final int day,
- final TimeScale timeScale) throws IllegalArgumentException {
- this(new DateComponents(year, month, day), TimeComponents.H00, timeScale);
- }
- /** Build an instance from a location in a {@link TimeScale time scale}.
- * <p>The hour is set to 00:00:00.000.</p>
- * @param year year number (may be 0 or negative for BC years)
- * @param month month enumerate
- * @param day day number from 1 to 31
- * @param timeScale time scale
- * @exception IllegalArgumentException if inconsistent arguments
- * are given (parameters out of range)
- */
- public AbsoluteDate(final int year, final Month month, final int day,
- final TimeScale timeScale) throws IllegalArgumentException {
- this(new DateComponents(year, month, day), TimeComponents.H00, timeScale);
- }
- /** Build an instance from a location in a {@link TimeScale time scale}.
- * @param location location in the time scale
- * @param timeScale time scale
- */
- public AbsoluteDate(final Date location, final TimeScale timeScale) {
- this(new DateComponents(DateComponents.JAVA_EPOCH,
- (int) (location.getTime() / 86400000l)),
- new TimeComponents(0.001 * (location.getTime() % 86400000l)),
- timeScale);
- }
- /** Build an instance from an elapsed duration since to another instant.
- * <p>It is important to note that the elapsed duration is <em>not</em>
- * the difference between two readings on a time scale. As an example,
- * the duration between the two instants leading to the readings
- * 2005-12-31T23:59:59 and 2006-01-01T00:00:00 in the {@link UTCScale UTC}
- * time scale is <em>not</em> 1 second, but a stop watch would have measured
- * an elapsed duration of 2 seconds between these two instances because a leap
- * second was introduced at the end of 2005 in this time scale.</p>
- * <p>This constructor is the reverse of the {@link #durationFrom(AbsoluteDate)}
- * method.</p>
- * @param since start instant of the measured duration
- * @param elapsedDuration physically elapsed duration from the <code>since</code>
- * instant, as measured in a regular time scale
- * @see #durationFrom(AbsoluteDate)
- */
- public AbsoluteDate(final AbsoluteDate since, final double elapsedDuration) {
- final double sum = since.offset + elapsedDuration;
- if (Double.isInfinite(sum)) {
- offset = sum;
- epoch = (sum < 0) ? Long.MIN_VALUE : Long.MAX_VALUE;
- } else {
- // compute sum exactly, using Møller-Knuth TwoSum algorithm without branching
- // the following statements must NOT be simplified, they rely on floating point
- // arithmetic properties (rounding and representable numbers)
- // at the end, the EXACT result of addition since.offset + elapsedDuration
- // is sum + residual, where sum is the closest representable number to the exact
- // result and residual is the missing part that does not fit in the first number
- final double oPrime = sum - elapsedDuration;
- final double dPrime = sum - oPrime;
- final double deltaO = since.offset - oPrime;
- final double deltaD = elapsedDuration - dPrime;
- final double residual = deltaO + deltaD;
- final long dl = (long) FastMath.floor(sum);
- offset = (sum - dl) + residual;
- epoch = since.epoch + dl;
- }
- }
- /** Build an instance from an apparent clock offset with respect to another
- * instant <em>in the perspective of a specific {@link TimeScale time scale}</em>.
- * <p>It is important to note that the apparent clock offset <em>is</em> the
- * difference between two readings on a time scale and <em>not</em> an elapsed
- * duration. As an example, the apparent clock offset between the two instants
- * leading to the readings 2005-12-31T23:59:59 and 2006-01-01T00:00:00 in the
- * {@link UTCScale UTC} time scale is 1 second, but the elapsed duration is 2
- * seconds because a leap second has been introduced at the end of 2005 in this
- * time scale.</p>
- * <p>This constructor is the reverse of the {@link #offsetFrom(AbsoluteDate,
- * TimeScale)} method.</p>
- * @param reference reference instant
- * @param apparentOffset apparent clock offset from the reference instant
- * (difference between two readings in the specified time scale)
- * @param timeScale time scale with respect to which the offset is defined
- * @see #offsetFrom(AbsoluteDate, TimeScale)
- */
- public AbsoluteDate(final AbsoluteDate reference, final double apparentOffset,
- final TimeScale timeScale) {
- this(new DateTimeComponents(reference.getComponents(timeScale), apparentOffset),
- timeScale);
- }
- /** Build an instance from a CCSDS Unsegmented Time Code (CUC).
- * <p>
- * CCSDS Unsegmented Time Code is defined in the blue book:
- * CCSDS Time Code Format (CCSDS 301.0-B-4) published in November 2010
- * </p>
- * <p>
- * If the date to be parsed is formatted using version 3 of the standard
- * (CCSDS 301.0-B-3 published in 2002) or if the extension of the preamble
- * field introduced in version 4 of the standard is not used, then the
- * {@code preambleField2} parameter can be set to 0.
- * </p>
- * @param preambleField1 first byte of the field specifying the format, often
- * not transmitted in data interfaces, as it is constant for a given data interface
- * @param preambleField2 second byte of the field specifying the format
- * (added in revision 4 of the CCSDS standard in 2010), often not transmitted in data
- * interfaces, as it is constant for a given data interface (value ignored if presence
- * not signaled in {@code preambleField1})
- * @param timeField byte array containing the time code
- * @param agencyDefinedEpoch reference epoch, ignored if the preamble field
- * specifies the {@link #CCSDS_EPOCH CCSDS reference epoch} is used (and hence
- * may be null in this case)
- * @return an instance corresponding to the specified date
- * @throws OrekitException if preamble is inconsistent with Unsegmented Time Code,
- * or if it is inconsistent with time field, or if agency epoch is needed but not provided
- */
- public static AbsoluteDate parseCCSDSUnsegmentedTimeCode(final byte preambleField1,
- final byte preambleField2,
- final byte[] timeField,
- final AbsoluteDate agencyDefinedEpoch)
- throws OrekitException {
- // time code identification and reference epoch
- final AbsoluteDate epoch;
- switch (preambleField1 & 0x70) {
- case 0x10:
- // the reference epoch is CCSDS epoch 1958-01-01T00:00:00 TAI
- epoch = CCSDS_EPOCH;
- break;
- case 0x20:
- // the reference epoch is agency defined
- if (agencyDefinedEpoch == null) {
- throw new OrekitException(OrekitMessages.CCSDS_DATE_MISSING_AGENCY_EPOCH);
- }
- epoch = agencyDefinedEpoch;
- break;
- default :
- throw new OrekitException(OrekitMessages.CCSDS_DATE_INVALID_PREAMBLE_FIELD,
- formatByte(preambleField1));
- }
- // time field lengths
- int coarseTimeLength = 1 + ((preambleField1 & 0x0C) >>> 2);
- int fineTimeLength = preambleField1 & 0x03;
- if ((preambleField1 & 0x80) != 0x0) {
- // there is an additional octet in preamble field
- coarseTimeLength += (preambleField2 & 0x60) >>> 5;
- fineTimeLength += (preambleField2 & 0x1C) >>> 2;
- }
- if (timeField.length != coarseTimeLength + fineTimeLength) {
- throw new OrekitException(OrekitMessages.CCSDS_DATE_INVALID_LENGTH_TIME_FIELD,
- timeField.length, coarseTimeLength + fineTimeLength);
- }
- double seconds = 0;
- for (int i = 0; i < coarseTimeLength; ++i) {
- seconds = seconds * 256 + toUnsigned(timeField[i]);
- }
- double subseconds = 0;
- for (int i = timeField.length - 1; i >= coarseTimeLength; --i) {
- subseconds = (subseconds + toUnsigned(timeField[i])) / 256;
- }
- return new AbsoluteDate(epoch, seconds).shiftedBy(subseconds);
- }
- /** Build an instance from a CCSDS Day Segmented Time Code (CDS).
- * <p>
- * CCSDS Day Segmented Time Code is defined in the blue book:
- * CCSDS Time Code Format (CCSDS 301.0-B-4) published in November 2010
- * </p>
- * @param preambleField field specifying the format, often not transmitted in
- * data interfaces, as it is constant for a given data interface
- * @param timeField byte array containing the time code
- * @param agencyDefinedEpoch reference epoch, ignored if the preamble field
- * specifies the {@link #CCSDS_EPOCH CCSDS reference epoch} is used (and hence
- * may be null in this case)
- * @return an instance corresponding to the specified date
- * @throws OrekitException if preamble is inconsistent with Day Segmented Time Code,
- * or if it is inconsistent with time field, or if agency epoch is needed but not provided,
- * or it UTC time scale cannot be retrieved
- */
- public static AbsoluteDate parseCCSDSDaySegmentedTimeCode(final byte preambleField, final byte[] timeField,
- final DateComponents agencyDefinedEpoch)
- throws OrekitException {
- // time code identification
- if ((preambleField & 0xF0) != 0x40) {
- throw new OrekitException(OrekitMessages.CCSDS_DATE_INVALID_PREAMBLE_FIELD,
- formatByte(preambleField));
- }
- // reference epoch
- final DateComponents epoch;
- if ((preambleField & 0x08) == 0x00) {
- // the reference epoch is CCSDS epoch 1958-01-01T00:00:00 TAI
- epoch = DateComponents.CCSDS_EPOCH;
- } else {
- // the reference epoch is agency defined
- if (agencyDefinedEpoch == null) {
- throw new OrekitException(OrekitMessages.CCSDS_DATE_MISSING_AGENCY_EPOCH);
- }
- epoch = agencyDefinedEpoch;
- }
- // time field lengths
- final int daySegmentLength = ((preambleField & 0x04) == 0x0) ? 2 : 3;
- final int subMillisecondLength = (preambleField & 0x03) << 1;
- if (subMillisecondLength == 6) {
- throw new OrekitException(OrekitMessages.CCSDS_DATE_INVALID_PREAMBLE_FIELD,
- formatByte(preambleField));
- }
- if (timeField.length != daySegmentLength + 4 + subMillisecondLength) {
- throw new OrekitException(OrekitMessages.CCSDS_DATE_INVALID_LENGTH_TIME_FIELD,
- timeField.length, daySegmentLength + 4 + subMillisecondLength);
- }
- int i = 0;
- int day = 0;
- while (i < daySegmentLength) {
- day = day * 256 + toUnsigned(timeField[i++]);
- }
- long milliInDay = 0l;
- while (i < daySegmentLength + 4) {
- milliInDay = milliInDay * 256 + toUnsigned(timeField[i++]);
- }
- final int milli = (int) (milliInDay % 1000l);
- final int seconds = (int) ((milliInDay - milli) / 1000l);
- double subMilli = 0;
- double divisor = 1;
- while (i < timeField.length) {
- subMilli = subMilli * 256 + toUnsigned(timeField[i++]);
- divisor *= 1000;
- }
- final DateComponents date = new DateComponents(epoch, day);
- final TimeComponents time = new TimeComponents(seconds);
- return new AbsoluteDate(date, time, TimeScalesFactory.getUTC()).shiftedBy(milli * 1.0e-3 + subMilli / divisor);
- }
- /** Build an instance from a CCSDS Calendar Segmented Time Code (CCS).
- * <p>
- * CCSDS Calendar Segmented Time Code is defined in the blue book:
- * CCSDS Time Code Format (CCSDS 301.0-B-4) published in November 2010
- * </p>
- * @param preambleField field specifying the format, often not transmitted in
- * data interfaces, as it is constant for a given data interface
- * @param timeField byte array containing the time code
- * @return an instance corresponding to the specified date
- * @throws OrekitException if preamble is inconsistent with Calendar Segmented Time Code,
- * or if it is inconsistent with time field, or it UTC time scale cannot be retrieved
- */
- public static AbsoluteDate parseCCSDSCalendarSegmentedTimeCode(final byte preambleField, final byte[] timeField)
- throws OrekitException {
- // time code identification
- if ((preambleField & 0xF0) != 0x50) {
- throw new OrekitException(OrekitMessages.CCSDS_DATE_INVALID_PREAMBLE_FIELD,
- formatByte(preambleField));
- }
- // time field length
- final int length = 7 + (preambleField & 0x07);
- if (length == 14) {
- throw new OrekitException(OrekitMessages.CCSDS_DATE_INVALID_PREAMBLE_FIELD,
- formatByte(preambleField));
- }
- if (timeField.length != length) {
- throw new OrekitException(OrekitMessages.CCSDS_DATE_INVALID_LENGTH_TIME_FIELD,
- timeField.length, length);
- }
- // date part in the first four bytes
- final DateComponents date;
- if ((preambleField & 0x08) == 0x00) {
- // month of year and day of month variation
- date = new DateComponents(toUnsigned(timeField[0]) * 256 + toUnsigned(timeField[1]),
- toUnsigned(timeField[2]),
- toUnsigned(timeField[3]));
- } else {
- // day of year variation
- date = new DateComponents(toUnsigned(timeField[0]) * 256 + toUnsigned(timeField[1]),
- toUnsigned(timeField[2]) * 256 + toUnsigned(timeField[3]));
- }
- // time part from bytes 5 to last (between 7 and 13 depending on precision)
- final TimeComponents time = new TimeComponents(toUnsigned(timeField[4]),
- toUnsigned(timeField[5]),
- toUnsigned(timeField[6]));
- double subSecond = 0;
- double divisor = 1;
- for (int i = 7; i < length; ++i) {
- subSecond = subSecond * 100 + toUnsigned(timeField[i]);
- divisor *= 100;
- }
- return new AbsoluteDate(date, time, TimeScalesFactory.getUTC()).shiftedBy(subSecond / divisor);
- }
- /** Decode a signed byte as an unsigned int value.
- * @param b byte to decode
- * @return an unsigned int value
- */
- private static int toUnsigned(final byte b) {
- final int i = (int) b;
- return (i < 0) ? 256 + i : i;
- }
- /** Format a byte as an hex string for error messages.
- * @param data byte to format
- * @return a formatted string
- */
- private static String formatByte(final byte data) {
- return "0x" + Integer.toHexString(data).toUpperCase();
- }
- /** Build an instance corresponding to a GPS date.
- * <p>GPS dates are provided as a week number starting at
- * {@link #GPS_EPOCH GPS epoch} and as a number of milliseconds
- * since week start.</p>
- * @param weekNumber week number since {@link #GPS_EPOCH GPS epoch}
- * @param milliInWeek number of milliseconds since week start
- * @return a new instant
- */
- public static AbsoluteDate createGPSDate(final int weekNumber,
- final double milliInWeek) {
- final int day = (int) FastMath.floor(milliInWeek / (1000.0 * Constants.JULIAN_DAY));
- final double secondsInDay = milliInWeek / 1000.0 - day * Constants.JULIAN_DAY;
- return new AbsoluteDate(new DateComponents(DateComponents.GPS_EPOCH, weekNumber * 7 + day),
- new TimeComponents(secondsInDay),
- TimeScalesFactory.getGPS());
- }
- /** Build an instance corresponding to a Julian Epoch (JE).
- * <p>According to Lieske paper: <a
- * href="http://articles.adsabs.harvard.edu/cgi-bin/nph-iarticle_query?1979A%26A....73..282L&defaultprint=YES&filetype=.pdf.">
- * Precession Matrix Based on IAU (1976) System of Astronomical Constants</a>, Astronomy and Astrophysics,
- * vol. 73, no. 3, Mar. 1979, p. 282-284, Julian Epoch is related to Julian Ephemeris Date as:</p>
- * <pre>
- * JE = 2000.0 + (JED - 2451545.0) / 365.25
- * </pre>
- * <p>
- * This method reverts the formula above and computes an {@code AbsoluteDate} from the Julian Epoch.
- * </p>
- * @param julianEpoch Julian epoch, like 2000.0 for defining the classical reference J2000.0
- * @return a new instant
- * @see #J2000_EPOCH
- * @see #createBesselianEpoch(double)
- */
- public static AbsoluteDate createJulianEpoch(final double julianEpoch) {
- return new AbsoluteDate(J2000_EPOCH,
- Constants.JULIAN_YEAR * (julianEpoch - 2000.0));
- }
- /** Build an instance corresponding to a Besselian Epoch (BE).
- * <p>According to Lieske paper: <a
- * href="http://articles.adsabs.harvard.edu/cgi-bin/nph-iarticle_query?1979A%26A....73..282L&defaultprint=YES&filetype=.pdf.">
- * Precession Matrix Based on IAU (1976) System of Astronomical Constants</a>, Astronomy and Astrophysics,
- * vol. 73, no. 3, Mar. 1979, p. 282-284, Besselian Epoch is related to Julian Ephemeris Date as:</p>
- * <pre>
- * BE = 1900.0 + (JED - 2415020.31352) / 365.242198781
- * </pre>
- * <p>
- * This method reverts the formula above and computes an {@code AbsoluteDate} from the Besselian Epoch.
- * </p>
- * @param besselianEpoch Besselian epoch, like 1950 for defining the classical reference B1950.0
- * @return a new instant
- * @see #createJulianEpoch(double)
- */
- public static AbsoluteDate createBesselianEpoch(final double besselianEpoch) {
- return new AbsoluteDate(J2000_EPOCH,
- MathArrays.linearCombination(Constants.BESSELIAN_YEAR, besselianEpoch - 1900,
- Constants.JULIAN_DAY, -36525,
- Constants.JULIAN_DAY, 0.31352));
- }
- /** Get a time-shifted date.
- * <p>
- * Calling this method is equivalent to call <code>new AbsoluteDate(this, dt)</code>.
- * </p>
- * @param dt time shift in seconds
- * @return a new date, shifted with respect to instance (which is immutable)
- * @see org.orekit.utils.PVCoordinates#shiftedBy(double)
- * @see org.orekit.attitudes.Attitude#shiftedBy(double)
- * @see org.orekit.orbits.Orbit#shiftedBy(double)
- * @see org.orekit.propagation.SpacecraftState#shiftedBy(double)
- */
- public AbsoluteDate shiftedBy(final double dt) {
- return new AbsoluteDate(this, dt);
- }
- /** Compute the physically elapsed duration between two instants.
- * <p>The returned duration is the number of seconds physically
- * elapsed between the two instants, measured in a regular time
- * scale with respect to surface of the Earth (i.e either the {@link
- * TAIScale TAI scale}, the {@link TTScale TT scale} or the {@link
- * GPSScale GPS scale}). It is the only method that gives a
- * duration with a physical meaning.</p>
- * <p>This method gives the same result (with less computation)
- * as calling {@link #offsetFrom(AbsoluteDate, TimeScale)}
- * with a second argument set to one of the regular scales cited
- * above.</p>
- * <p>This method is the reverse of the {@link #AbsoluteDate(AbsoluteDate,
- * double)} constructor.</p>
- * @param instant instant to subtract from the instance
- * @return offset in seconds between the two instants (positive
- * if the instance is posterior to the argument)
- * @see #offsetFrom(AbsoluteDate, TimeScale)
- * @see #AbsoluteDate(AbsoluteDate, double)
- */
- public double durationFrom(final AbsoluteDate instant) {
- return (epoch - instant.epoch) + (offset - instant.offset);
- }
- /** Compute the apparent clock offset between two instant <em>in the
- * perspective of a specific {@link TimeScale time scale}</em>.
- * <p>The offset is the number of seconds counted in the given
- * time scale between the locations of the two instants, with
- * all time scale irregularities removed (i.e. considering all
- * days are exactly 86400 seconds long). This method will give
- * a result that may not have a physical meaning if the time scale
- * is irregular. For example since a leap second was introduced at
- * the end of 2005, the apparent offset between 2005-12-31T23:59:59
- * and 2006-01-01T00:00:00 is 1 second, but the physical duration
- * of the corresponding time interval as returned by the {@link
- * #durationFrom(AbsoluteDate)} method is 2 seconds.</p>
- * <p>This method is the reverse of the {@link #AbsoluteDate(AbsoluteDate,
- * double, TimeScale)} constructor.</p>
- * @param instant instant to subtract from the instance
- * @param timeScale time scale with respect to which the offset should
- * be computed
- * @return apparent clock offset in seconds between the two instants
- * (positive if the instance is posterior to the argument)
- * @see #durationFrom(AbsoluteDate)
- * @see #AbsoluteDate(AbsoluteDate, double, TimeScale)
- */
- public double offsetFrom(final AbsoluteDate instant, final TimeScale timeScale) {
- final long elapsedDurationA = epoch - instant.epoch;
- final double elapsedDurationB = (offset + timeScale.offsetFromTAI(this)) -
- (instant.offset + timeScale.offsetFromTAI(instant));
- return elapsedDurationA + elapsedDurationB;
- }
- /** Compute the offset between two time scales at the current instant.
- * <p>The offset is defined as <i>l<sub>1</sub>-l<sub>2</sub></i>
- * where <i>l<sub>1</sub></i> is the location of the instant in
- * the <code>scale1</code> time scale and <i>l<sub>2</sub></i> is the
- * location of the instant in the <code>scale2</code> time scale.</p>
- * @param scale1 first time scale
- * @param scale2 second time scale
- * @return offset in seconds between the two time scales at the
- * current instant
- */
- public double timeScalesOffset(final TimeScale scale1, final TimeScale scale2) {
- return scale1.offsetFromTAI(this) - scale2.offsetFromTAI(this);
- }
- /** Convert the instance to a Java {@link java.util.Date Date}.
- * <p>Conversion to the Date class induces a loss of precision because
- * the Date class does not provide sub-millisecond information. Java Dates
- * are considered to be locations in some times scales.</p>
- * @param timeScale time scale to use
- * @return a {@link java.util.Date Date} instance representing the location
- * of the instant in the time scale
- */
- public Date toDate(final TimeScale timeScale) {
- final double time = epoch + (offset + timeScale.offsetFromTAI(this));
- return new Date(FastMath.round((time + 10957.5 * 86400.0) * 1000));
- }
- /** Split the instance into date/time components.
- * @param timeScale time scale to use
- * @return date/time components
- */
- public DateTimeComponents getComponents(final TimeScale timeScale) {
- // compute offset from 2000-01-01T00:00:00 in specified time scale exactly,
- // using Møller-Knuth TwoSum algorithm without branching
- // the following statements must NOT be simplified, they rely on floating point
- // arithmetic properties (rounding and representable numbers)
- // at the end, the EXACT result of addition offset + timeScale.offsetFromTAI(this)
- // is sum + residual, where sum is the closest representable number to the exact
- // result and residual is the missing part that does not fit in the first number
- final double taiOffset = timeScale.offsetFromTAI(this);
- final double sum = offset + taiOffset;
- final double oPrime = sum - taiOffset;
- final double dPrime = sum - oPrime;
- final double deltaO = offset - oPrime;
- final double deltaD = taiOffset - dPrime;
- final double residual = deltaO + deltaD;
- // split date and time
- final long carry = (long) FastMath.floor(sum);
- double offset2000B = (sum - carry) + residual;
- long offset2000A = epoch + carry + 43200l;
- if (offset2000B < 0) {
- offset2000A -= 1;
- offset2000B += 1;
- }
- long time = offset2000A % 86400l;
- if (time < 0l) {
- time += 86400l;
- }
- final int date = (int) ((offset2000A - time) / 86400l);
- // extract calendar elements
- final DateComponents dateComponents = new DateComponents(DateComponents.J2000_EPOCH, date);
- TimeComponents timeComponents = new TimeComponents((int) time, offset2000B);
- if (timeScale instanceof UTCScale) {
- final UTCScale utc = (UTCScale) timeScale;
- if (utc.insideLeap(this)) {
- // fix the seconds number to take the leap into account
- timeComponents = new TimeComponents(timeComponents.getHour(), timeComponents.getMinute(),
- timeComponents.getSecond() + utc.getLeap(this));
- }
- }
- // build the components
- return new DateTimeComponents(dateComponents, timeComponents);
- }
- /** Compare the instance with another date.
- * @param date other date to compare the instance to
- * @return a negative integer, zero, or a positive integer as this date
- * is before, simultaneous, or after the specified date.
- */
- public int compareTo(final AbsoluteDate date) {
- final double delta = durationFrom(date);
- if (delta < 0) {
- return -1;
- } else if (delta > 0) {
- return +1;
- }
- return 0;
- }
- /** {@inheritDoc} */
- public AbsoluteDate getDate() {
- return this;
- }
- /** Check if the instance represent the same time as another instance.
- * @param date other date
- * @return true if the instance and the other date refer to the same instant
- */
- public boolean equals(final Object date) {
- if (date == this) {
- // first fast check
- return true;
- }
- if ((date != null) && (date instanceof AbsoluteDate)) {
- return durationFrom((AbsoluteDate) date) == 0;
- }
- return false;
- }
- /** Get a hashcode for this date.
- * @return hashcode
- */
- public int hashCode() {
- final long l = Double.doubleToLongBits(durationFrom(J2000_EPOCH));
- return (int) (l ^ (l >>> 32));
- }
- /** Get a String representation of the instant location in UTC time scale.
- * @return a string representation of the instance,
- * in ISO-8601 format with milliseconds accuracy
- */
- public String toString() {
- try {
- return toString(TimeScalesFactory.getUTC());
- } catch (OrekitException oe) {
- throw new RuntimeException(oe);
- }
- }
- /** Get a String representation of the instant location.
- * @param timeScale time scale to use
- * @return a string representation of the instance,
- * in ISO-8601 format with milliseconds accuracy
- */
- public String toString(final TimeScale timeScale) {
- return getComponents(timeScale).toString();
- }
- }