GHmsjPolynomials.java
- /* Copyright 2002-2013 CS Systèmes d'Information
- * Licensed to CS Systèmes d'Information (CS) under one or more
- * contributor license agreements. See the NOTICE file distributed with
- * this work for additional information regarding copyright ownership.
- * CS licenses this file to You under the Apache License, Version 2.0
- * (the "License"); you may not use this file except in compliance with
- * the License. You may obtain a copy of the License at
- *
- * http://www.apache.org/licenses/LICENSE-2.0
- *
- * Unless required by applicable law or agreed to in writing, software
- * distributed under the License is distributed on an "AS IS" BASIS,
- * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- * See the License for the specific language governing permissions and
- * limitations under the License.
- */
- package org.orekit.propagation.semianalytical.dsst.utilities;
- import java.util.ArrayList;
- import java.util.List;
- import org.apache.commons.math3.complex.Complex;
- import org.apache.commons.math3.util.FastMath;
- /** Compute the G<sub>ms</sub><sup>j</sup> and the H<sub>ms</sub><sup>j</sup>
- * polynomials in the equinoctial elements h, k and the direction cosines α and β
- * and their partial derivatives with respect to k, h, α and β.
- * <p>
- * The expressions used are equations 2.7.5-(1)(2) from the Danielson paper.
- * </p>
- * @author Romain Di Costanzo
- */
- public class GHmsjPolynomials {
- /** C<sub>j</sub>(k, h), S<sub>j</sub>(k, h) coefficient.
- * (k, h) are the (x, y) component of the eccentricity vector in equinoctial elements
- */
- private final CjSjCoefficient cjsjKH;
- /** C<sub>j</sub>(α, β), S<sub>j</sub>(α, β) coefficient.
- * (α, β) are the direction cosines
- */
- private final CjSjCoefficient cjsjAB;
- /** Is the orbit represented as a retrograde orbit.
- * I = -1 if yes, +1 otherwise.
- */
- private int I;
- /** Create a set of G<sub>ms</sub><sup>j</sup> and H<sub>ms</sub><sup>j</sup> polynomials.
- * @param k X component of the eccentricity vector
- * @param h Y component of the eccentricity vector
- * @param alpha direction cosine α
- * @param beta direction cosine β
- * @param retroFactor -1 if the orbit is represented as retrograde, +1 otherwise
- **/
- public GHmsjPolynomials(final double k, final double h,
- final double alpha, final double beta,
- final int retroFactor) {
- this.cjsjKH = new CjSjCoefficient(k, h);
- this.cjsjAB = new CjSjCoefficient(alpha, beta);
- this.I = retroFactor;
- }
- /** Get the G<sub>ms</sub><sup>j</sup> coefficient.
- * @param m m subscript
- * @param s s subscript
- * @param j order
- * @return the G<sub>ms</sub><sup>j</sup>
- */
- public double getGmsj(final int m, final int s, final int j) {
- final int sMj = FastMath.abs(s - j);
- double gms = 0d;
- if (FastMath.abs(s) <= m) {
- final int mMis = m - I * s;
- gms = cjsjKH.getCj(sMj) * cjsjAB.getCj(mMis) -
- I * sgn(s - j) * cjsjKH.getSj(sMj) * cjsjAB.getSj(mMis);
- } else {
- final int sMim = FastMath.abs(s - I * m);
- gms = cjsjKH.getCj(sMj) * cjsjAB.getCj(sMim) +
- sgn(s - j) * sgn(s - m) * cjsjKH.getSj(sMj) * cjsjAB.getSj(sMim);
- }
- return gms;
- }
- /** Get the H<sub>ms</sub><sup>j</sup> coefficient.
- * @param m m subscript
- * @param s s subscript
- * @param j order
- * @return the H<sub>ms</sub><sup>j</sup>
- */
- public double getHmsj(final int m, final int s, final int j) {
- final int sMj = FastMath.abs(s - j);
- double hms = 0d;
- if (FastMath.abs(s) <= m) {
- final int mMis = m - I * s;
- hms = I * cjsjKH.getCj(sMj) * cjsjAB.getSj(mMis) + sgn(s - j) *
- cjsjKH.getSj(sMj) * cjsjAB.getCj(mMis);
- } else {
- final int sMim = FastMath.abs(s - I * m);
- hms = -sgn(s - m) * cjsjKH.getCj(sMj) * cjsjAB.getSj(sMim) +
- sgn(s - j) * cjsjKH.getSj(sMj) * cjsjAB.getCj(sMim);
- }
- return hms;
- }
- /** Get the dG<sub>ms</sub><sup>j</sup> / d<sub>k</sub> coefficient.
- * @param m m subscript
- * @param s s subscript
- * @param j order
- * @return dG<sub>ms</sub><sup>j</sup> / d<sub>k</sub>
- */
- public double getdGmsdk(final int m, final int s, final int j) {
- final int sMj = FastMath.abs(s - j);
- double dGmsdk = 0d;
- if (FastMath.abs(s) <= m) {
- final int mMis = m - I * s;
- dGmsdk = cjsjKH.getDcjDk(sMj) * cjsjAB.getCj(mMis) -
- I * sgn(s - j) * cjsjKH.getDsjDk(sMj) * cjsjAB.getSj(mMis);
- } else {
- final int sMim = FastMath.abs(s - I * m);
- dGmsdk = cjsjKH.getDcjDk(sMj) * cjsjAB.getCj(sMim) +
- sgn(s - j) * sgn(s - m) * cjsjKH.getDsjDk(sMj) * cjsjAB.getSj(sMim);
- }
- return dGmsdk;
- }
- /** Get the dG<sub>ms</sub><sup>j</sup> / d<sub>h</sub> coefficient.
- * @param m m subscript
- * @param s s subscript
- * @param j order
- * @return dG<sub>ms</sub><sup>j</sup> / d<sub>h</sub>
- */
- public double getdGmsdh(final int m, final int s, final int j) {
- final int sMj = FastMath.abs(s - j);
- double dGmsdh = 0d;
- if (FastMath.abs(s) <= m) {
- final int mMis = m - I * s;
- dGmsdh = cjsjKH.getDcjDh(sMj) * cjsjAB.getCj(mMis) -
- I * sgn(s - j) * cjsjKH.getDsjDh(sMj) * cjsjAB.getSj(mMis);
- } else {
- final int sMim = FastMath.abs(s - I * m);
- dGmsdh = cjsjKH.getDcjDh(sMj) * cjsjAB.getCj(sMim) +
- sgn(s - j) * sgn(s - m) * cjsjKH.getDsjDh(sMj) * cjsjAB.getSj(sMim);
- }
- return dGmsdh;
- }
- /** Get the dG<sub>ms</sub><sup>j</sup> / d<sub>α</sub> coefficient.
- * @param m m subscript
- * @param s s subscript
- * @param j order
- * @return dG<sub>ms</sub><sup>j</sup> / d<sub>α</sub>
- */
- public double getdGmsdAlpha(final int m, final int s, final int j) {
- final int sMj = FastMath.abs(s - j);
- double dGmsdAl = 0d;
- if (FastMath.abs(s) <= m) {
- final int mMis = m - I * s;
- dGmsdAl = cjsjKH.getCj(sMj) * cjsjAB.getDcjDk(mMis) -
- I * sgn(s - j) * cjsjKH.getSj(sMj) * cjsjAB.getDsjDk(mMis);
- } else {
- final int sMim = FastMath.abs(s - I * m);
- dGmsdAl = cjsjKH.getCj(sMj) * cjsjAB.getDcjDk(sMim) +
- sgn(s - j) * sgn(s - m) * cjsjKH.getSj(sMj) * cjsjAB.getDsjDk(sMim);
- }
- return dGmsdAl;
- }
- /** Get the dG<sub>ms</sub><sup>j</sup> / d<sub>β</sub> coefficient.
- * @param m m subscript
- * @param s s subscript
- * @param j order
- * @return dG<sub>ms</sub><sup>j</sup> / d<sub>β</sub>
- */
- public double getdGmsdBeta(final int m, final int s, final int j) {
- final int sMj = FastMath.abs(s - j);
- double dGmsdBe = 0d;
- if (FastMath.abs(s) <= m) {
- final int mMis = m - I * s;
- dGmsdBe = cjsjKH.getCj(sMj) * cjsjAB.getDcjDh(mMis) -
- I * sgn(s - j) * cjsjKH.getSj(sMj) * cjsjAB.getDsjDh(mMis);
- } else {
- final int sMim = FastMath.abs(s - I * m);
- dGmsdBe = cjsjKH.getCj(sMj) * cjsjAB.getDcjDh(sMim) +
- sgn(s - j) * sgn(s - m) * cjsjKH.getSj(sMj) * cjsjAB.getDsjDh(sMim);
- }
- return dGmsdBe;
- }
- /** Get the dH<sub>ms</sub><sup>j</sup> / d<sub>k</sub> coefficient.
- * @param m m subscript
- * @param s s subscript
- * @param j order
- * @return dH<sub>ms</sub><sup>j</sup> / d<sub>k</sub>
- */
- public double getdHmsdk(final int m, final int s, final int j) {
- final int sMj = FastMath.abs(s - j);
- double dHmsdk = 0d;
- if (FastMath.abs(s) <= m) {
- final int mMis = m - I * s;
- dHmsdk = I * cjsjKH.getDcjDk(sMj) * cjsjAB.getSj(mMis) +
- sgn(s - j) * cjsjKH.getDsjDk(sMj) * cjsjAB.getCj(mMis);
- } else {
- final int sMim = FastMath.abs(s - I * m);
- dHmsdk = -sgn(s - m) * cjsjKH.getDcjDk(sMj) * cjsjAB.getSj(sMim) +
- sgn(s - j) * cjsjKH.getDsjDk(sMj) * cjsjAB.getCj(sMim);
- }
- return dHmsdk;
- }
- /** Get the dH<sub>ms</sub><sup>j</sup> / d<sub>h</sub> coefficient.
- * @param m m subscript
- * @param s s subscript
- * @param j order
- * @return dH<sub>ms</sub><sup>j</sup> / d<sub>h</sub>
- */
- public double getdHmsdh(final int m, final int s, final int j) {
- final int sMj = FastMath.abs(s - j);
- double dHmsdh = 0d;
- if (FastMath.abs(s) <= m) {
- final int mMis = m - I * s;
- dHmsdh = I * cjsjKH.getDcjDh(sMj) * cjsjAB.getSj(mMis) +
- sgn(s - j) * cjsjKH.getDsjDh(sMj) * cjsjAB.getCj(mMis);
- } else {
- final int sMim = FastMath.abs(s - I * m);
- dHmsdh = -sgn(s - m) * cjsjKH.getDcjDh(sMj) * cjsjAB.getSj(sMim) +
- sgn(s - j) * cjsjKH.getDsjDh(sMj) * cjsjAB.getCj(sMim);
- }
- return dHmsdh;
- }
- /** Get the dH<sub>ms</sub><sup>j</sup> / d<sub>α</sub> coefficient.
- * @param m m subscript
- * @param s s subscript
- * @param j order
- * @return dH<sub>ms</sub><sup>j</sup> / d<sub>α</sub>
- */
- public double getdHmsdAlpha(final int m, final int s, final int j) {
- final int sMj = FastMath.abs(s - j);
- double dHmsdAl = 0d;
- if (FastMath.abs(s) <= m) {
- final int mMis = m - I * s;
- dHmsdAl = I * cjsjKH.getCj(sMj) * cjsjAB.getDsjDk(mMis) +
- sgn(s - j) * cjsjKH.getSj(sMj) * cjsjAB.getDcjDk(mMis);
- } else {
- final int sMim = FastMath.abs(s - I * m);
- dHmsdAl = -sgn(s - m) * cjsjKH.getCj(sMj) * cjsjAB.getDsjDk(sMim) +
- sgn(s - j) * cjsjKH.getSj(sMj) * cjsjAB.getDcjDk(sMim);
- }
- return dHmsdAl;
- }
- /** Get the dH<sub>ms</sub><sup>j</sup> / d<sub>β</sub> coefficient.
- * @param m m subscript
- * @param s s subscript
- * @param j order
- * @return dH<sub>ms</sub><sup>j</sup> / d<sub>β</sub>
- */
- public double getdHmsdBeta(final int m, final int s, final int j) {
- final int sMj = FastMath.abs(s - j);
- double dHmsdBe = 0d;
- if (FastMath.abs(s) <= m) {
- final int mMis = m - I * s;
- dHmsdBe = I * cjsjKH.getCj(sMj) * cjsjAB.getDsjDh(mMis) +
- sgn(s - j) * cjsjKH.getSj(sMj) * cjsjAB.getDcjDh(mMis);
- } else {
- final int sMim = FastMath.abs(s - I * m);
- dHmsdBe = -sgn(s - m) * cjsjKH.getCj(sMj) * cjsjAB.getDsjDh(sMim) +
- sgn(s - j) * cjsjKH.getSj(sMj) * cjsjAB.getDcjDh(sMim);
- }
- return dHmsdBe;
- }
- /** Get the sign of an integer.
- * @param i number on which evaluation is done
- * @return -1 or +1 depending on sign of i
- */
- private int sgn(final int i) {
- return (i < 0) ? -1 : 1;
- }
- /** Compute the S<sub>j</sub>(k, h) and the C<sub>j</sub>(k, h) series
- * and their partial derivatives with respect to k and h.
- * <p>
- * Those series are given in Danielson paper by expression 2.5.3-(5):
- * <pre>C<sub>j</sub>(k, h) + i S<sub>j</sub>(k, h) = (k+ih)<sup>j</sup> </pre>
- * </p>
- * The C<sub>j</sub>(k, h) and the S<sub>j</sub>(k, h) elements are store as an
- * {@link ArrayList} of {@link Complex} number, the C<sub>j</sub>(k, h) being
- * represented by the real and the S<sub>j</sub>(k, h) by the imaginary part.
- */
- private static class CjSjCoefficient {
- /** Last computed order j. */
- private int jLast;
- /** Complex base (k + ih) of the C<sub>j</sub>, S<sub>j</sub> series. */
- private final Complex kih;
- /** List of computed elements. */
- private final List<Complex> cjsj;
- /** C<sub>j</sub>(k, h) and S<sub>j</sub>(k, h) constructor.
- * @param k k value
- * @param h h value
- */
- public CjSjCoefficient(final double k, final double h) {
- kih = new Complex(k, h);
- cjsj = new ArrayList<Complex>();
- cjsj.add(new Complex(1, 0));
- cjsj.add(kih);
- jLast = 1;
- }
- /** Get the C<sub>j</sub> coefficient.
- * @param j order
- * @return C<sub>j</sub>
- */
- public double getCj(final int j) {
- if (j > jLast) {
- // Update to order j
- updateCjSj(j);
- }
- return cjsj.get(j).getReal();
- }
- /** Get the S<sub>j</sub> coefficient.
- * @param j order
- * @return S<sub>j</sub>
- */
- public double getSj(final int j) {
- if (j > jLast) {
- // Update to order j
- updateCjSj(j);
- }
- return cjsj.get(j).getImaginary();
- }
- /** Get the dC<sub>j</sub> / dk coefficient.
- * @param j order
- * @return dC<sub>j</sub> / d<sub>k</sub>
- */
- public double getDcjDk(final int j) {
- return j == 0 ? 0 : j * getCj(j - 1);
- }
- /** Get the dS<sub>j</sub> / dk coefficient.
- * @param j order
- * @return dS<sub>j</sub> / d<sub>k</sub>
- */
- public double getDsjDk(final int j) {
- return j == 0 ? 0 : j * getSj(j - 1);
- }
- /** Get the dC<sub>j</sub> / dh coefficient.
- * @param j order
- * @return dC<sub>i</sub> / d<sub>k</sub>
- */
- public double getDcjDh(final int j) {
- return j == 0 ? 0 : -j * getSj(j - 1);
- }
- /** Get the dS<sub>j</sub> / dh coefficient.
- * @param j order
- * @return dS<sub>j</sub> / d<sub>h</sub>
- */
- public double getDsjDh(final int j) {
- return j == 0 ? 0 : j * getCj(j - 1);
- }
- /** Update the cjsj up to order j.
- * @param j order
- */
- private void updateCjSj(final int j) {
- Complex last = cjsj.get(cjsj.size() - 1);
- for (int i = jLast; i < j; i++) {
- final Complex next = last.multiply(kih);
- cjsj.add(next);
- last = next;
- }
- jLast = j;
- }
- }
- }